
A simple assessed exercise

Ciaran McCreesh & Patrick Prosser + 21

Simple assessed exercise

10 credit course
• 10 weeks
• 30 lectures
• Equivalent to 100 hours in total

• 30 lectures
• 20% coursework
• Self study

Simple assessed exercise

Simple exercise is 5% (about 1 day’s effort)
Handed out 2nd week of course
Get students using CP (get hands dirty)
Students have a rough idea about how CP works

Simple assessed exercise

Goals
• Must be easy to make progress
• Must be interesting
• Should be fun

• students want to solve this problem
• Google-proof

Simple assessed exercise

Simple assessed exercise

Simple assessed exercise

You are given n players to be allocated to m teams (where n % m = 0).

There are constraints of the form together(i,j) and apart(i,j) where

• together(i,j) means that players i and j must be in the same team

• apart(i,j) that players i and j must be in different teams.

By default, players can be in any team with any other player.

Team Allocator

Simple assessed exercise

You are given n players to be allocated to m teams (where n % m = 0).

There are constraints of the form together(i,j) and apart(i,j) where

• together(i,j) means that players i and j must be in the same team

• apart(i,j) that players i and j must be in different teams.

By default, players can be in any team with any other player.

Team Allocator

12 4
together 3 9
together 5 9
apart 2 8
apart 6 8

Simple assessed exercise

You are given n players to be allocated to m teams (where n % m = 0).

There are constraints of the form together(i,j) and apart(i,j) where

• together(i,j) means that players i and j must be in the same team

• apart(i,j) that players i and j must be in different teams.

By default, players can be in any team with any other player.

Team Allocator

12 4
together 3 9
together 5 9
apart 2 8
apart 6 8

12 players split into 4 teams (each of 3 players)

Simple assessed exercise

You are given n players to be allocated to m teams (where n % m = 0).

There are constraints of the form together(i,j) and apart(i,j) where

• together(i,j) means that players i and j must be in the same team

• apart(i,j) that players i and j must be in different teams.

By default, players can be in any team with any other player.

Team Allocator

12 4
together 3 9
together 5 9
apart 2 8
apart 6 8

Players 3 and 9 in same team
Players 5 and 9 in same team

Simple assessed exercise

You are given n players to be allocated to m teams (where n % m = 0).

There are constraints of the form together(i,j) and apart(i,j) where

• together(i,j) means that players i and j must be in the same team

• apart(i,j) that players i and j must be in different teams.

By default, players can be in any team with any other player.

Team Allocator

12 4
together 3 9
together 5 9
apart 2 8
apart 6 8

Players 2 and 8 in different teams
Players 6 and 8 in different teams

Simple assessed exercise

You are given n players to be allocated to m teams (where n % m = 0).

There are constraints of the form together(i,j) and apart(i,j) where

• together(i,j) means that players i and j must be in the same team

• apart(i,j) that players i and j must be in different teams.

By default, players can be in any team with any other player.

Team Allocator

They are given code

They have to add code

They are given problem instances

An example: 40-8-02-00.txt

• Create an array of constrained integer variables player[0] to player[11]
• Each has a domain {1..4}, the teams they can be in
• For apart(i,j) post constraint player*i+ ≠ player*j+
• For together(i,j) post constraint player[i] = player[j]
• Use occurrence or cardinality constraint to ensure that each team
 occurs n/m times (i.e. number of players per team is satisfied)

Simple solution (and an instance)

Easy to get hands dirty

• Create an array of constrained integer variables player[0] to player[11]
• Each has a domain {1..4}, the teams they can be in
• For apart(i,j) post constraint player*i+ ≠ player*j+
• For together(i,j) post constraint player[i] = player[j]
• Use occurrence or cardinality constraint to ensure that each team
 occurs n/m times (i.e. number of players per team is satisfied)

Simple solution (and an instance)

Easy to get hands dirty

• Use a 0/1 model, 2D array, row for team, column for player
• Use set variables, a set for each team
• Pre-processing
• Symmetry breaking
• Variable ordering heuristics
• We have hard instances (>12 hours to solve)
• Devoted 1 lecture to discussing problem after deadline

Alternatives & richness

Alternatives & richness The dark side of ex01

Alternatives & richness The dark side of ex01

Google-proof?

• 20 animals escape from the zoo
• We have 5 cages to put them in
• Each cage can take at most 4 animals
• The following animals cannot be in the same cage

• The rabbit and the fox
• The spider and the fly
• The worm and the robin
• …

Simple assessed exercise

It does take some effort to make an exercise

conclusion

This went surprisingly well
• I think they liked the problem
• Generated a lot of discussion & interaction
• I think they got the idea of CP and the problems we can solve

• Not just mashing up data

… with a little help from my friends

