Triangle Packing with Constraint Programming

Patrick Prosser

Computing Science,
Glasgow University, Glasgow, Scotland
pat@dcs.gla.ac.uk

Abstract. In vertex disjoint triangle packing we are given a simple undi-
rected graph G and we have to select the maximum number of triangles
such that each triangle is composed of three adjacent vertices and each
pair of triangles selected has no vertex in common. The problem is NP-
hard and APX-complete. We present three constraint models and ap-
ply them to the optimisation and decision problem (attempting to pack
[n/3] triangles in a graph with n vertices). In the decision problem we
observe a phase transition from satisfiability to unsatisfiability, with a
complexity peak at the point where 50% of instances are satisfiable,
and this is expected. We characterise this phase transition theoretically
with respect to constrainedness. However, when we apply a mixed in-
teger programming model to the decision problem the complexity peak
disappears.

Key words: Triangle Packing, constraint programming, phase transi-
tion, mixed integer programming, constrainedness

1 Introduction

Given a simple undirected graph G = (V, E) a triangle is a set of three vertices
{u,v,w} C V such that {{u,v},{u,w},{v,w}} C E, ie. a triangle is three
adjacent vertices in the graph. The problem is then to select (pack) the maximum
number of triangles in the graph such that no two triangles share a common
vertex, and is sometimes called a vertex-disjoint triangle packing [5]. There are
numerous instances of this problem where we must group compatible objects
into sets of three: these objects might be people and the groups teams, or people
willing to share a room or work on a project together. A strikingly important
variant of this problem is the kidney exchange programs in the United Kingdom
[4] and the United States of America [2] where donor/recipient pairs enter a
program that allows pair-wise exchanges and cycle-exchanges of length three,
but the underlying graph structure is directed with weighted edges.

Triangle packing is NP-hard [12] and APX-complete [17]. There is a variant
of the problem where triangles can share vertices but must be edge-disjoint, i.e.
edge-disjoint triangle packing. However, in this paper we deal only with vertex-
disjoint triangle packing and refer to it simply as triangle packing. Figure 1
shows a simple graph with its triangles tabulated, T} to T5. That is, the graph

2 Triangle Packing

Triangles
L={27
T.={237%
1 KLY Y =647
1, ={4,5.,6}
1.={46T}

Fig. 1. A simple graph and its triangles.

has n = 7 vertices, m = 5 triangles, and the largest triangle packing is of size 2,
and one such packing is {71, T4}.

In this paper we explore the triangle packing problem using constraint pro-
gramming. Three models are proposed, along with variable and value ordering
heuristics, and they are compared empirically. We then proceed to the decision
problem: for a graph with n vertices can we pack [n/3] triangles? We observe
the familiar phase transition behaviour, with a complexity peak at the 50% sat-
isfiability point [7]. The phase transition is then characterised with respect to
constrainedness & [14] and is explored with constraint programming, a pseudo-
boolean SAT solver and mixed integer programming. The complexity peak is
observed at the crossover point for the constraint program and SAT solver, but
when using mixed integer programming the complexity peak disappears entirely,
suggesting that the existence of the complexity peak in triangle packing is an
algorithmic phenomenon.

2 Constraint Models for Triangle Packing

We present three constraint models for the triangle packing problem. The first
model takes a vertex view of the problem and is based on the single-successor
model of a graph. The second model takes a triangular view of the problem,
and the third and final model is based on the integer linear programming model
proposed in [2]. In the subsequent descriptions we assume that we have as input
a graph G = (V, E) where |V| = n and vertex i € V. All the constraint models
were implemented using the choco toolkit [1]. Further we assume that a variable
z has a domain of values dom(z).

Triangle Packing 3

2.1 A vertex view

The first model is based on the single successor model of a graph. We have a
constrained integer variable for each vertex in the graph. A variable v; has as a
domain of values equal to the set of vertices adjacent to vertex i in G along with
the non-existent vertex n + 1, that is

Viev dom(vi) = {j|{i,j} € E}U{n +1}

If a variable v; = n + 1 then that vertex is not included in any of the triangles
selected. We then have constraints between vertices to force triangles, as follows:

Vigkev [Vi=JAvi =k = vp =1]

A specialised constraint was implemented in choco to enforce triangles, inspired
by the subtour-elimination constraint [6]. This resulted in a more compact model
with a linear build time. The smallest domain first heuristic [15] was used for
dynamic variable selection, corresponding to a selection of the most isolated
vertex. To optimise we maximise the number of variables assigned values less
than n + 1.

2.2 A triangular view

We enumerate the set of m triangles 7' in G and label the triangles in turn 77 to
T,»- We have a constrained integer variable v; for each vertex i € V. The variable
v; has as a domain of values the set of triangles in which vertex ¢ participates,
with the distinguished triangle T,,,+1 which involves any vertices. That is

Viey dom(v;) = {z|T, e TANi € T} U {m + 1}

If a variable v; = m + 1 this corresponds to vertex ¢ not participating in any
selected triangle. A second set of zero/one variables, t; to tp,, is introduced to
ensure the consistency of triangle selection. The variable t; = 1 if and only if
triangle T; has been selected. This is then maintained with channeling constraints
as follows

Viev Vicdom(v) [Vi = § € t; = 1]

The vertex variables v; to v, are the decision variables. We use the smallest
domain first variable ordering, selecting the vertex that participates in the least
number of triangles. Value ordering corresponds to the most promising value
first [13]. That is for a triangle T; we count the number of triangles that T}
shares a vertex with, and call this a collision count. Triangles are then sorted
in non-decreasing order of collision count. Consequently when a vertex variable
is assigned a triangle it will tend to have a small impact on the domain of
uninstantiated vertex variables. Finally, to optimise we maximise ijn t;, the
number of triangles selected.

4 Triangle Packing

2.3 An ILP inspired model

Our final model is inspired by the integer linear programming model proposed in
[2]. Again, the m triangles in G are enumerated and an n by m array A is created
where A; ; = 1 if and only if vertex 4 participates in triangle j. Figure 2 show
the array A for our small sample graph. The j* column of A gives the vertices
of G that participate in triangle T; and the i'" row of A gives the triangles in
which vertex ¢ participates. We then introduce m zero/one constrained integer

e e Triangles
' 7,=027
o‘o o e T, ={237%
" T,- 347

T, ={45,6

© T, = {467}
AT T, T, 1T, T,
w100 070
v,|1111010'0
v|0i1[1]00
v 01011 111
CILILELTESN
% 010 B LiL
v 111101

Fig. 2. The ILP inspired model.

variables z; to z,, where z; = 1 if and only if triangle T} is selected. Constraints
are required to ensure that each vertex participates in at most one selected
triangle, as follows:

Jj=m
Viev z f’f'j-Ai,j <1

Jj=1

The decision variables are x; to x,,, and since these variables correspond to
triangles they are ordered statically in non-decreasing triangle collision order.
Value ordering is the value 1 followed by the value 0, preferring to select rather

=m

than reject a triangle. Optimisation is via maximising the sum 3 >5Z1" z;.

3 The Optimisation Problem

All experiments were run on a machine with 8 Intel Zeon E5420 processors
running at 2.50 GHz, 32Gb of RAM, with version 5.2 of linux. Experiments

Triangle Packing 5

were performed over Erdos-Renyi random graphs, G, p, where n is the number
of vertices and p is the edge probability. The problem was to pack the maximum
number of triangles in the input graph, given a constraint that the maximum is
less than or equal to |n/3], i.e. the absolute upper bound on the optimisation is
known in advance. Initial experiments showed that the vertex model performed
orders of magnitude worse than our other two models and was excluded from our
studies. One of the reasons for this is the large number of inherent symmetries
within the model. Each triangle generated can be traversed in two directions,
and when we have m triangles we have potentially 2™ symmetries. Therefore
our first experiment compares the triangular model (Tri) with the integer linear
programming inspired model (ILP). Random graphs were generated with n = 40,
0.1 < p < 0.4, with p varying in 0.01 increments, and 20 graphs generated at
each value of p. Figure 3 shows on the left the median number of nodes explored
and on the right the median run time in milliseconds.

Our first observation is that the triangular model, Tri, explores fewer nodes
but takes more run time and this was the case in all our experiments. However,
the most striking features of the graphs is that there is a complexity peak at
p = 0.22 and this is common to both models. Why should there be a complexity
peak? At low values of p few triangles exist and it is easy to find an optimal
solution. At high values of p there are many triangles and it is often trivial to
find the largest number |n/3| and terminate search. At p = 0.22 on average
there are 100 triangles to choose from in G49,0.22 and the size of the minimum
number packed was 11, maximum 13 and average 12 and it appears that it is
hard to prove optimality in this region. In Figure 4 we see the complexity peak

le+07 T le+06 T
X Trin=40 —— Trin=40 ——
N ILP n=40 --X-- ILP n=40 -->c-

1e+06 "/\V‘ s 100000 7\#
N | X,
;}/ N //,X X
100000 i : 10000 7/ A
| 2 N 3
5 f \ | N //; i
2 / | £ /
i / \ X !
% 10000 \, g 1000 / = I
} : 5 ;
1A £ X et
1000 ! 100 a R A
; \ % X
Y/ ‘A\ / \\\
100 g 10 % e S
/ Y
/] \
i Lo
S

medi
K&J

N
X
median cpu time (ms)

Fig. 3. Search effort for the optimisation problem on Gao,, using two constraint models:
nodes on the left, cpu time on the right.

in the optimisation problem as we vary n. We show three values of n (21, 30 and
40), with a sample size of respectively 20, 100 and 20 for each value of p. Again

6 Triangle Packing

we see a complexity peak, and as n increases the peak becomes more pronounced
and occurs at lower values of edge probability p.

100000

T
n=40 —+—
F n=30 ——x——
n=21 ----
10000 | £

1000 |-

median cpu time (ms)

100 |-

HXHX

X .Z‘ ’ % ;K><**’< 1

KX KAKA

0.1 0.15 02 025 03 035 04 045 05
edge probability

Fig. 4. Optimisation, varying n. As n increases the complexity peak becomes more
pronounced and occurs at lower values of edge probability.

4 The Decision Problem

Using the same set of graphs as in the previous study, and the same machine,
we now address the decision problem: is there a packing of the input graph that
involves |n/3] vertex disjoint triangles? Knowing that the optimisation problem
is NP-hard, experience suggests that the decision problem will exhibit a phase
transition at some point in its control parameter, in this case edge probability,
where instances abruptly change from being unsatisfiable to satisfiable, and when
this occurs a complexity peak will emerge [7,14]. In Figure 5 we see what we
expect. On the left are contours for percentage satisfiability against edge proba-
bility for four different values of n (n equal to 20, 30, 40, and 50 with a sample
size of 100 except for n = 50 where a sample size of 50 was used due to excessive
run times). On the right we have median run time (in milliseconds) against edge
probability for four values of n. We observe a phase transition from unsatisfiable
to satisfiable as we increase p and this transition becomes sharper and occurs at
lower values of p as we increase n; i.e., we see the familiar easy-hard-easy pat-
tern. ! It is worth noting that some of these problems were exceptionally hard.

! Note that we report run time rather than nodes visited. This is because the choco
toolkit records nodes in an integer variable and in some of our n = 50 graphs numeric
overflow occurred.

Triangle Packing 7

— - T le+07 T
/ n=50 n=50
/ o n=40 ----- n=40 -----
/ / =30 ------ n=30 ------
H ; =20 16406 =20 i
80 ‘. food / \
/ “’ ;
; -
|

100000

10000

% satisfiable
& 2
cpu time (ms)

: £ y |
: i s Ve
! : : 1000 1
.” y 4 \ A
! 100 / -+ Y 1
! B i K \ Y
20 ' : / ST
! / 7 ; S S S

0.1 0.15 02 025 03 035 04 045 05 0.1 015 02 025 03 035 04 045 05
edge probability edge probability

Fig. 5. The decision problem, varying n. On the left percentage solubility and on the
right search effort in milliseconds. We see an abrupt phase change and a corresponding
complexity peak.

One instance from G49,0.28 took in excess of three and a half days CPU time,
whereas instances drawn from G 0.18 took on average 64 minutes each.
The phase transition has been characterised in [14] as follows:

_ log < Sol >
log|S|

where < Sol > is the expected number of solutions and |S| is the size of the
state space. When all states are solutions ¥k = 0 and problems are satisfiable and
easy, when no state is a solution Kk = oo and problems are unsatisfiable and easy,
and when there is on average a single solution ¥ = 1 and problems are hard.
For triangle packing we can compute |S| as follows. First we must compute the
expected number of triangles in G, , and this is

where (g) is the number of ways we can choose three vertices and p? is the
probability that three vertices are adjacent to each other, and we call this 7.
Therefore the size of the state space is the number of ways we can choose n =
|n/3| triangles from the set of triangles of size T

0=)

To compute < Sol > we must calculate the probability that a state is a solution,
i.e. that having chosen 7 triangles all triangles contain different vertices. Assume
a single triangle has been selected. The probability that the second triangle

8 Triangle Packing

selected is compatible with the first is then
-3
("s")
(3)
and the probability that the third triangle selected does not conflict with the
first and second is then

and so on, in a way similar to that used in the Birthday Paradox where we
compute the probability that in a room with n people at least two share the
same birthday. Therefore the probability that a state is a solution is then

[n/3]-1 (n—3.i)
— 3
Dsol = H (n)
1=1 3

and the expected number of solutions is then

< Sol >= |S|-psol

In Figure 6 we have on the left percentage satisfiability plotted against k
for n varying from 20 to 50, and on the right median CPU time in milliseconds
against k. From these experiments it appears that the theory of constrainedness

T T le+07 .
=50 =50
T n=40 ---—- n=40 -—----
i n=30 ----o- n=30 ----o-
| n=20 le+06 =20 _
80 2

100000

10000

% satisfiable

median cpu time (ms)

1000

4
\
40 b
\ 100
20 9
i

02 04 06 08 1 12 14 16 18 2 05 1 15 2 25
kappa kappa

Fig. 6. Percentage solubility (left) and computational effort (right) plotted against
constrainedness k. 50% satisfiability occurs at 0.8 < k < 0.87

extends to the triangle packing decision problem, predicting the location of the
phase transition with good accuracy.

Triangle Packing 9

The triangle packing decision problem was also attacked with minisat+, a
pseudo-boolean SAT solver [11]. The resultant model is very similar to the ILP
model. A zero/one variable is associated with each triangle, that is v; = 1 if
and only if the i** triangle is selected. When triangles i and j share vertices the
constraint v; +v; < 1is posted. Finally there is a constraint to force the selection
of |n/3] triangles, i.e. Zzi? v; = |n/3]. Figure 7 shows a plot of median cpu
time against k. Most obviously, the minisat+ solver is orders of magnitude faster
than the constraint programming solver. For n = 50 minisat+ is taking seconds
to solve whereas the constraint solver takes thousands of seconds. However, both
solvers exhibit a computational complexity peak at the 50% satisfiability point.
An attempt was made to solve instances at n = 60 with a sample size of 50
(values of n less than this have a sample size of 100) but the experiments were
aborted after 12 days cpu time, when edge probability reached a value of 0.19,
satisfiability approximately 50%, and runtimes typically taking 12 hours per
instance.

1e+06 T

100000 |-

10000 -

1000 |-

median cpu time (ms)

100 |

0.5 1 15 2 25 3

constrainedness (kappa)

Fig. 7. Median CPU time plotted against constrainedness x. 50% satisfiability occurs
at 0.8 < k < 0.87. We see no obvious complexity peak emerging until n = 50 and this
is located at the 50% point in solubility. Experiments at n = 60, sample size 50, were
aborted after 12 days.

5 Where have the really hard problems gone?

In 1991 Cheeseman, Kanefsky and Taylor used the provocative title “ Where the
really hard problems are” for their paper on studies of phase transition phenom-
ena in combinatorial problems. They conjectured that all NP-complete decision

10 Triangle Packing

problems would exhibit an abrupt phase transition from satisfiable to unsatis-
fiable as some control parameter was varied and at the phase boundary there
would be a complexity peak, and that is where the hard problems are. Subse-
quent studies confirmed this [16], and also suggested that the complexity peak
was a feature of the problem and not of the algorithm, i.e. the complexity peak
is algorithm independent. Supporting evidence was given for this in [8] where
local search was used. Unsatisfiable instances were filtered out of the problem
data set such that a walk-through could be made of the phase transition us-
ing local search. Local search encountered a complexity peak at the location of
the phase change from satisfiable to unsatisfiable. Experiments were also per-
formed recently using asynchronous digital circuits with feedback loops applied
to boolean satisfiability problems [10]. Unsatisfiable instances were again filtered
out of the data set and again a complexity peak was encountered at the phase
boundary.

Coarfa et al [9] performed experiments on random 3-SAT using a SAT solver
(GRASP), mixed integer programming (CPLEX), and a ROBDD-based solver
(CUDD). CUDD does not use search, but constructs a symbolic representation
of the set of solutions. As clauses were added, increasing the density of instance,
GRASP and CPLEX did exhibit a complexity peak but not at the same point.
This led to the conclusion that the connection between the crossover point in
solubility and the computational complexity peak was not as tight as claimed,
and that the peak could well be solver dependent. But could the complexity
peak disappear altogether?

The triangle packing decision problem was modeled using the mathematical
integer programming (mip) toolkit within Dynadec’s COMET, which is SCIP
[3], and was applied to the same data sets as before. The model is essentially the
ILP constraint model described earlier, and the goal is to maximise the number
of triangles packed. If on termination |n/3| triangles have been packed true is
delivered, otherwise false. The results of these experiments are shown in Figure
8. The 50% satisfiability point occurs in the range 0.8 < k < 0.87. There is no
observable complexity peak. There is a steady fall in run time as constrainedness
falls, tracking the decrease in the size of the model as edge probability falls. The
number of vertices n was increased from 60 to 100 and then onto 200 in the hope
that a complexity peak would emerge. No complexity peak emerged.

All results for n < 50 were compared against the results produced by the
constraint programming models and there was complete agreement, ruling out
the possibility that there was some error in the experiments at these values of
n. At higher values of n we have no way of verifying the results, when instances
are unsatisfiable, as we have no data to compare against. However, for n = 100,
x = 0.85 at the 64% solubility point and at n = 200, x = 0.87 at 42% satisfiability
giving us some confidence that the decision problem is being faithfully answered.
The mip model was also applied to the hard instance in G49,0.28, and terminated
after 125 milliseconds, having packed a maximum of 12 triangles, proving that
the instance was unsatisfiable. This compares with three and a half days CPU
time with our best constraint model. In addition, the experiments for n = 50,

Triangle Packing 11

100000

10000 s

1000 |

median cpu time (ms)

100 | s

10

0.6 0.8 1 1.2 1.4 1.6
constrainedness (kappa)

Fig. 8. Median CPU time plotted against constrainedness s for the mixed integer
programming solution. We see no complexity peak.

using a sample size of 50, with 0.1 < p < 0.3 in 0.01 increments terminated in
less than an hour whilst the constraint programming model took more than a
week using 4 processors, i.e. more than a month of CPU time.

One possible criticism is that the problems investigated are too small, and
that if larger instances were explored a complexity peak would emerge. Obviously
this may be true: just because a complexity peak has not been found is no proof
that one does not exist. Nevertheless, it is still interesting to see just how big
the problems are that have been explored. One measure used is n, the number
of vertices in the graph, and we have explored up to n = 200. The true size of an
instance is the number of possible triangles in the graph and this is 7 = (})p®.
This is plotted in Figure 9 as the log of the number of possible triangles (log(7))
against constrainedness (k). At low values of k we have high values of edge
probability (p), graphs are dense, and 7 is large. Constrainedness increases as
we decrease edge probability and 7 falls accordingly. At the phase transition
point £ =~ 1 we expect to find hard instance and when n = 200 there are on
average 660 possible triangles in the graph, and this is really quite large. When
k =~ 0.5 and n = 200 instances have 7 = 6400, and at n = 200 and k ~ 0.4
instances have an average 7 = 24400. Arguably, these are big instances.

The data was analysed to determine how search cost scales at the 50%
crossover point. Median search effort at the 50% point was plotted against n
on a log-log scale. The resultant contour has a reasonably straight line with a
positive gradient suggesting that search cost scales polynomially with n at the
crossover point. Therefore we are left with the awkward question “Where have
the really hard problems gone?”

12 Triangle Packing

10000 T
n=30
N n=40 -----
\ n=50 ------
N n=60 -

3 N n=100 ——-—
\ N n=200 -----
LN, N

5 1000 N >

2 ", N ~

£ \ RN AR

£ RS)

5 T T

2 . g - i

£ A N el

g : - -

s TSl Tmmeel

oy < ~~

= Tl

g 100 Nl e T

10

0.6 0.8 1 1.2 1.4 1.6
constrainedness (kappa)

Fig. 9. The number of potential triangles within a graph with n vertices plotted against
constrainedness k. This gives a more realistic measure of the size of a problem when
solved using the mixed integer programming model.

6 Conclusion

We have presented a new problem to the constraint programming community,
vertex disjoint triangle packing, and have proposed three constraint models with
variable and value ordering heuristics. In the optimisation problem we observed
a complexity peak, i.e. a region were it was hard to determine optimality. This
peak was shared by the different constraint encodings and occurred at all problem
sizes investigated.

A decision problem was then presented: pack |n/3| vertices of the graph
into vertex disjoint triangles. We saw a sharp phase transition in solubility with
a corresponding complexity peak when using a constraint programming solver
and a pseudo-boolean SAT solver. This was then characterized with respect
to constrainedness k. The decision problem was then addressed using mixed
integer programming and no complexity peak emerged. This is surprising. We
expect a complexity peak to occur at or near the phase boundary where 50%
of instances are soluble. Although the location of the complexity peak may be
an algorithmic phenomenon, when a backtracking search is used a complexity
peak occurs nonetheless and tends to be located near the crossover point [9]. But
we cannot claim that when using SCIP there is no complexity peak in triangle
packing. What we can claim is that in random graphs with 200 or fewer vertices
no complexity peak emerges. Going above n = 200 is currently beyond the limits
of the computational resources available to the author.

As yet we have no explanation why SCIP behaves as it does on triangle
packing. One possible line of investigation is to apply SCIP to well studied prob-

Triangle Packing 13

lems with classic phase transition behaviour such as number partitioning 2 and
boolean satisfiability. If the complexity peak in those problems is encountered
when using SCIP then we might conjecture that there is something peculiar
about triangle packing. However, if the complexity peak in SAT succumbs to
SCIP then this would indeed be interesting and might suggest that the phase
transition in NP-complete problems is in fact illusory. In [19] it is argued that the
phase transition in combinatorial problems is in fact a continuous process corre-
sponding to the falling number of solutions as an order parameter is increased,
and that its abruptness is a consequence of posing the decision problem (in their
words “an existence parameter”) rather than a universal parameter that counts
solutions. This is not a new idea. In [18] Smith and Dyer measured the search
effort to find all solutions to random constraint satisfaction problems (CSPs).
The contour of median search effort to find all solutions blends into the contour
for the decision problem at the 50% crossover point, with no complexity peak.
To quote from their paper ([18] page 163):

If we require to find all solutions to a CSP, or prove that there are none,
the median cost decreases smoothly as p2 (constraint tightness) increases,
and nothing noteworthy happens as the problems become insoluble. The
phase transition is only an interesting event if just one solution is re-
quired: it can then also be viewed as a transition from a partial search
of the induced search space (which can be terminated as soon as a so-
lution is found) to a complete search (which is required if there are no
solutions).

The triangle packing problem is similar to independent set in a simple graph.
In the first phase of solving we apply a cubic algorithm to enumerate all possible
triangles. We then select triangles that do not intersect. This could be modeled
using another graph G’ where the vertices in G' correspond to the triangles in
G and an edge in G’ exists if there is an intersection in the vertices of the corre-
sponding triangles in G. Therefore finding an independent set in G’ is equivalent
to finding vertex disjoint triangles in G, and this is what our ILP-inspired model
does, as does our MIP solver. Therefore failure to find a complexity peak in
triangle packing when using SCIP is equivalent to failing to find a complexity
peak in the corresponding independent set problem. Therefore an interesting
next step is to explore the relationship between the phase transition in triangle
packing and that in independent set and to investigate the behaviour of the
phase transition in independent set as we change solving techniques, as we have
done here.

Acknowledgments

I would like to thank: Peter Biro and David Manlove for introducing me to
triangle packing and the ILP model; Rob Irving, Ian Gent and Neil Moore for

% Preliminary experiments on number partitioning have failed due to technical limita-
tion on numeric accuracy.

14

Triangle Packing

help with the mathematics; Tan Gent for pointing me towards [9]; Neil Moore for
starting me off on minisat+, Chris Unsworth for the first constraint model and
numerous conversations; Pierre Schaus for his help with SCIP and COMET; Ian
Gent and David Manlove for reading and commenting on earlier versions of this
paper; the CHOCO team for help with the constraint models; Alice Miller for
donating countless CPU cycles.

References

10.

11.

12.

13.

14.

15.

16.
17.

CHOCO Solver. http://www.emn.fr /x-info/choco-solver/.

D.J. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter-
exchange markets: enabling nationwide kidney exchanges. In Proc. EC ’07: The
FEighth ACM Conference on Electronic Commerce, ACM, pages 295-304, 2007.
Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter. Constrained
integer programming: a new approach to integrate CP and MIP. In Proceedings
of the 5th international conference on Integration of AI and OR techniques in
constraint programming for combinatorial optimization problems (CPAIOR’08),
pages 620, 2008.

. Peter Biro, David F. Manlove, and Romeo Rizzi. Maximum Weight Cycle Packing

in Directed Graphs, with Application to Kidney Exchange Programs. Discrete
Mathematics, Algorithms and Applications, 1:499-517, 2009.

Alberto Caprara and Romeo Rizzi. Packing triangles in bounded degree graphs.
Inform. Proc. Lett., 84:175-180, 2002.

Yves Caseau and Francois Laburthe. Solving small TSPs with constraints. In
Proceedings International Conference on Logic Programming, pages 1-15, 1997.
Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard
problems are. In Proceedings IJCAI’91, pages 331-337, 1991.

David A. Clark, Jeremy Frank, Ian P. Gent, Ewan MacIntyre, Neven Tomov, and
Toby Walsh. Local search and the number of solutions. In Proceedings of Principles
and Practise of Constraint Programming CP’96, pages 119-133, 1996.

C. Coarfa, D.D. Demopoulos, A.S.M. Aguirre, D. Subramanian, and M.Y. Vardi.
Random 3-SAT: The Plot Thickens. Constraints, 8:243-261, 2003.

W.P. Cockshott, A. Koltes, J.T. O’Donnell, P. Prosser, and W. Vanderbauwhede.
A Hardware Relaxation Paradigm for Solving NP-Hard Problems. In Visions of
Computer Science, BCS International Academic Research Conference, pages 1-12,
2008.

Niklas Een and Niklas Sorensson. Translating Pseudo-Boolean Constraints into
SAT. Journal of Satisfiability, Boolean Modeling and Computation, 2:1-26, 2006.
M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and
Co, 1979.

P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proceedings ECAI’92, 1992.

Ian P. Gent, Ewan MacIntyre, Patrick Prosser, and Toby Walsh. The con-
strainednss of search. In Proceedings AAAI’96, pages 246-252, 1996.

R. M. Haralick and G. L. Elliot. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263-314, 1980.

Brian Hayes. Can’t get no satisfaction. American Scientist, 85:108-112, 1997.

V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete.
Inform. Proc. Lett., 37:27-35, 1991.

Triangle Packing 15

18. Barbara M. Smith and Martin E. Dyer. Locating the phase transition in binary
constraint satisfaction problems. Artificial Intelligence, 81:155-181, 1996.

19. K.A. Zweig, G Palla, and T. Vicsek. What makes a phase transition? Analysis of
the random satisfiability problem. Physica A, 389:1501-1511, 2010.

