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Abstract. In this paper a new sorting strategy is proposed to be used
in the maximum weight clique finding algorithm, which is known to be
the fastest at the moment. It is based on colour classes, i.e. on heuristic
colouring that is used to prune efficiently branches by excluding from
the calculation formulae vertices of the same colours. That is why the
right ordering before colouring is so crucial before executing the heuristic
colouring and consequently the main maximum weight clique searching
routine. Computational experiments with random graphs were conducted
and have shown a sufficient increase of performance considering the type
of application dealt with in the article.

1 Introduction

Let G = (V, E, W ) be an undirected graph, where V is the set of vertices,
E is the set of edges and W is a set of weights for each vertex. A clique is
a complete subgraph of G, i.e. one whose vertices are pairwise adjacent. The
maximum clique problem is a problem of finding maximum complete subgraph
of G, i.e. a set of vertices from G that are pairwise adjacent. An independent set
is a set of vertices that are pairwise nonadjacent. A graph colouring problem is
defined to be an assignment of colour to its vertices so that no pair of adjacent
vertices shares identical colours. The maximum-weight clique problem asks for a
clique of the maximum weight. The weighted clique number is the total weight
of weighted maximum clique. It can be seen as a generalization of the maximum
clique problem by assigning positive, integer weights to the vertices. Actually it
can be generalized more by assigning real-number weights, but it is reasonable
to restrict to integer values since it doesn’t decrease complexity of the problem.
This problem is well known to be NP-hard.

The described problem has important economic implications in a variety of
applications. In particular, the maximum-weight clique problem has applications
in combinatorial auctions, coding theory [1], geometric tiling [2], fault diagnosis
[3], pattern recognition [4], molecular biology [5], and scheduling [6]. Additional
applications arise in more comprehensive problems that involve graph problems
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with side constraints. More this problem is surveyed in [7]. In this paper a
modification of the best known algorithm for finding the maximum-weight clique
is proposed. The paper is organised as follows.

The section 2 describes in details the algorithm to be extended by a new or-
dering strategy, so readers can understand an essence of the change and the final
result. The following section describes the new idea and presents algorithms. The
section 4 contains information about conducted tests. The last section concluded
the paper and describes open problems.

2 Description of the Algorithm to Be Extended

This section contains a description of an algorithm known to be the best at the
moment [12] in finding the maximum weight clique. It is the algorithm that is
about to be improved in the paper and therefore it will be described in quite
details in order to understand the improvement idea and will be called a base
algorithm in the entire text of the paper. The base algorithm is a typical branch
and bound algorithm and is a mix of the classical approach proposed by Car-
raghan and Pardalos in 1990s [8,9] and of a backtracking strategy proposed by
Ostergard [10].

2.1 Branch and Bound Routine and Pruning Using Colour Classes

Crucial to the understanding of the branch and bound algorithms is a notation
of the depth and pruning formula. Initially, at the depth 1 we have all vertices
of a graph, i.e. G1 ≡ G. Now the algorithm is going to pick up vertices one
by one and form a set of vertices that are connected to it forming a new lower
depth. This process is normally called expanding a vertex and is repeated for each
depth. Notice that only vertices existing on the current depth can be promoted
to the lower one. Repeating this routine we always will have a set of vertices on
the lowest depth that are connected to vertices selected (expanded) on previous
depths. Moreover all vertices expanded on different depth are also connected to
each other by the expansion logic. That is a way the maximum clique is formed.
The more formal illustration will be the following. Suppose we expand initially
vertex v11. At the next depth the algorithm considers all vertices adjacent to
the vertex expanded on the previous level, i.e. v11 and belonging to G1. Those
vertices will form a subgraph G2. At the depth 3, we consider all vertices (that
are at the depth 2, i.e. from G2) adjacent to the vertex expanded in depth 2 etc.
Let vd1 be the vertex we are currently expanding at the depth d. That is:

Let’s say that Gd is a subgraph of G on a depth d that contains the following
vertices: Vd = (vd1, vd2, . . . , vdm). The vd1 is the vertex to be expanded. Then a
subgraph on the depth d+1 is Gd+1 = (Vd+1, E),
where Vd+1 = (v(d+1)1, . . . , v(d+1)k) : ∀i v(d+1)i ∈ Vd and (v(d+1)i, vd1) ∈ E.

As soon as a vertex is expanded and a subgraph, which is formed by this
expansion, is analysed, this vertex is deleted from the depth and the next vertex
of the depth become active, i.e. will be expanded. This should be repeated until
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there are vertices that are not analysed and then the algorithm returns to the
higher level. The algorithm should stop if all vertices are analysed on the first
level.

The branch and bound algorithm by itself is nothing else than an exhaustive
search and is very pure from the combinatorial point of view. Therefore it is
always accomplished by a special analyses that identifies whether the current
depth could produce a bigger clique that the already found one. Such analysis is
normally done by so called pruning formula. If W (d) + Degree(Gd) ≤ CBCW ,
where CBCW is a size (weight) of the current maximum weight clique, W (d)
is a sum of weights of vertices expanded on previous to d depths and Degree
is function that defines how much larger the forming clique can become using
vertices of the depth (i.e. vertices forming Gd). If this formula holds then the
depth is pruned - it is not analysed further and the algorithm immediately
returns to the previous level. The main art of different algorithm of this class
is setting how the degree function works. The classical approach [8] will just
sum up weight of remaining vertices of the depth. The modification made in the
base algorithm [12] is applying colour classes. A vertex colouring is found before
running the main algorithm and only the highest weight vertex of each colour
is included into the degree function calculation during the main algorithm work
applying the fact that no more than one vertex of each colour class (independent
set) can be included into any clique. Please check the original work for any proves
of the previously stated and for more details of the described approach.

2.2 Backtracking and Colour Classes

A backtracking process is widely known in different types of combinatorial al-
gorithm including one proposed by P. Ostergard [10]. The algorithm starts to
analyse vertices in the backward order by adding them one by one into analyses
on the highest level instead of excluding as others do (although the lower levels
work still the same was as the branch and bound one). The main idea of the
algorithm is to introduce one more pruning formula - for each vertex starting
from the last one and up to the first one a function c(i) is calculated (i is a
vertex number), which denotes the weight of the maximum-weight clique in the
subgraph induced by the vertices {vi, vi+1, . . . , vn}. In other words c(i) will be a
maximum-weight clique that can be formed using only vertices with indexes are
starting from i. So, the original backtracking search [10] algorithm will define
that c(n) equals to the weight of vn and c(1) is the weight of the maximum-
weight clique for the entire graph. Obviously the following new pruning formula
can be introduced in the backtracking search using the calculated function: if
W (d) + c(i) ≤ CBCW , where CBCW is still a size (weight) of the current
maximum weight clique and W (d) is a sum of weights of vertices expanded on
previous to d depths.

Colour classes also improve this idea as well it was demonstrated in the base
work [12]. The idea is to calculate c function (actually an array) by colour classes
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instead of individual vertices. Lets say that the graph colouring before the main
algorithm has produced the set of colours {C1, C2, . . . , Cn} and vertices are
reordered accordingly to their colours. Now, c(n) will equal to the largest weight
vertex of {Cn}, c(1) is still the weight of the maximum-weight clique for the
entire graph and c(i) is the weight of the maximum-weight clique in the sub-
graph induced by the vertices {Ci, Ci+1, . . . , Cn}. The pruning formula remains
the same although the i indicates now the colour class index of the examined
vertex instead of the vertex index. Notice that the backtracking order base on
the fixed ordering, so vertices colouring and reordering should be done before
starting the backtracking order.

3 New Algorithm Including Sorting Strategy

3.1 Sorting

Sorting always played quite a crucial role in many algorithms. Unfortunately the
right ordering doesn’t guarantee that the final solution could be obtained imme-
diately in problems like finding the maximum-weight clique (at least in nowadays
algorithms). The reason is simple - the answer should be proved by revising all
other vertices and cases. So even if a solution is obtained during the first search
iteration it still takes long to conclude that the already found clique is the max-
imum one. Despite of this the sorting is still important since could sufficiently
affect the performance of an algorithm. Moreover some algorithms use sorting
as a core element of their structure in the maximum clique finding routine. The
base algorithm only recommends sorting vertices by weights inside each colour
class in the decreasing order. This sorting lets just pick up the last vertex per
each colour on whatever depth calculating the degree function since ensures that
it will always be the maximum weight one among all vertices remaining on that
depth in that colour class. This sorting by itself is a sufficient part of the algo-
rithm, but this paper is about to extend this sorting strategy in order to improve
the overall efficiency of the algorithm. The complexity produced by introducing
into the maximum clique task weights lays first of all in the sufficient variation
of weights among vertices. This variation produces situation when one vertex
been included into the forming clique gives much more that a set of others. As
it was mentioned earlier describing the base algorithm the degree function cal-
culation is conducted basing on the highest weight vertex that appears in each
class among remaining in the subgraph on the depth. Therefore a sufficient dis-
tribution of high weight vertices among different classes can sufficiently increase
the degree calculation result. At the same time, if any algorithm will be able
to propose how we could group high weight vertices into same colour classes
then we would improve the degree function as one high weight vertex will cover
other, similar high weight vertices - once again only the highest weight vertex is
used in calculation by the algorithm logic per colour class. Notice that the task
formulated earlier is not a pure sorting one, since it should improve the search
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basing on colouring. So the heuristic colouring task is the main constraint here.
The desired order should appear after the algorithm has:

1. Defined initial sorting
2. Coloured vertices

It is quite common that the colouring is the task that will sufficiently change the
order. Therefore we cannot talk here about a precise ordering, but should say ”a
probabilistic one”, i.e. such ordering that will keep the desired ordering after the
heuristic colouring is applied with a certain probability. Notice the term heuristic
in the previous sentence. Our analysis of the base algorithm source code, which
is published in Internet [13], have shown that the initial proposed ordering by
weights is dramatically broken by the colouring strategy during which a vertex
to be coloured is always moved to the end of the uncoloured vertices line by
swapping, so initial positions of the high weights’ vertices are lost just after some
colouring iterations. This paper proposes that the colouring should be done in
such a way that the ordering is kept as long as possible.

The order direction - increasing or decreasing is another interesting topic.
Notice that the key technique of the base algorithm is moving backward in
the backtrack search. Generally the backtracking algorithm works better if the
larger clique is found right in the beginning therefore the paper suggests to order
vertices so that the last colour classes (from which the backtracking search will
start) will include the higher weight vertices in average.

3.2 Colouring Algorithm for the Maximum Weigh Clique Algorithm

It is well known that the number of colour classes can be sufficiently larger than
the size of the maximum clique. That is why most best known algorithms [10,12]
are using a greedy colouring as a heuristic one - there is no points to spend time
on more precise colouring since even the best colouring will not guarantee to
give a number that will be close to the maximum clique size. At the same time
the earlier stated wish to keep the initial ordering by weights force us to propose
the following algorithm:

Algorithm for the ordering and colouring

Variables:
N - the number of vertices
a - an array with an initial ordering of vertices: ai contains a vertex number
been in the i-th position of that vertices ordering
b - the new ordering after colouring
Ci - a set of vertices coloured by the i-th color

Operations:
!= - a comparison operation called ”not equal”
== - a comparison operation ”equals”



170 D. Kumlander

Step 1. Initial sorting:
Sort vertices by weights in the increasing order producing an ordering array a

Step 2. Initialise:
i := 0
m := N

Step 3. Pick up a colour:
i := i + 1

Step 4. Colour:
For k := N downto 1
If ak! = 0 & there is no such j : vj ∈ Ci, (ak, vj) ∈ E then
ak := 0, bm := ak, m := m − 1, Ci := Ci U bm

if m == 0 then go to the ”Final sorting” step
Next
Go to step 3

Step 5. Final sorting:
Re-order vertices inside each colour class in the increasing order by weights.

End: Return the new order of vertices b and colouring C.

3.3 Maximum Weigh Clique Algorithm

Algorithm for the maximum - weight clique problem

CBCW - weight of the current best (maximum-weight) clique
d - depth
Gd - subgraph of G formed by vertices existing on depth d and is induced by E
W (d) - weight of vertices in the forming clique
w(i) - weight of vertex i

Step 0. Sorting and colouring (See the above algorithm):
Sort vertices by weights in the increasing order.
Find a vertex colouring starting from the highest weight vertices. Keep the order
of uncoloured vertices.
Re-order vertices inside each colour class in the increasing order by weights.

Step 1. Backtrack search runner:
For n := NumberOfColourClasses downto 1
Goto step 2
c(n) := W

Next
Go to End
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Step 2. Initialization: Form the depth 1 by selecting all vertices belonging
to colour classes with an index greater or equal to n.
d := 1.

Step 3. Prune: If the current level can contain a larger clique than already
found:
If W (d) + Degree(Gd) ≤ CBCW then go to step 7.

Step 4. Expand vertex: Select the next vertex to expand on a depth. If all
vertices have been expanded or there is no vertices then control if the current
clique is the largest one. If yes then save it (including its size as CBCW ) and
go to step 7.
Note: Vertices are examined starting from the first one on the depth.

Step 5. Prune: If the current level can contain a larger clique than already
found:
If expanding vertex colour class index <> n
If W (d) + c(expanding vertex colour class index) ≤ CBCW then go to step 7.

Step 6. The next level: Form the new depth by selecting vertices that are
connected to the expanding vertex from the current depth among remaining;
W (d + 1) := W (d) + w(expanding vertex index)
d := d + 1;
Go to step 2.

Step 7. Step back:
d := d − 1;
if d == 0, then return to step 1
Delete the expanded vertex from the analysis on this depth;
Go to step 2.

End: Return the maximum-weight clique.

Note: It is advisable to use a special array to solve the order of vertices to avoid
work by changing adjacency matrix during reordering vertices. Besides, instead
of removing vertices from a depth, it is advisable to have a cursor that moves
from the first vertex on a depth to the last one. All vertices that are in the front
of the cursor are in the analyses, while vertices behind the cursor are excluded
from it (already analysed).

4 Computational Results and Discussion

It is common to apply tests on two types of case: randomly generated and
standard (like for example the DIMACS package for unweighted case of finding
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maximum clique problem). Unfortunately there is no such widely adopted stan-
dard package for the weighted case although application of maximum clique with
weights plays no less important role in industry and health care. Therefore tests
to be conducted in this paper will be restricted to randomly generated graphs.

Several algorithms were published since 1975s. The easiest and effective one
was presented in an unpublished paper by Carraghan and Pardalos [8]. This
algorithm is nothing more that their earlier algorithm [9] for the unweighted
case applied to weighted case. They have shown that their algorithm outper-
forms algorithm their have compared with. Another work, which is quite widely
referenced in different sources as the best was published by P. Ostergard [10].
He also has compared his algorithm with earlier published algorithms and has
shown his algorithm works better by the publishing time. The last algorithm to
be used in the tests in the base one [12] that was described in details earlier. In
order to produce comparison results a set of instances where generated and each
instance was given to each algorithm and their spent time (on producing a so-
lution) was measured. The table below demonstrates that tests were conducted
from densities from 10% to 90% with a step 10%. For each vertices/density case
1000 instances of graphs were generated. Results are presented as ratios of algo-
rithms spent times on finding the maximum clique. Although this presentation is
slightly different from common it has one sufficient advantage from our point of
view - it gives platform independency, so the same results can be reproduced on
any computer and ratios should stay the same. The compared algorithms were
programmed using the same programming language and the same programming
technique (since all algorithms are quite similar). The greedy algorithm was used
to find a vertex-colouring.

PO - time needed to find the maximum-weight clique by Carraghan and
Pardalos algorithm [8] divided by time needed to find the maximum-weight clique
by P. Ostergard algorithm [10] - an average ratio.

V Color − BT − w - time needed to find the maximum-weight clique by Car-
raghan and Pardalos algorithm [8] divided by time needed to find the maximum-
weight clique by the base [12] algorithm - an average ratio.

New - time needed to find the maximum-weight clique by Carraghan and
Pardalos algorithm [8] divided by time needed to find the maximum-weight clique
by the new algorithm - an average ratio.

The following table is constructed in such a way to guarantee that each algo-
rithm execution will take at least one second and no more than one hour. That
is why the vertices count locates in the second column of the table below - the
number of vertices is a dependent parameter (on the density) and is chosen by
the time constraint. As the result the number of used vertices the smaller the
higher density is. At the same additional tests have shown no sufficient change
of results on other number of vertices for each density and it proved from our
point results independency from the number of vertices we actually use.

For example, 38.62 in the column marked New means that Carraghan and
Pardalos [8] algorithm requires 38.62 times more time to find the maximum-
weight clique than the new algorithm proposed in this paper. Presented results
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Table 1. Benchmark results on random graphs

Edge density Vertices PO VColor-BT-u New

0.1 1000 1.01 1.26 1.40
0.2 800 1.25 2.11 2.93
0.3 500 1.58 2.64 3.93
0.4 300 1.71 3.02 4.61
0.5 200 1.78 3.41 5.87
0.6 200 2.07 6.53 10.42
0.7 150 2.37 10.16 18.25
0.8 100 2.98 17.36 38.62
0.9 100 4.51 79.80 293.64

show that the new algorithm performs very well on any density. It is faster than
all algorithms we compare with. Especially good results are shown on the dense
graphs, where the new algorithm is faster than the Carraghan and Pardalos
algorithm [8] in 293 times and than the best known algorithm [12] circa 3 times.

5 Conclusion

In this paper a new fast algorithm for finding the maximum-weight clique is
introduced. The algorithm is based on the best know algorithm, which is a
branch and bound one, uses a heuristic vertex-colouring in the pruning rules
and a backtracking search by colour classes. The algorithm is always better than
other best known algorithms that were used in the comparison test. Notice that
unlike the unweighted case, the weighted case is much harder to improve the
performance and therefore achieved results, like for example one on the dense
graphs, where the new algorithm is 3 times faster than the best known algorithm
and 300 times faster than the standard benchmarking base one is a remarkable
result from our point of view.
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