
Scene from an imaginary dinghy race

Constructing Sailing Match Race Schedules
Round-Robin Pairing Lists

Craig Macdonald, Ciaran McCreesh, Alice Miller, Patrick Prosser

All @ Computing Science Glasgow

Craig
Ciaran

Alice

Patrick

Tanjung Rhu Resort Langkawi

This

Not this

Rhu

What’s the problem Craig?

• We have n skippers and m boats (m ≤ n)
• Each skipper has to compete against every other skipper once and once only.
• We can send m skippers out together, in pairs (m/2 pairs)
• We call this a flight
• There are some restrictions to take into consideration

Not a problem.

Leave it with us.

It’s a round robin.

1st Stab

Consider 7 skippers and 6 boats

1st Stab

Consider 7 skippers and 6 boats

• We have 7.6/2 = 21 matches

1st Stab

Consider 7 skippers and 6 boats

• We have 7.6/2 = 21 matches
• Given 6 boats we have 3 matches in each flight

1st Stab

Consider 7 skippers and 6 boats

• We have 7.6/2 = 21 matches
• Given 6 boats we have 3 matches in each flight
• We have 7 flights

1st Stab

Consider 7 skippers and 6 boats

• We have 7.6/2 = 21 matches
• Given 6 boats we have 3 matches in each flight
• We have 7 flights

1st Stab

Consider 7 skippers and 6 boats

• We have 7.6/2 = 21 matches
• Given 6 boats we have 3 matches in each flight
• We have 7 flights

Skipper 0 is in a match with skipper 1 in flight 0

1st Stab

Consider 7 skippers and 6 boats

• We have 7.6/2 = 21 matches
• Given 6 boats we have 3 matches in each flight
• We have 7 flights

Skipper 1 is in a match with skipper 6 in flight 4

1st Stab

0 1 2 3 4 5 6

0

1

2

3

4

5

6

1st Stab

0 1 2 3 4 5 6

0

1

2

3

4

5

6

M[i][j] = flight that match (i,j) takes place

1st Stab

0 1 2 3 4 5 6

0

1

2

3

4

5

6

M[i][j] = flight that match (i,j) takes place
M*i+*j+ ≡ M*j+*i+

1st Stab

0 1 2 3 4 5 6

0

1

2

3

4

5

6

M[i][j] = flight that match (i,j) takes place
M*i+*j+ ≡ M*j+*i+
allDifferent(M[i])

1st Stab

0 1 2 3 4 5 6

0 0 1 3 5 2 6

1 6 2 3 1 4

2 0 4 5 2

3 6 4 5

4 0 1

5 3

6

M[i][j] = flight that match (i,j) takes place
M*i+*j+ ≡ M*j+*i+
allDifferent(M[i])

1st Stab

0 2

1

3

Another view: vertices are skippers
 coloured edge is time of match
 4 skippers & 4 boats & 6 matches

1st Stab

0 2

1

3

Another view: vertices are skippers
 coloured edge is time of match
 4 skippers & 4 boats

1st Stab

0 2

1

3

Another view: vertices are skippers
 coloured edge is time of match
 4 skippers & 4 boats

1st Stab

0 2

1

3

Another view: vertices are skippers
 coloured edge is time of match
 4 skippers & 4 boats

1st Stab

0 2

1

3

Another view: vertices are skippers
 coloured edge is time of match
 4 skippers & 4 boats

1-factorisation

1st Stab

(0,1) (0,3)

(1,3)

(0,2)

(2,3) (1,2)

Another view: vertices are matches
 edge if matches at same time
 4 skippers & 4 boats

1st Stab

(0,1) (0,3)

(1,3)

(0,2)

(2,3) (1,2)

Another view: vertices are matches
 edge if matches at same time
 4 skippers & 4 boats

Flight 0

1st Stab

(0,1) (0,3)

(1,3)

(0,2)

(2,3) (1,2)

Another view: vertices are matches
 edge if matches at same time
 4 skippers & 4 boats

Flight 0 Flight 1

1st Stab

(0,1) (0,3)

(1,3)

(0,2)

(2,3) (1,2)

Another view: vertices are matches
 edge if matches at same time
 4 skippers & 4 boats

Flight 0 Flight 1 Flight 2

1st Stab

(0,1) (0,3)

(1,3)

(0,2)

(2,3) (1,2)

Another view: vertices are matches
 edge if matches at same time
 4 skippers & 4 boats

Flight 0 Flight 1 Flight 2

Colouring of the line graph

There are some restrictions to take
into consideration

Taking Mark Drummond’s point of view (IJCAI93) this presentation is an advertisement for the paper

What follows is a sketch

Phase 1

Stage 1

Phase 1

There are fewer boats than skippers and
A skipper gets into a boat for the 1st time ever (and is in a “new” boat) or …
A skipper has had a “bye” and then goes out into a flight (and is in a “new” boat)

Modelling a Skipper

A skipper has
• a temporal view of his schedule (who do I race at time t?) and
• a state view (where am I racing in flight f?)

Modelling a Skipper

Modelling a Skipper

Modelling a Skipper

Modelling a Skipper

In flight 0
Competes against skipper 4 in last position

Modelling a Skipper

In flight 1
Competes against skipper 1 in last position

Modelling a Skipper

In flight 2
Competes against skipper 0 in middle position

Modelling a Skipper

In flight 3
Competes against skipper 6 in first position

Modelling a Skipper

In flight 4
Competes against skipper 3 in first position

Modelling a Skipper

In flight 5
Competes against skipper 2 in last position

Modelling a Skipper

Not in flight 6
This is the end

Modelling a Skipper

And yes … (x,y) is different from (y,x)!

(x,y) x is port (x,y) y is starboard

Modelling a Skipper

And yes … (x,y) is different from (y,x)!

(x,y) x is port (x,y) y is starboard

There’s no red Port left in the bottle

Modelling a Skipper

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Modelling a Skipper

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Modelling a Skipper

Skipper 5 is in Last place in flight 0 and competes with skipper 4

Modelling a Skipper

Skipper 5 is in Middle place in flight 2 and competes with skipper 0

Modelling a Skipper

Skipper 5 is in the End state in flight 6

Modelling a Skipper

Modelling a Skipper

state is Last, First, Mid, Bye or End, i.e. position in flight

Modelling a Skipper

Finite Automata to describe criteria 4, 11 and 12
Regular constraint acts on skipper’s state

Modelling a Skipper

Skipper is last in flight 0 (green) and can move in next flight to states Last, Mid or End
i.e. cannot go into a Bye or go First

We also have

• array match[i][j] = timeslot for match (i,j)

• time[t] is a pair (i,j), where match (i,j) is in timeslot t

These are channelled into skippers
Time is decision variable (what do we do now?)

7 Skippers and 6 Boats: phase 1

7 Skippers and 6 Boats: phase 1

modMatch converts timeslots in match into flights, forces skipper’s matches into different flights

Symmetry break at top of search … first flight contains matches (0,1), (2,3), (4,5)

Phase 1, minimise boat changes (total or worst case skipper)

Output the integer … number of boat changes, as input to Phase 2

7 Skippers and 6 Boats: phase 1

Phase 2

Minimise imbalance

Phase 2

Given the number of boat changes, produce a schedule that is “balanced” and
has at most the given number of boat changes.

Balance of a skipper is balance between … number of times first, number of
times middle, number of times last

Balance for schedule, is balance of worst skipper

Phase 2

Given the number of boat changes, produce a schedule that is “balanced” and
has at most the given number of boat changes.

Balance of a skipper is balance between … number of times first, number of
times middle, number of times last

Balance for schedule, is balance of worst skipper

Read the paper for details (I’m running out of time)

Phase 3

Renumbering

Phase 3

Phase 3

Skippers 0 and 1 are in a match in the last flight

In the above, swap all 0’s with 0’s and swap all 6’s with 1’s so last match is (0,1)

NOT A CP STEP

Phase 4

Orientation
(port/starboard)

Ortientation Phase 4

Phase 4

Reads in the renumbered schedule and …

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Phase 4

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Phase 4

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Phase 4

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Phase 4

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Phase 4

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Phase 4

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Phase 4

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Phase 4

Reads in the renumbered schedule

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Therefore
orient[2][0] = 1 and orient[3][0] = 0 (starboard when meeting nearest lowest ranked skipper)
orient[2][4] ≠ orient[5][5] (match between 2 and 5)
orient[3][3] ≠ orient[5][4] (match between 3 and 5)

Phase 4

Reads in the renumbered schedule

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Therefore
orient[2][0] = 1 and orient[3][0] = 0 (starboard when meeting nearest lowest ranked skipper)
orient[2][4] ≠ orient[5][5] (match between 2 and 5)
orient[3][3] ≠ orient[5][4] (match between 3 and 5)

Phase 4

Reads in the renumbered schedule

orient[i][j] = 0 iff skipper i is on port side in his jth match
orient[i][j] = 1 iff skipper i is on starboard side in his jth match

Skipper 2 meets skippers in the order 3,0,1,4,5,6
Skipper 3 meets skippers in the order 2,6,0,5,1,4
Skipper 5 meets skippers in the order 4,6,0,1,3,2

Therefore
orient[2][0] = 1 and orient[3][0] = 0 (starboard when meeting nearest lowest ranked skipper)
orient[2][4] ≠ orient[5][5] (match between 2 and 5)
orient[3][3] ≠ orient[5][4] (match between 3 and 5)

Phase 4

Regular constraint for a skipper (row of array orient)

Phase 4

(x,y) x is port (x,y) y is starboard

So?

Many schedules violate the published criteria.
Many schedules are missing.
Many schedules are very poor (wrt boat changes)

Published Schedules So?

So?

Our schedules are
• Good (generally better than published)
• Legal!
• Take a long time to produce (allow days for optimisation, why not)

So?

Our schedules are
• Good (generally better than published)
• Legal!
• Take a long time to produce (allow days for optimisation, why not)

Technical Issues
• Modelling was not easy, we had communications problems, diagrams and DFA helped greatly
• CP allowed nice incremental development
• Phase 4 (orientation) is always easy and we don’t know why
• Implemented a separate system to validate schedules, recognising criteria violations
• Implemented non-CP for phase 1 to validate CP and test out heuristics and symmetry breaking

So?

Our schedules are
• Good (generally better than published)
• Legal!
• Take a long time to produce (allow days for optimisation, why not)

Technical Issues
• Modelling was not easy, we had communications problems, diagrams and DFA helped greatly
• CP allowed nice incremental development
• Phase 4 (orientation) is always easy and we don’t know why
• Implemented a separate system to validate schedules, recognising criteria violations
• Implemented non-CP for phase 1 to validate CP and test out heuristics and symmetry breaking

Practical Application
• Schedules will be used in West of Scotland
• Liaising with international umpires, accept schedules nationally and internationally
• May be able to investigate interaction between criteria

A
1

D

C

B

3

2

4

A matching problem

A
1

D

C

B

3

2

4

A matching problem

(A,4) (B,3) (C,2) (D,1)

Scene from an imaginary dinghy race

