Notes to accompany Unit 1

Learning to program

Most books or courses on programming start with a long chapter on the basic mechanics of programming – of how a computer works, what a programming language is, how we are able to write computer programs, and how these programs are made to run on the machine. There, I've probably managed to lose many of you already.

Having completed this essential groundwork, they then launch into the details of the particular programming language being covered. If the title of the book contains the words problem solving then they will also talk at some length about the software engineering process used by professionals, often at a level way beyond that so far reached by the novice programmer. That is, the problems being tackled by the novice are so far removed from the problems for which the software engineering process was designed, that the process appears cumbersome and pointless.

Very frequently, readers new to programming will be swamped by this deluge of ideas and they will quickly lose interest. A few readers only will happen to have a range of experience that lends itself to the complexity of the subject, allowing them to succeed.

Books on how to program are written by folk who are competent programmers. This is their greatest downfall. It is most likely years since the authors have been through the learning process itself. They are so far away from the struggles, the fights, the triumphs of the early stages of programming that it is hard to remember what was important then. No, such books should ideally be written by those who are in the midst of the process, or who have just completed it, and can clearly remember the birthing pains.

Learning by doing

The perfect book, then, would encapsulate the experience of those who have just learned how to program, because programming is a skill and can only therefore be learned by doing it. But books can't give someone the experience, so they can at best only be a guide in the learning process. Indeed, the only way to learn to program is to experience the program design process, the program writing process, the program correction process. All skills. Not teachable in the strictest sense. Using didactic methods, such as a lecture or a book, we can at least give some hint at what these processes are like, state some useful guidelines, suggest strategies that often lead to our desired goal when actualised in the experience of programming. But, the novice who is willing to do it, rather than read or hear about it, will be the one to succeed.

Let us consider an analogy. Analogies are often essential when explaining programming, because programming appears to be quite unlike anything a novice has seen before. There is little or no experience upon which to build, and so a newly-introduced concept can seem arbitrary and valueless. Consider by comparison, biology. We all have experience of say, the eye, and so a teacher introducing us to the inner workings of the eye can work forward assuming basic understandings, such as the eye's external appearance, its size, the structure of the pupil, the iris. There is a foundation on which to build. New concepts are introduced and learned within a well-understood frame of reference consisting of those concepts already understood.

In programming, our best hope is often to motivate the various aspects of the subject by comparing them with similar aspects found in other subjects. Our first analogy in the learning of programming will be with the learning of another skill, that of how to ride a bicycle, and it is used to illuminate the nature of the learning process. How did you learn to ride a bike? Can you remember? For most of us, it involved a number of suggestions from others – parents or siblings – combined with a large amount of trial and error. The suggestions did little, acting as vague signposts only. We could never have learned the skill from a book, gaining only the most rudimentary ideas about it from mere words and pictures. It took the reckless enthusiasm of a determined youngster to be willing to get on, fall off, get on, fall off again and again, until the skill was won. Would we risk this as adults? I doubt it!

Yet, in mastering the skill of programming, we need to become those enthusiastic and determined youngsters again. In this course, there is no substitute for your enthusiasm to just get right on in there and mess it up, again and again. From the mistakes comes learning. The more you do, the more likely you are to become the master. You will not be a failure because your program didn't work; you will fail the learning process only when you lose the will to work out why your program didn't operate as you had anticipated, setting it right in the next version.

Programming as an art

Another reason why a didactic approach won't work with programming is that it is a highly creative process. A well-crafted program is a work of art. The key here is that there is no right way to solve a programming problem, no perfect solution. As in the discussion above, the best that the teacher can do is to give a number of generally useful signposts. Different sets of signposts may each successfully solve a programming problem, but the solutions will be qualitatively different, just as the same scene can be depicted with a pencil or with watercolours to give very different results although at one level the problem solved is the same.

The idea of programming as an art form is also important in the learning process. The novice programmer must be willing to develop many, many poorly-crafted pieces of art early in their career, and then critically appraise them, or have them appraised, in order to be able to make valuable judgements between one program and another. They must go through an apprenticeship of sorts. It is ok for the early programs to be quite imperfect in form. The opportunity and willingness to look back, to reflect upon what has been completed, is an essential part of the learning process. It is the step whereby real understanding can take place. We will draw out the theme of program as art as the course progresses, where possible, but it will only fully be realised in further practice and study beyond this course.

Structuring this course

I've managed both to rubbish existing books on learning to program and to suggest that there is no perfect book either because of the nature of the subject. So why am I bothering to write these notes and lectures? The aim throughout will be to get away from the written word and into the exercise of programming as often as possible, for it is only there that you will be able to gain the necessary experience needed to start grasping an understanding of what programming is all about. The written and spoken word can do no more than introduce new ideas and themes, and empower you to get stuck into the all-important practice.

Having said something about the nature of the learning process for programming, an essential precursor for any serious study and skill development, let us continue where most courses would be just beginning. We will get into the experience part very shortly, but let us now introduce some essential underpinning material.

Key elements in programming

In common with any text on learning to program, we will now introduce some of the fundamental elements with which you will be engaged whenever you attempt to solve a problem using a programming language and computer. It is important while learning to keep firmly in mind the framework of programming that the following points introduce. This is really the only big chunk of text to be read away from the machinery, since it is essential to lay a framework in place.

Problems

Computer programs solve problems. That is their sole purpose. The problems come in all shapes and sizes – some of them have been around since before computers were even invented, such as managing financial transactions, while others have emerged purely because of the existence of the computer. The Tomb Raider® computer game program is a solution to a problem that could not have been envisaged before the advent of computers with high-quality graphical display screens.

A model of computation

Humans are renown for their ability to use tools to solve problems. We developed a host of tools early on that enabled us to kill animals, to cultivate the land, to build, to clothe ourselves – solving the problems of having enough to eat, to live comfortably.

In any particular problem-solving domain in our lives, whether it be computing, agriculture, ship-building, whatever, we have both developed tools for the job and amassed a significant body of knowledge on how to use these tools on given raw materials to achieve our desired results.

Consider the principles of engineering a ship – we have a multitude of tools that work on metal to produce plates, rivets, girders, pipes, and so on. In addition, we have generated a body of knowledge that guides us on the best way to combine these components – how to produce structures that increase overall strength, avoid twisting in the hull; how to maximise space for cargo or passengers; the benefits of a high and wide bridge for visibility; high masts for communication, clear decks to avoid fouling.

In programming, a new toolset must be learned, a toolset that enables us to make use of the underlying computer hardware to solve problems. The tools that make up the toolset are not chosen at random. They have been combined together in order to support the simple and effective solution of problems. The toolset defines a model of computation, a way of solving problems.

In the same way as the ship designer follows tried and tested principles when designing a new ship (consider the alternatives of clinker-built, fibre-glassed, concrete or steel hulled vessels), so we will adhere to a given model of computation each time we solve a new computing problem. Throughout this course, we will be using one particular model, known as the object-oriented model of computation.

A language to describe computation

Continuing our analogy with ship-building, the ship designer needs a way of expressing the new design, so that the engineers, steel-workers, riveters and so on can do the hard work of building the ship. Typically, engineering drawings of various kinds will be used to convey the design, initially large overviews, but eventually in increasingly fine detail specifying sizes and strengths of the smallest items. The drawings and other information form a well-understood language of communication between designer and builder. Formal and informal languages are used throughout our lives to convey methods for solving problems – consider cookery recipes, car workshop manuals, knitting patterns, flat-pack furniture assembly instructions. Musical notation is a language for communication between composer (designer) and musician (builder), solving the problem of creating beautiful music.

In programming, we are the designers. The computer is the builder. We take a new problem, and using our knowledge of the model of computation to hand, we devise or design a solution to that problem. We now need to tell the computer to build the solution – that is, to make use of the available tools in a way that we specify so that the required result is forthcoming.

The programming language is the way we effect this communication between designer and computer. A computer program is a description of the solution to a specific problem expressed in a programming language. The language allows us to specify how the tools of the chosen model of computation should be used.

A programming language is a highly formal language, meaning that there is no leeway for errors when using it. If you construct grammatically incorrect sentences in the language, the computer won't be able to process them. In fact, it won't even try; instead it will refuse them. Compare this with any spoken language, where we can be remarkably sloppy with respect to grammar and still be understood. We can usually determine the correct meaning using a host of other cues – what just went before, the look on someone's face and so on. The computer cannot access this kind of information, and so instructions given to it must be very precise, allowing no opportunity for ambiguity.

In this course we are going to use the programming language C#. This is a language that allows expression of problem solutions using the tools of the object-oriented model of computation.

Constructing and managing texts written in the language

Problems come in all shapes and sizes. Similarly, the solutions to those problems are variable in size. Describing the solution to a problem using a programming language may sometimes take only a few lines, but for other problems may, in its entirety, use millions of lines. Programs used to be measured in miles of printer paper. You get an idea of the scale!

It is essential that we are able, somehow, to manage this complexity. There is no way that one programmer can handle millions of lines of code without significant managerial support. The design of the programming languages themselves assist with this process, by allowing us to break the descriptions of solutions to large problems into discrete chunks, and also by allowing us to work at different levels – overview or fine detail – as did the ship-designer earlier.

A programming environment supports the management of the many chunks of which any particular description of a problem solution will consist. Various processes need to be applied to the chunks after our writing of them and before they can be used by the computer. The programming environment ensures that the chunks are processed correctly. Additionally, in any particular solution to a problem, we will reuse parts of solutions to other problems (in just the same way that the ship-designer re-employs similar techniques between different ships). The programming environment assists us to find and reuse such components.

On this course, we will be using the programming environment Visual Studio. This will be a particularly challenging and exciting aspect of the course, since Visual Studio is an industrial-strength programming environment. Introductory programming is often taught using a toy environment, and so novices can only experiment with small-scale and simplistic problems. The major benefit of using an environment like Visual Studio is that it allows the novice to get a truer feel for the scale of the engineering processes that go on when solving large problems. The price to pay is the learning hurdle that must be jumped in order to assimilate the complexity of Visual Studio. We strive here to minimise that complexity, while still giving a flavour of the bigger picture.

The program development process

The writing or development of a computer program consists of a number of straightforward steps, as would any design and engineering process. It is essential to keep these basic steps in mind as skipping any one of them unthinkingly is likely to increase the complexity of the problem solving task. A fully-trained software engineer would use more steps than are introduced here, but for our purposes the following set will suffice:

· Problem specification

· Design

· Implementation

· Reflection

Problem specification involves confirming the exact nature of the problem to be solved, by asking questions of whoever posed the problem that clarify any uncertainties. In the design step, the programmer considers ways of solving the problem using an appropriate model of computation, sometimes making use of early problem solutions, sometimes creating new methods from scratch. This is the most intuitive step, and the hardest, requiring a sound experience of solving many different kinds of problems and also an ability to think laterally and creatively. Once a suitable design has been sketched out, it is translated in the implementation phase into a program - a description of the design of the solution to the problem expressed in an appropriate programming language. The program is entered into the computer using the programming environment, which can be used to support the programmer to find errors (or bugs) in the code, ensuring its correctness. The final phase, denoted here as reflection, involves the programmer looking over his/her creation. This is a particularly crucial step for a novice, as it provides an opportunity to consider how the problem could have been solved differently, and to draw out the learning to be taken from this experience into those in the future.

Why use C#?

A discussion on the choice of programming language to be used in an introductory programming course can keep computer scientists occupied for months. They all have their own particular slant on the issue. There are three particular fulcrums in the discussion – the complexity of the language as it appears to the novice, the deployment of the language out in the world – "will I ever see my first language again?" – and the particular model of computation embodied in the language.

Marketing hype on C# suggests that it "combines the simplicity of Visual Basic with the power and flexibility of C++". Simplicity and power. It is a language that has been designed to solve large-scale problems rather than to facilitate the learning of the programming process. This inevitably means that its complexity will be significant, and to some extent impede the learning process.

C# embodies the object-oriented model of computation, following the choices made by language designers for other recent languages such as C++ and Java. It is generally accepted that the object-oriented model increases the productivity of experienced programmers, because of its impact on large-scale engineering processes. It is not necessarily the easiest initial model to learn, although some of its aspects are very intuitive.

C# has been specifically designed by Microsoft to be the language of choice for writing applications for their new .NET platform. This platform will become a standard upon which programs will be built, much as the MS/DOS-Windows platform has been a standard for program development. The benefit of .NET is that it supports a wide range of application styles on a single platform – for example, standard Windows-style applications, Web-based applications, applications that communicate with databases, applications where the data and processing is distributed on many different machines. It is, therefore, a language that will inevitably be taken up widely in the programming community

C#'s complexity as a first programming language and the slightly increased difficulty of learning the object-oriented model are outweighed by the fact that this model is the most widespread and the likelihood that C# will become a very widely-adopted language. Novices will quickly be able to write interesting and useful programs because of the language's connection to the .NET framework, which inevitably increases enthusiasm for the learning process.

Learning and Teaching on the course

As can be seen from everything so far written, programming is a complex activity, involving at least the following:

· an understanding of a particular model of computation and using it to solve problems

· knowledge of a programming language embodying a known model of computation and an understanding of how it can be used to express solutions to problems

· the use of a programming environment to enter the solution into the computer, to correct any errors, and then to deploy the solution for use

The course will be driven by the introduction of new aspects of the object-oriented model of computation. These are the fundamental building blocks from which everything else is derived.

It is essential to appreciate that the introduction of a new aspect will require the novice to have gained a reasonably thorough grasp of the earlier aspects. Learning to program follows a stepwise learning curve, and missing out some of the steps along the way can seriously affect the learning process.

As far as possible, each new aspect will be introduced independently of other new aspects, to keep the steps on the learning curve as small as possible. When many aspects are introduced at once, it is easy for a learner either to be overwhelmed, or to make inappropriate links between those aspects. In general in programming, each new aspect is related to other aspects, may be used in conjunction with those aspects, but need not be intimately tied to them. An analogy in mathematics would be the introduction of addition and subtraction at the same time with example problems that used both in their solution. This may lead a student to believe that these two aspects of the mathematical toolbox must be used together, whereas this of course is only an option, not a necessity.

Remember also that at the start of this text, it was clearly stated that doing was everything, when learning the skill of programming. You will learn the skill by doing it, again and again. The slides for each Unit largely consist of exercises on how to get on and do it – it is essentially to these that the novice should apply themselves.

That is quite enough discussion of the framework within which any programming novice is embedded. Let us move on to Unit 2 to introduce some of the fundamental concepts of the object-oriented model of computation.

� This is because any language to some extent must satisfy three aspects of computation. First the language must support the storage and manipulation of data; second, it must support the execution of statements – the program must do something; and third, it must support the evaluation of expressions to generate new data from existing data. Particular models of computation make one of these three more apparent to the programmer than the other two, but still, most language will embody all three. Languages using the object-oriented model are complex to learn because novices must also learn the other two aspects early in their training. Procedural and functional languages, embodying a model of computation focussed on each of the other two aspects, can be learned without such a detailed knowledge of the data-centred aspect.

