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Abstract: In this paper we present a fast algorithm for the maximum-weight clique problem on arbitrary 
undirected graphs, which is improved for the dense graphs. The algorithm uses colour classes and 
backtracking techniques inside itself in parallel in a form of a branch and bound algorithm. The algorithm 
contains also several improvements for the most complex case, which are dense graphs. Computational 
experiments with random graphs show that the proposed algorithm works faster than earlier published 
algorithms - more than 10 times faster than the best known algorithms. This difference is very sufficient for 
the maximum-weight clique problem. 
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1   Introduction 
Let G=(V, E, W) be an undirected graph, where V is 
the set of vertices, E is the set of edges and W is a 
set of weights for each vertex. A clique is a 
complete subgraph of G, i.e. one whose vertices are 
pairwise adjacent. The maximum clique problem is 
a problem of finding maximum complete subgraph 
of G, i.e. a set of vertices from G that are pairwise 
adjacent. An independent set is a set of vertices that 
are pairwise nonadjacent. A graph colouring 
problem is defined to be an assignment of colour to 
its vertices so that no pair of adjacent vertices shares 
identical colours. The maximum-weight clique 
problem asks for clique of the maximum weight. 
The weighted clique number is the total weight of 
weighted maximum clique. It can be seen as a 
generalization of the maximum clique problem by 
assigning positive, integer weights to the vertices. 
Actually it can be generalized more by assigning 
real-number weights, but it is reasonable to restrict 
to integer values since it doesn’t decrease 
complexity of the problem. This problem is well 
known to be NP-hard. 
     The described problem has important economic 
implications in a variety of applications. In 
particular, the maximum-weight clique problem has 
applications in combinatorial auctions, coding 
theory [1], geometric tiling [2], fault diagnosis [3], 
pattern recognition [4], molecular biology [5], and 
scheduling [6]. Additional applications arise in more 
comprehensive problems that involve graph 
problems with side constraints. More this problem is 
surveyed in [7]. 

     In this paper a new algorithm for finding the 
maximum-weight clique is introduced. In the 
following section the algorithm is described in 
details and in the later section it is benchmarked by 
some algorithms that are reported to be the best at 
the moment. Random graphs are used for that, so 
that the same graphs are given to each algorithm and 
then the speed of finding the maximum-weight 
clique is compared. Unfortunately the DIMACS test 
graphs are not weighted and therefore cannot be 
applied for testing. The last section concluded the 
paper and describes open problems. 
 
 
2   Description of the Algorithm 
This section contains description of an algorithm 
proposed in this paper. An idea of using colour 
classes fro the pruning of the branch and bound 
algorithm is introduced in this first sub-chapter for 
the unweighted case. The unweighted case makes 
possible to show an essence of the idea by 
distancing from the weights that complicates this 
idea a bit. Later the colouring classes pruning idea is 
demonstrated for the weighted case. An important 
part of the new algorithm is presented after that, 
which describes the backtracking search basing on 
the colour classes. This is another pruning strategy, 
which is used in parallel with the previous one. 
Finally a formal description of the algorithm is 
presented. 
 
 
2.1   Initial idea of using colour classes 
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The algorithm uses an elementary property of a 
clique: vertices that are unadjacent cannot be 
included into the same clique. The following 
explains how this property is used for finding the 
maximum clique (un-weighted case). Later the same 
principles will be applied to produce the maximum-
weight clique finding algorithm. 
     Before starting the algorithm we find a vertex-
colouring by using any heuristic algorithm, for 
example in a greedy manner. We determine colour 
classes one by one as long as uncoloured vertices 
exist. The vertices are resorted in the order they are 
added into colour classes. This order affects the 
algorithm’s performance in finding the maximum 
clique and therefore is very important. 

 
Definition 1: A colour class is a set of vertices, 
which were coloured by the same colour during 
applying a vertex-colouring algorithm.  
Note: A similar definition has been proposed by 
West in 2001, who defined the colour class as the 
following: vertices receiving a particular label 
(colour) for a colour class. 

 
Definition 2: A colour class is called existing on a 
subgraph Gp if any vertex from this colour class 
belongs to this subgraph Gp. 

 
Definition 3: Degree of a subgraph Gp equals to the 
number of colour classes existing on that subgraph. 

 
     Crucial to the understanding of the algorithm is a 
notation of the depth and pruning formula. Basely, 
at the depth 1 we have all vertices, i.e. G1≡G. We 
are going to expand all vertices of a subgraph so that 
vertex is deleted from the subgraph after it is 
expanded. Another way is to have a cursor pointing 
to the vertex under analyses, so vertices in the front 
of that are excluded from the analyses / a subgraph 
of the current depth. Suppose we expand vertex v1. 
At the depth 2, we consider all vertices adjacent to 
v1 from the previous depth vertices, i.e. belonging to 
G1. Those vertices form a subgraph G2. At the depth 
3, we consider all vertices (that are at the depth 2) 
adjacent to the vertex expanded in depth 2 etc. Let 
vd1 be the vertex we are currently expanding at the 
depth d. That is: let’s say that Gd is a subgraph of G 
on a depth d that contains the following vertices: 
Vd=(vd1, vd2, …, vdm). The vd1 is the vertex to be 
expanded. In that case a subgraph on the depth d+1 
is Gd+1 = (Vd+1,E), where Vd+1=(vd+1 1, …, vd+1 k): ∀i 
vd+1 i ∈ Vd  and (vd+1 i , vd1)∈ E. 
     As soon as a vertex is expanded and a subgraph, 
which is formed by this expansion, is analysed, this 

vertex is deleted from the depth and the next vertex 
of the depth become active, i.e. will be expanded. 
     The pruning formula is the next: If d –1 + 
Degree(Gd) ≤ CBC, where CBC is a size of the 
current maximum clique then we prune, since the 
size of the largest possible clique (formed by 
expanding any vertex of Gd) would be less or equal 
to CBC. If we are at depth 1 and this inequality 
holds then we stop; we have found the maximum 
clique. 
 
 
2.2   Colour classes and the maximum-weight 

clique 
The previously described branch and bound 
algorithm is the base for the maximum-weight 
algorithm with the following changes. We cannot 
determine values of the function Degree as a 
number of existing colour classes on a subgraph 
since vertices have different weights. Therefore a 
degree of a subgraph will be calculated as a sum of 
maximum weights of each colour class existing on 
this subgraph: for each existing lass we have to find 
a vertex of the maximum-weight and then sum up 
weights of those vertices. 
     The order of vertices here becomes crucial here 
from the performance point of view. The difference 
in vertices weights increase complexity of the 
problem a lot. The colour classes approach could 
decrease the number of considered weights as 
vertices belonging to the same colour class cannot 
form a clique. Therefore it is important to sort 
vertices by weights before applying heuristic vertex 
colouring (in our case the greedy one) to increase 
probability that similar weights will group in colour 
classes decreasing the difference of weights we need 
to consider. Thereafter vertices should be resorted 
after applying the colouring by weights inside each 
colour class in decreasing order. This order affects 
the degree calculation and recalculation algorithms.  

 
Definition 4: A degree of a subgraph equals to the 
sum of the largest vertex’ weights of each colour 
class existing on the subgraph independent on which 
vertices of a colour class exists on this subgraph.  

 
     The new order reformulates the degree 
calculation rule (considering only existing vertices 
of each colour class) – the degree always equals to 
the sum of the first vertex of each existing colour 
class on the subgraph. Instead of calculating the 
degree each time on a subgraph, while the algorithm 
analyse and eliminate from the analyses vertices one 
by one, it should be calculated only once and later 
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adjusted by the following rule: if the next vertex on 
this depth to be expanded is from the same colour 
class as the previous one then degree should be 
decreased remains the same otherwise should be 
decreased on a weight of the previous vertex (there 
is no more vertices from the previous vertex’ colour 
class and the previous vertex weight was the largest 
in that colour class by resorting). 
     The pruning formula for the maximum-weight 
algorithm is the following: we can prune the search 
if W′ +Degree() ≤W , where W′ is the total weight of 
the forming current clique and W is the current 
maximum-weight clique. 
We can prove, that this pruning formula can be 
applied, by the following theorem: 

 
Theorem 1: If a degree of a subgraph of G formed 
by vertices existing connected to a forming clique 
vertices and induced by E is smaller or equal to the 
size of the current maximum-weight clique minus 
the total weight of the forming clique then this 
subgraph cannot form a clique, which is larger than 
the already found. 
Prove: The total weight of the forming clique 
represent a weight accumulated so far by vertices 
including into the forming clique. Vertices 
remaining on the subgraph are vertices that 
potentially can be included into the clique as those 
are connected to all vertices of the forming clique by 
the branch and bound algorithm logic. It will be 
possible to find a larger clique than the already 
found one if and only if this subgraph can contain a 
clique, which is larger than a size of the current 
maximum-weight clique minus the total weight of 
the forming clique. If such clique exists then the 
maximal clique of the graph G will be the clique of 
the subgraph plus vertices selected on previous 
depths, i.e. vertices of the forming clique. So, the 
only statement we need to prove is: the Degree 
function’s value of the subgraph is never smaller 
than the maximum-weight clique’s weight that can 
be found on the subgraph. The degree function 
examines what colour classes exist on a subgraph, 
selects the maximum weight vertex among existing 
vertices from each existing class and sum up those 
by definition. Each colour class is an independent 
set by definition, therefore no more than one vertex 
of each colour class can participate in the maximum-
weight clique. Let’s say that the maximum-weight 
clique of the subgraph is composed from the vertices 
having the maximum weight of each class. Then this 
clique equals to the degree function described 
above. Otherwise we will have to include into a 
clique vertices that are smaller by weight than the 
maximum one and the total weight will also be 

smaller. It shows that the degree function always 
shows the maximum possible weight that we can 
achieve, i.e. is never smaller than the maximum-
weight clique existing on a subgraph and the 
theorem inequality holds. ■ 
 
 
2.3   Backtracking by colour classes 
A backtracking process is widely known in different 
types of combinatorial algorithm. It can be 
illustrated for the branch and bound type algorithms 
by considering a description of P. Östergård [10] 
algorithm, which is claimed to be the fastest at the 
moment. In the algorithm values of a function c(i) is 
calculated (i is a vertex number), which denotes the 
weight of the maximum-weight clique in the 
subgraph induced by the vertices {vi, vi+1,…,vn}. 
Obviously c(n) = weight of vn and с(1) is the weight 
of the maximum-weight clique. For each vertex 
starting from the last one and up to the first one a 
backtrack search is carried out to find c(i). The 
backtracking search means that the algorithm 
considers first of all all maximum-weight cliques 
composed by the {vn} vertex. Thereafter it considers 
cliques composed by {vn-1, vn} and so forth. Those 
c(i) values are used to prune the search of the 
maximum-weight clique. As we search for a clique 
with weight greater than W, if the total weight of the 
forming current clique vertices is W′ and we 
consider vi to be the next expanded vertex then we 
can prune the search if W′ + c(i)≤W. Please refer to 
P. Östergård original work [10] for prove of the 
backtracking search algorithm’s correct work. 
     A new idea proposed in this paper is a 
backtracking search by colour classes. In other 
words, colour classes can be used instead of 
individual vertices to carry the backtracking search. 
The algorithm considers first of all all cliques 
composed by vertices of the last colour class {Cn}. 
Thereafter cliques composed by the last and the 
previous to the last colour classes and so forth. 
Notice the last colour class is the first found colour 
class by reordering. Values of the function c(i) is 
calculated (i is a colour class number) which denotes 
the weight of the maximum-weight clique in the 
subgraph induced by the vertices {Ci,Ci+1,…,Cn}. 
The pruning formula remains the same although the 
i indicates now the colour class index of the 
examined vertex. Notice that the backtracking order 
base on the fixed ordering, so vertices colouring and 
reordering should be done before starting the 
backtracking order. 
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2.4 Algorithm 
Notice that is advisable to use a special array to 
solve the order of vertices to avoid the work of 
changing the adjacency matrix during vertices 
reordering. Besides, instead of removing vertices 
from a depth, it is advisable to have a cursor that 
moves from the first vertex on a depth to the last 
one. All vertices that are in the front of the cursor 
are in the analyses, while vertices after the cursor 
are excluded from it. 
 
W – weight of the current best (maximum-weight) 
clique 
d – depth 
Gd – subgraph of G formed by vertices existing on 
depth d and is induced by E 
W(d) – weight of vertices in the forming clique 
w(i) – weight of vertex i 
 
Step 0. Vertex-colouring:  
     Reorder vertices by weights 
     Find a vertex colouring 
     Reorder vertices inside each colour class if the 
original ordering is broken. 

 
Step 1. Back track search runner:  
For n = NumberOfColourClasses downto 1 
     Goto step 2 
     c(n)=W 
Next 
Go to End 
Step 2. Initialization: Form the depth 1 by selecting 
all vertices belonging to colour classes with an index 
greater or equal to n. d=1. 
Step 3. Control: If the current level can contain a 
larger clique than already found: 
     If W(d) + Degree(Gd) ≤ W then go to step 7. 
Step 4. Expand vertex: Select the next vertex to 
expand on a depth. If all vertices have been 
expanded or there is no vertices then control if the 
current clique is the largest one. If yes then save it 
and go to step 7. 
     Note: Vertices are examined starting from the 
first one on the depth. 
Step 5. Control: If the current level can contain a 
larger clique than already found: 
     If expanding vertex colour class index <> n 
          If W(d) + c(expanding vertex colour class 

index) ≤ W then go to step 7. 
Step 6. The next level: Form the new depth by 
selecting vertices that are connected to the 
expanding vertex from the current depth among 
remaining;  
     W(d+1)=W(d) + w(expanding vertex index) 

     d = d + 1; 
     Go to step 2. 
Step 7. Step back:  
     d = d – 1;  
     if d = 0, then return to step 1 
     Delete the expanded vertex from the analyze on 

this depth; 
     Go to step 2. 
End: Return the maximum-weight clique. 
 
 
3   Computational Results and 
Discussion 
Usually two types of test cases are used: randomly 
generated graphs and fixed instances like the 
DIMACS test graphs. Unfortunately for the later 
type such instances are lacking for the maximum-
weight clique problem. The DIMACS graphs are not 
weighted and can therefore not used for our testing. 
That’s why only random graphs are tested. For each 
vertices/density case 100 cases were generated and 
average time was measured. 
     Several algorithms were published since 1975s. 
The easiest and effective one was presented in an 
unpublished paper by Carraghan and Pardalos [8]. 
This algorithm is nothing more that their earlier 
algorithm [9] for the unweighted case applied to 
weighted case. They have shown that their algorithm 
outperforms algorithm their have compared with. 
Recently one more algorithm was published by P. 
Östergård [10]. He also has compared his algorithm 
with earlier published algorithms and has shown his 
algorithm works better. Besides, those two 
algorithms were used as a base for our new 
algorithm. Results are presented as ratios of 
algorithms spent times on finding the maximum 
clique – so the same results can be reproduced on 
any platforms. The compared algorithms were 
programmed using the same programming language 
and the same programming technique (since the new 
and P. Östergård algorithms are just modifications 
of Carraghan and Pardalos algorithm). The greedy 
algorithm was used to find a vertex-colouring.  
 
PO – time needed to find the maximum-weight 
clique by Carraghan and Pardalos algorithm [8] 
divided by time needed to find the maximum-weight 
clique by P. Östergård algorithm [10] – an average 
ratio. 
New – time needed to find the maximum-weight 
clique by Carraghan and Pardalos algorithm [8] 
divided by time needed to find the maximum-weight 
clique by the new algorithm – an average ratio. 
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     Note that the density parameter is shown first of 
all and only then the number of vertices since the 
second parameter depends on the first one as we 
stated earlier – the number of vertices is chosen so, 
that the time spent on finding the maximum clique 
for a corresponding density is no less than 2-3 
seconds and also is not too big (in our experiments 
no more than 1 hour). That’s why the lower density 
is, the more vertices are in use. 
 
Table 1. Benchmark results at random graphs 

Edge density Vertices PO New 
0.1 1000 1.10 1.28 
0.2   800 1.21 1.72 
0.3   500 1.40 2.64 
0.4   300 1.59 3.47 
0.5   200 1.68 4.45 
0.6   200 1.82 6.80 
0.7   150 2.10 12.11 
0.8   100 2.07 18.33 
0.9   100 11.25 155.57 

 
For example, 6.80 in the column marked New means 
that Carraghan and Pardalos [8] algorithm requires 
6.80 times more time to find the maximum-weight 
clique than the new algorithm. Presented results 
show that the new algorithm performs very well on 
any density. It is faster than both algorithms we 
compare with. Especially great results are shown on 
the dense graphs, where the new algorithm is faster 
than the Carraghan and Pardalos algorithm [8] in 
155 times and than P. Östergård algorithm [10] in 14 
times. 
 
 
4   Conclusion 
In this paper the new fast algorithm for finding the 
maximum-weight clique is introduced. The 
algorithm is the branch and bound one and uses a 
heuristic vertex-colouring in the pruning rules. The 
backtracking search on colour classes’ level in the 
main proposition of this paper and the performance 
of this improvement grows with density growing. 
The direct pruning by colour classes is also the 
algorithm feature, which is not widely used so far 
although was introduced by us in some later papers 
[12]. A superposition of those techniques produces a 
very fast result from the performance point of view. 
The algorithm is always better than other best 
known algorithms that were used in comparison test. 
Unlike unweighted cases, the weighted case is much 
harder to achieve a sufficient difference and 
therefore the dense graph case, where the difference 
is more than 10 times is especially remarkable result 

of this paper. Another advantage of the algorithm is 
it’s simplicity to implement and study. 
Notice also that there are two main approaches of 
using heuristic vertex colouring for finding the 
maximum clique. The first one finds colouring 
before algorithm start and re-use it permanently, 
while the other re-colours vertices on each depth. 
The first approach is the only possible to apply for 
the backtracking as the backtracking relies on a 
fixed ordering of vertices or colour classes.  
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