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Abstract

Given a graph, in the maximum clique problem one wants to find the largest number
of vertices any two of which are adjacent. In the maximum-weight clique problem,
the vertices have weights, and one wants to find a clique with maximum weight. A
recently developed algorithm for the maximum clique problem is here transformed
into an algorithm for the weighted case. Computational experiments with random
graphs show that this new algorithm in many cases is faster than earlier algorithms.

1 Introduction

We denote an undirected graph by G = (V, E), where V is a set of vertices
and E is a set of edges, such that each edge is a set of two vertices in V (which
are said to be adjacent). A clique in G is a subset S ⊆ V of vertices, such that
{x, y} ∈ E for all distinct x, y ∈ S. Consequently, any two vertices of a clique
are adjacent. A clique is said to be maximal if its vertices is not a subset of
the vertices of a larger clique, and maximum if there are no larger cliques in
the graph.

Over the years much effort has been put on developing algorithms for finding
cliques in graphs since this is a central problem in graph theory with many
practical applications. For a given graph, there are several issues one may be
interested in, such as finding all cliques, finding all maximal cliques, or finding
one maximum clique (or all). In a recent paper [9], the author presents a new,
fast algorithm for solving the maximum clique problem.
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The problem of finding a maximum clique is a computationally difficult prob-
lem. In fact, it is NP-hard [6]. It is computationally equivalent to some other
central problems for graphs, such as those of finding a maximum independent
set and finding a minimum vertex cover. One may generalize this problem by
assigning positive, integer weights to the vertices and asking for the maximum-
weight clique. Then the clique is not necessarily a maximum clique of the
underlying unweighted graph, but it is certainly maximal. Also this problem
has several computationally equivalent variants, one being the weighted node
packing problem (WNP). Various issues of the maximum clique problem and
the maximum-weight clique problem are surveyed in [11].

The algorithm developed in [9] is here transformed into an algorithm for the
weighted case. The algorithm is considered in Section 2, and a comparison
with old algorithms is discussed in Section 3.

2 The New Algorithm

In the algorithm, we first impose an order on the vertices: V = {v1, v2, . . . , vn}
where |V | = n. This order only affects the efficiency of the algorithm, not the
correctness. Many different orderings of the vertices were tested. One good
ordering is as follows. Let v1 be the vertex with largest weight in G. If there
are several such vertices, the one with the largest total sum of the weights of its
adjacent vertices is chosen. To determine v2, the same procedure is repeated
for G \ {v1}. In general, having fixed v1, v2, . . . , vk with 1 ≤ k ≤ n − 1, we
obtain vk+1 by applying this procedure to G \ {v1, v2, . . . , vk}.

We now calculate values of C(k), 1 ≤ k ≤ n, which tells the largest weight
of a clique in the subgraph induced by the vertices {vk, vk+1, . . . , vn}. Let
w(i) denote the weight of vertex vi. Then C(n) = w(n), and the values of
C(n − 1), C(n − 2), . . ., in this order, are determined in a backtrack search.

In the backtrack search, we use the information that for 1 ≤ k ≤ n − 1,
C(k) > C(k + 1) exactly when a corresponding clique exists and contains vk.
We search for the largest such clique in the following way (if no such clique
exists, C(k) = C(k + 1)).

We maintain a set of vertices that are adjacent to all vertices fixed so far in
the search. This set is called the working set . At each level in the search tree,
one vertex of the working set is fixed, and the new working set consists of the
intersection of the vertices adjacent to the fixed vertex and the vertices in the
working set with higher index than the fixed vertex (higher index to avoid
repetitions in the search).
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Clearly, one may now backtrack if the sum of the weights of the vertices in
the working set is so small that even if all these vertices could be added to
the current clique, the clique would not have desired weight. Moreover—as we
search for a clique with weight greater than or equal to W—if the weight of
the fixed vertices is W ′ and we consider vk to be the next fixed vertex, then
we can prune the search if W ′ + C(k) < W .

3 Experimental Results

The first algorithm for the general maximum-weight clique problem was ap-
parently the one published by Nemhauser and Trotter [8] in 1975. Later results
include those by Babel [1], Balas and Samuelsson [2], Balas and Xue [3,4], Car-
raghan and Pardalos [5], Loukakis and Tsouros [7], and Pardalos and Desai
[10].

To fully evaluate the proposed algorithm, it should be compared with old al-
gorithms. Unfortunately, not all published papers present experimental eval-
uations. The paper [3] by Balas and Xue, however, contains fairly extensive
tables of benchmark results for random graphs (including comparisons against
two old algorithms), with which we compare our algorithm. The results are
presented in Table 1. The algorithm was tested on random graphs with given
edge densities and randomly assigned integer weights between 1 and 10.

Table 1
Benchmark results (in CPU seconds)

Vertices Edge density New [3]
100 0.1 0.01 0.06
100 0.5 0.01 0.27
100 0.9 2.68 1.84
200 0.1 0.01 0.26
200 0.5 0.08 5.76
200 0.8 70.06 536.52
300 0.1 0.02 0.75
300 0.5 0.50 48.73
300 0.7 50.67 2590.35
500 0.1 0.05 2.32
500 0.5 7.60 842.21
1000 0.1 0.27 13.25
1000 0.3 3.50 503.91
1500 0.1 0.78 43.42
1500 0.2 2.87 373.13
2000 0.1 1.70 106.47
2000 0.2 8.32 1258.88
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Due to the fact that different computers were used in the experiments—we
used a 233 MHz PC and a workstation, model HP9000/835, was used in [3]—
it is difficult to compare the results. A rough estimation, however, that our
computer is ten times faster gives a clear indication: the new algorithm is
faster than the old, except in the case of small graphs with high density. A
similar conclusion was drawn in [9] for the analogous algorithm for unweighted
graphs.

An implementation of the algorithm described, written in C, is available at
<URL:http://www.tcs.hut.fi/∼pat/wclique.html>.
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