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An Empirical Study of Two Vertex Selection Strategies for the Clique
Decision and Maximisation Problems
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Given a graph G = (V, E) a clique is set of vertices C ⊆ V such that all pairs of vertices in C are adjacent.
We can construct a clique using an exact algorithm that has a guessing stage, i.e. a stage where it must
choose a vertex and add it to C. Intuition suggests that we choose the vertex adjacent to most others. Our
study shows that intuition is incorrect and offers an explanation of why that is so. We perform an empirical
study of the clique decision problem and demonstrate that it has a phase transition with a corresponding
complexity peak. We then characterise this with respect to the constrainedness of the decision problem and
show that we can derive a theory-based strategy for vertex selection and predict its behaviour. We show
that the vertex selection strategy also works well on the optimisation problem i.e. finding the maximum
clique.
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1. INTRODUCTION

A simple undirected graph G is a pair (V,E) where V is a set of vertices and E a set
of edges. An edge {u, v} is in E if and only if {u, v} ⊆ V and vertex u is adjacent to
vertex v. A clique is a set of vertices C ⊆ V such that every pair of vertices in C is
adjacent in G. Clique is one of the six basic NP-complete problems given in [Garey and
Johnson 1979]. It is posed as a decision problem [GT19]: given a simple undirected
graph G = (V,E) and a positive integer k ≤ |V |, does G contain a clique of size k or
more? The optimisation problem is then to find a maximum clique, where ω(G) is the
size of a maximum clique.

We can address the decision and optimisation problems with an exact algorithm,
such as a backtracking search [Pardalos and Rodgers 1992; Fahle 2002; Régin 2003;
Wood 1997; Carraghan and Pardalos 1990; Segundo et al. 2011; Konc and Janezic
2007; Tomita et al. 2010]. Backtracking search incrementally constructs the set C by
choosing a vertex from the candidate set P (where P is initially V ) and adding that ver-
tex to C. The candidate set is then updated, removing vertices that cannot participate
in the evolving clique.
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In the clique decision problem we should expect that a phase transition will occur
when we vary k. For a graph of a given edge density, when k is small it should be easy
to find a clique of size k or more, and when k is large it should be easy to determine
that there is no clique of that size, and at some critical value of k it should be hard
to decide if there is a clique of that size. Consequently, we investigate the phase tran-
sition in the decision problem and use theory to predict when that phase transition
will occur. We then use that theory to predict and explain the behaviour of two ver-
tex selection strategies for the decision and optimisation problem. The vertex selection
strategies are essentially heuristics [Pólya 1945], i.e. rules of thumb, and are similar to
variable ordering heuristics used in constraint programming [Rossi et al. 2006; Gent
et al. 1996].

In the next section we present an exact algorithm for clique decision and two vertex
selection heuristics based on vertex degree. This leads us to a characterisation of the
clique decision problem’s phase transition (section 4) and we use this to explain the
behaviour of the heuristics. We then demonstrate that this behaviour carries over into
the optimisation problem. Finally we look inside the search process, review related
work and then conclude.

2. ALGORITHM FOR CLIQUE DECISION AND ITS HEURISTICS

We introduce the notation used throughout and present the algorithm and vertex se-
lection heuristics used in the study of the clique decision problem.

2.1. Notation

Let V (G) be the set of vertices and E(G) the set of (undirected) edges in the graph G =
(V,E). Given a set of vertices P , the induced subgraph GP is the pair (P,E(G)∩(P×P )).
The neighbourhood of a vertex v is N(v,G), where N(v,G) = {w : {v, w} ∈ E(G)}. The
degree of vertex v in graph GP is δv,P and is the number of vertices adjacent to v in
GP , i.e. δv,P = |N(v,GP )|.

2.2. An Algorithm for Clique Decision

Algorithm 1 is based on [Fahle 2002] and [Pardalos and Rodgers 1992]. The boolean
function CD (lines 1 to 5) takes as arguments a graph G, integer k (the size of clique to
be found) and a function select used to choose a vertex to add to the growing clique C.
In line 3, the candidate set P is initialised to be all the vertices in G and the growing
clique C is initially empty (line 4). CD then calls the boolean expand function (line 5).

Function expand (lines 6 to 18) delivers true if the clique C is of size k, i.e. found
will be assigned true in line 8, the while loop at line 9 immediately fails and at line
18 found is returned. Otherwise expand iterates while a clique of size k has not been
found and vertices can be selected from candidate set P (lines 8 to 17). A vertex v
is selected from P using the function select (line 10), where select(P,G) chooses and
delivers a vertex from the induced subgraph GP .

The selected vertex is added to the clique (line 11) and a new candidate set P ′ is
create where P ′ is the set of vertices in P that are in the neighbourhood of v (line 12).
In line 13 low degree vertices are removed from P ′, i.e. if a vertex w ∈ P ′ with degree
δw,P ′ is added to the clique it will increase C in size by at most δw,P ′ + 1 and if this is
insufficient to reach k we can remove w. This corresponds to Rule 7 in [Pardalos and
Rodgers 1992] and Lemma 1 in [Fahle 2002]. In line 14 GP ′ is greedily coloured using
Brelaz’s heuristic [Brélaz 1979], where colour(P ′, G) delivers as a result ω∗ the number
of colours used and this is an upper-bound on the size of the clique in GP ′ . In line 15
a recursive call is made to expand if the upper bound ω∗ plus the size of the current
clique is sufficient to reach k (i.e. it is assumed that if the first part of the conjunction
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is false the second part of the conjunction will not be executed). The selected vertex is
then removed from C and P (lines 16 and 17).

Algorithm 1: Clique Decision algorithm CD

1 boolean CD(Graph G, integer k, function select)
2 begin
3 Set P ← V (G)
4 Set C ← ∅
5 return expand(C,P,G, k, select)

6 boolean expand(Set C,Set P,Graph G, integer k, function select)
7 begin
8 boolean found← |C| = k
9 while ¬found ∧ P 6= ∅ do

10 integer v ← select(P,G)
11 C ← C ∪ {v}
12 Set P ′ ← P ∩N(v,G)
13 P ′ ← P ′ \ {w : w ∈ P ′ ∧ δw,P ′ + |C|+ 1 < k}
14 integer ω∗ ← colour(P ′, G)
15 found← ω∗ + |C| ≥ k ∧ expand(C,P ′, G, k, select)
16 C ← C \ {v}
17 P ← P \ {v}

18 return found

2.3. Heuristics

We consider two heuristics that can be used in the guessing stage of expand (line
10). The first is the most intuitive, maxDeg(P,G), selecting the vertex of maximum
degree in the graph GP , (also known as best-in [Pardalos and Xue 1994]). The sec-
ond, and less intuitive, is minDeg(P,G) that selects the vertex of minimum degree in
GP , (i.e. worst-in [Pardalos and Xue 1994]). In Algorithm 1 the degree of vertices are
maintained dynamically, consequently our heuristics are new (i.e. dynamic). A call to
CD(G, k,maxDeg) will be named CDmax and CD(G, k,minDeg) will be named CDmin.

3. THE CLIQUE DECISION PROBLEM

Experiments were performed on Erdós-Rënyi random graphs G(n, p) where n is the
number of vertices and each edge is included in the graph with probability p indepen-
dent from every other edge. Given a random graph G(n, p) we can then have n decision
problems, asking if there is a clique in the graph of size k, 1 ≤ k ≤ n. The algorithms
were coded in java 1.6.0 using the constraint programming toolkit choco version 2.1.0
[JCh ]. The experiments were run on a machine with two Intel E5620 2.4GHz quad-
core processors with 48 GB of memory, running linux centos 5.3.

One hundred instances of G(100, 0.9) were generated and CDmax was applied to each
graph for each value of k in the range 10 to 40, and this is shown graphically in Figure
1. Two contours are given: run time in milliseconds against clique size k (left y-axis)
and percentage satisfiability against k (right y-axis) i.e. the percentage of graphs in the
sample of G(100, p) that have a clique of size k or more. We observe a phase transition
in satisfiability with a corresponding computational complexity peak. At small values
of k (1 ≤ k ≤ 28) it is easy to find a clique of the required size and when k is large
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Fig. 1. G(100, 0.9), sample size 100, 20 ≤ k ≤ 40, CDmax, average run time and satisfiability.
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Fig. 2. G(100, 0.9), sample size 100, 20 ≤ k ≤ 40, CDmax and CDmin, log of average run time.

(37 ≤ k ≤ 40) it is easy to determine that there is no clique of that size. However, in the
range 29 ≤ k ≤ 36 hard instances occur, with a complexity peak close to the 50% cross
over point where on average half of the instances are satisfiable, and this is expected
[Cheeseman et al. 1991; Gent et al. 1996].

The experiment above was repeated using CDmin. Figure 2 compares CDmax and
CDmin. Again, we see a common complexity peak round about k = 31. But there is
a dramatic difference in performance between the two vertex selection heuristics. In
the hard region, 29 ≤ k ≤ 35 CDmin outperforms CDmax typically by two orders of
magnitude. That is, when problems are hard the best selection heuristic is to choose a
vertex of minimum degree. We will now offer an explanation of why CDmin dominates
CDmax, but first we must define the constrainedness of the clique decision problem.
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4. THE CONSTRAINEDNESS OF CLIQUE DECISION

We now define constrainedness κ (kappa) for the clique decision problem and demon-
strate that it captures the behaviour seen in Figures 1 and 2. We then use κ to explain
the behaviour of the vertex selection heuristics.

4.1. Constrainedness (κ)

The phase transition has been characterised in [Gent et al. 1996] as follows

κ = 1−
log〈Sol〉

log |S|

where 〈Sol〉 is the expected number of solutions and |S| is the size of the state space,
i.e. the maximum number of states that could be considered by a simple generate-and-
test algorithm. When all states are solutions κ = 0 and problems are satisfiable and
easy, when no state is a solution κ = ∞ and problems are unsatisfiable and easy, and
when there is on average a single solution κ = 1 and problems are hard. We now define
κ for the clique decision problem in G(n, p) for clique size k. The size of the state space
|S| is equal to the number of ways we can select k vertices, hence

|S| =

(

n

k

)

To compute the expected number of solutions 〈Sol〉 we first calculate the probability
psol that a state is a solution, i.e. that having chosen k vertices they are all adjacent

psol = p(
k

2
)

Since the probability holds for any k vertices the expected number of solutions is given
by

〈Sol〉 = |S|.psol

Combining these results we have that for the clique decision problem in random graphs
G(n, p) with clique size k

κclique =

(

k
2

)

log( 1
p
)

log(
(

n

k

)

)
(1)

In Figure 3 we present the same data as in Figure 1 but with constrainedness (κ) on
the x-axis, demonstrating that κ is a good measure for this problem.
MCmin was applied to G(n, 0.8) instances with n ∈ {100, 110, 120, 130, 140, 150},

10 ≤ k ≤ 50 and a sample size of 100. Plotted in Figure 4 is on the left logarithm
of average run time in milliseconds and on the right percentage satisfiability, both
with κ on the x-axis. Ideally we would like the 50% crossover point to occur at κ ≈ 1
with the complexity peak occuring simultaneously. In fact we see the crossover point
and complexity peak occurring in the range 0.82 ≤ κ ≤ 0.90, i.e. earlier than antici-
pated but as expected when problem size is small [Gent et al. 1996]. The evidence of
Figures 3 and 4 suggest that κ characterises the phase transition phenomena in the
clique decision problem for random G(n, p).

4.2. Constrainedness (κ) as a Heuristic

In [Gent et al. 1996] it is proposed that κ be used as a guiding principle when designing
variable ordering heuristics, i.e. to make decisions that minimise the constrainedness
of the future sub-problem. In particular κ suggests how we should select a vertex to
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Fig. 3. G(100, 0.9), sample size 100, 20 ≤ k ≤ 40, CDmax, average run time in milliseconds (ms) and
satisfiability against constrainedness (κ).
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Fig. 4. G(n, 0.9), sample size 100, n ∈ {100, 110, 120, 130, 140, 150}, 1 ≤ k ≤ n, CDmax. On the left,
logarithm of run time against κ and on the right satisfiability against κ.

add to the clique. In the setting of G(n, p) with clique size k when a vertex is selected
κ changes as follows:

(

k

2

)

log( 1
p
)

log(
(

n

k

)

)
=⇒

(

k

2

)

log( 1

p′
)

log(
(

n−1

k

)

)
(2)

In (2) one vertex is selected so n becomes n − 1, all the edges emanating from that
vertex are removed and edge probability p becomes p′, where p′ is the number of edges
remaining divided by

(

n−1

2

)

. Therefore the only differences between vertex selections

is the resulting values of p′. If p′ decreases then log( 1

p′
) increases as does κ, and if

p′ increases then log( 1

p′
) decreases and so does κ. Consequently we should choose the

vertex that makes p′ as large as possible and we do this by choosing the vertex that
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Fig. 5. Is difference in heuristics related to degree of the graph? For G(100, p) with p and k varying, we
apply CDmax and CDmin and compute the ratio of search effort, r = smax/smin. Plotted is average ratio
of search effort against κ, one contour for each value of p. In the hard region, as graphs get denser the
difference between heuristic performance increases.

removes the least number of edges and that is the vertex of minimum degree. Our
experiments support this (Figure 2), i.e. our best vertex selection heuristic is minDeg.

For the function f(x) = log(x), when x is small, small changes to x make large
changes to f(x) and when x is large small changes to x make small changes to f(x).
Consequently we should expect that when p is large (and 1

p
is small) any change of

p to p′ will cause large differences in log( 1

p′
) and κ. Therefore in dense graphs (high

values of p) we should expect large differences in performance between vertex selection
heuristics, and as graphs get sparser (low values of p) differences in vertex selection
heuristics should be small.

Experiments were performed on G(100, p) with 0.65 ≤ p ≤ 0.90 with 1 ≤ k ≤ 40,
sample size 100, using CDmax and CDmin. For each point we captured the ratio r =
smax/smin where smax is the number of calls to expand made by CDmax and smin the
number of calls to expand made by CDmin. If r > 1 then heuristic CDmax was best
and if r < 1 CDmin was best. This ratio was averaged over the 100 random graphs
for each call to CD as k was varied. This is shown graphically in Figure 5, where the
logarithm of the average ratio r is plotted against κ with a contour for each graph
density. What we see is that as we enter the hard zone and as graphs get denser the
difference between the heuristics becomes more significant: dense graphs show a large
difference (up to two orders of magnitude), sparse graphs a small difference, and this
is what theory predicts.

5. OPTIMISATION

The optimisation problem can be considered as a sequence of decision problems. On
finding a solution search attempts to find a new solution better than the last. If search
finds a clique of size k and then attempts to find a larger clique and fails, k is optimal.
Therefore the search process travels through the phase transition, from the soluble
to the insoluble region. Based on what we have seen we should expect that κ-based
heuristics will work well on the optimisation problem. To study the optimisation prob-
lem we first investigate randomly generated problems, then the DIMACS benchmarks
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[DIM ] and finally the real-world instances of [Eppstein and Strash 2011] using func-
tion MC presented in Algorithm 2.

Algorithm 2: Maximum Clique algorithm MC

1 Set MC(Graph G, function select)
2 begin
3 Global Set Cmax ← ∅
4 Set P ← V (G)
5 Set C ← ∅
6 expand(C,P,G, select)
7 return Cmax

8 void expand(Set C,Set P,Graph G, function select)
9 begin

10 if |C| > |Cmax| then Cmax ← C
11 while P 6= ∅ do
12 integer v ← select(P,G)
13 C ← C ∪ {v}
14 Set P ′ ← P ∩N(v,G)
15 P ′ ← P ′ \ {w : w ∈ P ′ ∧ δw,P ′ + |C|+ 1 ≤ |Cmax|}
16 integer ω∗ ← colour(P ′, G)
17 if ω∗ + |C| > |Cmax| then expand(C,P ′, G, select)
18 C ← C \ {v}
19 P ← P \ {v}

5.1. Random Problems

As before, a call to MC(G,maxDeg) is named MCmax and MC(G,minDeg) named as
MCmin. MCmax and MCmin were used to find the maximum clique in G(100, p) with
0.01 ≤ p ≤ 0.99 varying in steps of 0.01, with a sample size of 100 at each value.
Figure 6 shows on the left two contours, for MCmax and MCmin, with run times in
milliseconds on a logarithmic scale. On the right we have size of maximum clique
found with contours for minimum, median, and maximum. We show only the range
0.4 ≤ p ≤ 0.99: when p ≤ 0.4 there is essentially no search as the problems are trivial.
We see that when p is very high problems are easy and this agrees with the tabulated
results of [Segundo et al. 2011]. When p is low (less than 0.4) problems are trivial.
However, when p is greater than 0.65 the choice of heuristic is critical. Again we see
that MCmin outperforms MCmax in the really hard region and is orders of magnitude
better. However, in the range 0.4 ≤ p ≤ 0.58 MCmax becomes the heuristic of choice,
but the gains to be had are modest (savings of tenths of seconds). In summary, when
problems are hard MCmin is best.

5.2. DIMACS Instances

We now report on the DIMACS instances. Experiments were carried out to determine
the relative performance of the heuristics over these standard benchmarks. The goal
was to find the maximum clique, and if cpu time was exhausted, report the size of the
largest clique found so far.
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Fig. 6. MCmaxandMCmin applied to one hundred instances of G(100, p) with 0.4 ≤ p ≤ 0.99. On the left
is logarithm of average search effort for MCmax and MCmin. Shown on the right is the maximum, median
and minimum maximum-clique size.

The experiments were performed under similar conditions to those outlined in Sec-
tion 3. Table I shows results for 59 of the 66 DIMACS maximum clique problems1. Run
times are given in seconds and in brackets the size of the clique found. Run time was
limited to 4 hours (14,400 seconds), an entry of “—” was aborted after that time and the
clique size is then the largest found in that time. In the table bold entries corresponds
to the best solution to non-trivial instances, and in the event that the maximum was
not found we highlight the greatest clique found.

In Table I MCmin is most often the best. In eight instances (brock800-2/3/4,
hamming-10-4, MANN-a81, p-hat100-3, p-hat1500-2/3, ) MCmax was best. These are
hard instances that exhausted the run time and a greedy construction that selects the
vertex of maximum degree worked well. There was only one instance, hamming10-2,
where MCmax significantly outperformed MCmin in run time.

5.3. Real-world Instances

Experiments were performed on a subset of the real-world graphs in [Eppstein and
Strash 2011], the subset limited by the size of graph that could be represented in our
programs (using adjacency matrix representation of the graph). Four classes of prob-
lems were investigated: BioGRID data, Mark Newman’s social network data, Pajek’s
social and bibliographic networks, and Stanford Large Network instances (SNAP).
These are shown in Table II. The first four columns describe the instance where n
is the number of vertices, m the number of edges and ω the clique number. There are
three columns for each heuristic: the time to find a largest clique and prove optimal-
ity (in milliseconds), the number of times a test was performed to determine if two
vertices were adjacent (the most frequent activity when colouring vertices and build-
ing candidate sets) and the proportion (prop) of time that was spent in search finding
the optimal solution (the remainder being spent proving optimality). There are three
things to note. First, the instances are sparse graphs and we should expect the differ-
ences in performance to be relatively small. Second, we notice that the proportion of
time spent finding the optimal solution (column prop) is small for MCmax but large for
MCmin, and finally that MCmin always performed less adjacency checks than MCmax

(column check) and is usually faster (column ms). Yet again, it appears that choosing
the vertex of minimum degree is the best strategy.

1The c-fat instances are omitted because they are trivial.
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Table I. 59 of the 66 DIMACS Instances

instance MCmax MCmin

brock200-1 156.9 (21) 28.7 (21)
brock200-2 1.2 (12) 1.1 (12)
brock200-3 6.2 (15) 2.3 (15)
brock200-4 12.6 (17) 7.3 (17)
brock400-1 — (24) — (27)
brock400-2 — (24) — (29)
brock400-3 — (31) 14,250.4 (31)
brock400-4 — (25) 8,715.8 (33)
brock800-1 — (20) — (21)
brock800-2 — (21) — (20)
brock800-3 — (21) — (20)
brock800-4 — (21) — (20)
hamming10-2 49.1 (512) 361.9 (512)
hamming10-4 — (40) — (38)
hamming6-2 0.0 (32) 0.1 (32)
hamming6-4 0.1 (4) 0.1 (4)
hamming8-2 0.2 (128) 1.7 (128)
hamming8-4 2.1 (16) 1.6 (16)
johnson16-2-4 47.6 (8) 43.1 (8)
johnson32-2-4 — (16) — (16)
johnson8-2-4 0.0 (4) 0.0 (4)
johnson8-4-4 0.0 (14) 0.0 (14)
keller4 5.9 (11) 2.1 (11)
keller5 — (27) — (27)
keller6 — (52) — (53)
MANN-a27 — (126) 125.6 (126)
MANN-a45 — (342) — (345)
MANN-a81 — (1,098) — (999)
MANN-a9 0.3 (16) 0.0 (16)
p-hat1000-1 96.3 (10) 49.2 (10)
p-hat1000-2 — (45) — (46)
p-hat1000-3 — (64) — (54)
p-hat1500-1 854.9 (12) 394.5 (12)
p-hat1500-2 — (63) — (54)
p-hat1500-3 — (90) — (61)
p-hat300-1 0.7 (8) 1.0 (8)
p-hat300-2 21.8 (25) 3.1 (25)
p-hat300-3 — (36) 125.7 (36)
p-hat500-1 4.4 (9) 4.4 (9)
p-hat500-2 1,974.1 (36) 58.5 (36)
p-hat500-3 — (48) 8,394.2 (50)
p-hat700-1 14.8 (11) 13.1 (11)
p-hat700-2 — (44) 433.4 (44)
p-hat700-3 — (62) — (57)
san1000 917.7 (15) 146.5 (15)
san200-0.7-1 0.6 (30) 0.5 (30)
san200-0.7-2 5.2 (18) 0.8 (18)
san200-0.9-1 82.8 (70) 1.3 (70)
san200-0.9-2 5,926.6 (60) 13.7 (60)
san200-0.9-3 — (39) 40.0 (44)
san400-0.5-1 3.3 (13) 2.5 (13)
san400-0.7-1 337.1 (40) 17.0 (40)
san400-0.7-2 133.7 (30) 21.5 (30)
san400-0.7-3 934.7 (22) 139.8 (22)
san400-0.9-1 4,241.2 (100) 863.6 (100)
sanr200-0.7 40.2 (18) 12.8 (18)
sanr200-0.9 — (42) 957.9 (42)
sanr400-0.5 55.3 (13) 42.5 (13)
sanr400-0.7 — (21) 5,208.6 (21)
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Table II. Real-world Instances

MCmax MCmin

n m ω ms checks prop ms checks prop

BioGRID
fission-yeast 2,031 12,637 12 158 2,634,571 0.1107 120 2,169,153 0.9722
fruitfly 7,282 24,894 7 489 26,809,042 0.0022 433 26,552,801 0.9518
human 9,527 31,182 13 548 45,834,187 0.0174 619 45,408,270 0.9918
mouse 1,455 1,636 7 97 1,075,073 0.0438 52 1,059,427 0.9978
plant 1,745 3,098 9 55 1,538,071 0.0013 66 1,525,711 0.9989
worm 35,18 6,531 7 161 6,454,207 0.0226 125 6,193,196 0.9915
yeast 6,008 156,945 33 1,406 29,541,839 0.4209 438 19,354,690 0.9130

Mark Newman
adjnoun 112 425 5 4 9,385 0.0212 4 6,872 0.8405
astro 16,706 121,251 57 3,716 140,832,589 0.0056 2,051 139,842,886 0.9983
celegens 297 1,248 5 13 62,607 0.0074 16 46,579 0.7057
condmat 40,421 175,693 30 11,299 818,015,894 0.0730 13,574 816,971,093 0.9973
dolphins 62 159 5 1 2,332 0.1591 2 2,094 0.8276
football 115 613 9 3 7,681 0.0664 3 7,390 0.2641
internet 22,963 48,436 17 3,354 274,978,783 0.0289 4,019 263,689,825 0.9999
karate 34 78 5 1 1,028 0.3132 1 645 0.8868
lesmis 77 254 10 2 4,453 0.2547 2 3,282 0.9327
netscience 1,589 2,742 20 98 1,264,942 0.0090 68 1,263,994 0.9999
polblogs 1,490 16,715 20 164 2,734,155 0.0703 109 1,284,170 0.9355
polbooks 105 441 6 3 7,222 0.0230 3 5,944 0.6743
power 4,941 6,594 6 199 12,214,950 0.0086 186 12,209,482 0.9953

Pajek
daysall 13,308 148,035 28 14,072 623,995,011 0.0011 1,203 90,787,216 0.9921
eatRS 23,219 304,937 9 5,439 286,035,364 0.0007 3,579 271,447,076 0.9120
foldoc 13,356 91,471 9 966 90,341,738 0.0162 1,014 89,316,802 0.6584
hepth 27,240 341,923 23 6,763 395,521,531 0.0584 5,214 372,556,670 0.9551

SNAP
email-Enron 36,692 183,831 20 6,826 692,361,478 0.0084 9,702 673,824,916 0.9997
wiki-Vote 7,115 100,762 17 572 41,138,215 0.0277 350 26,121,434 0.9703

5.4. Inside Search

MC (Algorithm 2) was modified such that expand recorded the density of GP (i.e. the
ratio of the number of edges in GP over m where m = |P | × (|P | − 1)/2) and |Cmax|.
These statistics were tagged with the depth in search and the time in search, where
time in search is the number of calls to expand so far.

Figure 7 shows the average density of GP at each depth in search for MCmax and
MCmin over a single instance of G(100, 0.9). We see that MCmax leaves the candidate
set with ever fewer edges until search reaches a depth of about 15 when the candidate
set is small and most unpromising. On the other hand, MCmin forces the future sub-
problem to become increasingly dense and increasingly promising with a low κ value.

In Figure 8 we plot the size of the largest clique found so far against the logarithm
of time in search. What we see is that MCmax greedily builds a large clique early on
in search but has to perform a huge amount of search to improve this because the
candidate set is so unpromising. MCmin is more cautious, growing the largest clique
slowly whilst still retaining a promising candidate set (Figure 7).

6. RELATED WORK

In [Carraghan and Pardalos 1990] a branch and bound algorithm is presented for max-
imum clique. Vertices are ordered in non-decreasing degree order at each depth in the
binomial search with a cut-off based on the size of the largest clique found so far.

[Pardalos and Rodgers 1992] present a zero-one encoding , where branch and bound
search selects vertices dynamically based on current degree in the candidate set: a non-
greedy selection chooses a vertex of lowest degree and greedy selects highest degree.
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Fig. 8. G(100, 0.9), size of largest clique during search.

Computational results show that greedy was good for (easy) sparse graphs and non-
greedy good for (hard) dense graphs.

In [Wood 1997] graph colouring and fractional colouring is used to bound search and
vertices are selected in non-increasing degree order.

Patric R. J. Östergård proposed an algorithm that has a dynamic programming
flavour [Östergård 2002]. The search process starts by finding the largest clique con-
taining vertices drawn from the set Sn = {vn} and records it size in c[n]. Search then
proceeds to find the largest clique in the set Si = {vi, vi+1, ..., vn} using the value in
c[i+1] as a bound. The vertices are ordered at the top of search in colour order, i.e. the
vertices are coloured greedily and then ordered in non-decreasing colour order.

[Fahle 2002] presented a simple algorithm (Algorithm 1) (essentially the same as
MC in Section 5) with a free selection of vertices. This is then enhanced (Algorithm 2)
with forced accept and forced reject steps similar to Rules 4, 5 and 7 of [Pardalos and
Rodgers 1992]. Fahle notes that ‘The ordering in which nodes are considered during
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search can have a severe impact on running time ... It is not clear though how to detect
these effects while searching ...”.

Jean-Charles Régin proposed a constraint programming model for the maximum
clique problem [Régin 2003]. His model uses a matching in a duplicated graph to de-
liver a bound within search, a Not Set as used in the Bron Kerbosch enumeration
Algorithm 457 [Bron and Kerbosch 1973] and vertex selection using the pivoting strat-
egy similar to that in [Bron and Kerbosch 1973; Akkoyunlu 1973; Tomita et al. 2006;
Eppstein and Strash 2011].

Tomita’s algorithms MCQ [Tomita et al. 2003], MCR [Tomita and Kameda 2007] and
MCS [Tomita et al. 2010] select vertices in non-increasing colour order, using vertex
colour as a cut-off. Pablo San Segundo proposed BBMC [Segundo et al. 2011], a bit-
set encoding of MCS with the colour repair step removed. An empirical study of these
algorithms is reported in [Prosser 2012].

7. CONCLUSION

The purpose of this study is to better understand the behaviour of two vertex selection
heuristics used in the clique decision and maximisation problems. We showed that in
the decision problem there is a phase transition in satisfiability that coincides with
a complexity peak, and in this region the minimum degree heuristic dominated the
maximum degree heuristic, sometimes by orders of magnitude. We demonstrated that
we could characterise the phase transition with respect to constrainedness, κ, and hav-
ing done so use the principle of minimising κ to engineer a vertex selection heuristic
for the decision problem, and that heuristic corresponded to minimum degree. With
κ we predicted the behaviour of the minimum degree heuristic i.e. that performance
would improve as graphs became ever more dense, and this was observed in randomly
generated graphs. We also demonstrated that heuristics that are good for the decision
problem are also good for the optimisation problem. This was demonstrated on random
graphs, DIMACS benchmarks and real-world graphs.

Finally we looked inside the search process to see how the search process changes the
structure of the candidate set at depth and how the maximum clique grows over time.
This complemented the measures taken when investigating the real-world problems,
i.e. MCmax takes a (relatively) short time to find a maximum clique but a long time to
prove optimality, MCmin takes a long time to find a maximum clique and a short time
to prove optimality, but overall MCmin is faster than MCmax on hard instances. This
suggests that we might improve MCmin by adding a preprocessing step that greedily
constructs a maximal clique. This has yet to be investigated.
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