
HCI4 06

Elvin Lab
9 October 2006

This lab is intended to introduce you to a system you may wish to use
in your HCI4 exercise: the Elvin messaging system.

Background

Elvin is a content-based messaging system. Producer processes can
send messages with arbitrary content. Consumer processes can
receive messages via subscriptions that specify the type of message
content in which they’re interested. For example, a set of “content
providers” might send messages that include tuples, or elements, for
name, date, time and location. Another process could “subscribe” to
any messages with a location of “Boyd Orr”. This offers a simple and
effective way of enabling processes to communicate with minimum
effort.

Messages (or notifications) consist of a set of elements (name, value
pairs), e.g.,
Name=”Phil”, Age=39

A few simple data types are supported, including strings, integers and
floating point numbers.

The Elvin system consists of two parts:

• a router that handles the actual transport of messages between
producers and consumers and

• SDKs for several languages (e.g., C and Java), enabling
producers and consumer programs to be written.

In what follows, a line with is something for you to do.

HCI4 06 Elvin Workshop

© Philip Gray, 2004, 2005, 2006 2

Finding Resources

Where is the Elvin router?

We will be using a router located on aguijan. It is referenced as
follows:

elvin://aguijan.dcs.gla.ac.uk

Where is the Elvin Java SDK?

The Elvin Java SDK is available at:
\\anjouan\public\java-elvin-4.0.5

It includes jar files holding the required classes, plus source code for
example applications. There are also a couple of useful batch files for
running example producers and consumers.

 Copy the Elvin Java SDK directory to somewhere in your filespace.

Running Your First Producer

 Go to java-elvin-4.0.5\examples
jep is a simple Elvin event producer. It can be run via the batch file
testProducer.bat. This file contains:
java -cp "java-elvin-demo-4.0.5.jar;..\java-elvin-
4.0.5.jar" org.elvin.test.je4.jep -e
elvin://aguijan.dcs.gla.ac.uk

Execute testProducer.bat. You should see a Windows console
appear.

 Enter the following at the console, replacing <your login> with your
unix account name and <your first name> with your first name:
<your login>: “<your first name>”

location: “boyd orr”

Age: 39

Note: you must end the message with the three hyphens. They are an
“end of notification” marker.

However, you won’t see anything yet until you have a consumer
program to receive the message.

Running Your First Consumer

jec is a simple Elvin event consumer. It can be run via the batch file
testConsumer.bat. This file contains:
java -cp "java-elvin-demo-4.0.5.jar;..\java-elvin-
4.0.5.jar " org.elvin.test.je4.jec -e
elvin://aguijan.dcs.gla.ac.uk -s "require(pdg)"

Notice the final argument, -s “require(pdg)”, which will set this
consumer to subscribe to any events that include an element
identified with ‘pdg’.

HCI4 06 Elvin Workshop

© Philip Gray, 2004, 2005, 2006 3

 Edit testConsumer.bat, replacing ‘pdg’ with your login name. Save
it.

 Execute testConsumer.bat. Another console will appear, this
time to hold output from Elvin. Arrange the two consoles so you can
see each of them at the same time. Now each time you create a
message with the producer that includes <your login> as an element
name, the message will appear at the standard output of jec (the
consumer’s console).

 Try out a few messages in the producer console to see the effect.

Multicast

Messages can be consumed by multiple processes.

Find a friend or lab neighbour and arrange to subscribe to the
events from their producer. You’ll have to change the command line
parameter of the consumer to an appropriate value.

Building an instant message system in 3 minutes

If John and Jane want to communicate, they would send messages
using jep like this:
Phil: “Hello Jane”

Jane: “Hello Phil”

Each would create a consumer application using jec with this
subscription:
require(Phil) || require(Jane)

This will result in a subscription to both events identified with ‘Phil’
and events identified with ‘Jane’.

 Find a friend or a lab neighbour and try it. Try adding
more people.

Subscription Expressions

So far we’ve only seen a single subscription expression, viz.,
“require(<item name>)”. The table below shows some other potential
subscription expressions.

Example Description

require(Demo) Notifications with an element named Demo

Email ==
"user@example.com"

Notifications with an element named Email which
has a string value equal to "user@example.com"

wildcard(Email, Notifications with an element named Email which

HCI4 06 Elvin Workshop

© Philip Gray, 2004, 2005, 2006 4

"*@example.com") matches the wildcard expression.

regex(Subject,
"[Tt]ransmeta")

Notifications with an element named Subject that
matches the regular expression

Temperature >= 250 Notifications with an element named Temperature
that is numeric and has a value greater than or
equal to 250

Time < Record-Time Notifications with an element named Time with a
value less than the value of the Record-Time
element. Both fields must be present and numeric
for a match to occur.

contains(Subject,
"laptop") && (Company
== "Sony" ||
contains(Product,"Viao")
)

You can compose complex expressions using the
boolean operators

Writing an Elvin Application

Basic Java template applications are located in hci4Examples. The
relevant applications are:

hci4DemoProducer and hci4DemoConsumer

Look at the source code. Each takes an Elvin router reference as its
only argument. The producer creates a single notification and then
terminates. The consumer subscribes to a “topic” and then writes its
output to standard output. These two templates will be the basis of
any Elvin application you might write.

 You can try them out via the two batch files, produce.bat and
consume.bat. Have look at their contents.

 Execute consume.bat to start a receiver console. Now execute
produce.bat a few times to create new messages.

Further Information

Full Javadoc is available in the Elvin Java SDK doc directory.

Additional information, including the full subscription language
specification, can be found at:
http://www.mantara.com/support/docs/

HCI4 06 Elvin Workshop

© Philip Gray, 2004, 2005, 2006 5

 UAR Command Line Options
ip
IP of proxy if using one (must have port as well if this is specified)

port
PORT of proxy if using one (must have IP as well if this is specified)

path
Path to output log files. Defaults to C:\local\grumps\ if not specified.

consentpath
Path to consent file. Consent file sets options for individual users.
The options which can be specified are listed in the "Other Options"
section below.
If consentpath is specified and the file doesn't exist or the
currently logged in user is not found in the consent file, then the UAR
will exit.
A sample consent file format is given in .\SampleConsentFile.txt.

adaextensions
Allows advanced logging of user activity in AdaGide development
environment for the ADA 95 language.
Activity logged is Compile, Build, Run, Comment and Uncomment.

maxfileopentime
The time in seconds that a logfile is kept open for before creating a
new logfile.

nonobfusticatedkeylist
Path to a text file containing a list of Virtual Keycodes which should
NOT be ignored if keypresses are not obfusticated.
Entries should be one per line and should be something like:
VK_ENTER
VK_BACK

Other Options:
"mc" - mouse clicks: can be "on" or "off"
"mm" - mouse moves: can be "on" or "off"
"mw" - mouse wheels: can be "on" or "off"
"wt" - mouse window: can be "on" or "off"
"at" - mouse application: can be "on" or "off"
"kc" - keyboard collection: can be "all", "hidden" or "off"
"wc" - window collection: can be "all", "hidden", or "off"
"process" - display only simple process name.
"fullprocess"; - display detailed process name.

