Introduction to JDBC™

Based on slides by Tony Printezis

Dept of Computing Science
University of Glasgow
17 Lilybank Gardens

Introduction to JDBC™ — p. 1/¢

Introduction to JDBC

a A framework for accessing and manipulating (tabular) data stored in a

relational database
O The APl is independent of

© machine architecture

© database used

© Java virtual machine
O The API is not independent of the database access language

< JDBC relies on SQL (SQL-92)

1 JDBC does not provide totally transparent database access

Introduction to JDBC™ — p. 2/¢

JDBC Architecture

[Client Application
© the application that is accessing the DB
1 Driver
© the “bridge” between the client and the DB
© vendor-specific
© sends the client requests to the server (after possibly some
processing) and presents the results to the client
[DriverManager
© manages the different drivers that can co-exist in the same client
1 Database Server
© the DB engine that supports the application
© located most likely on a different machine than the client

Introduction to JDBC™ — p. 3/%

JDBC Architecture Types (i)

Application /
Java Applet

| JDBC API |
JDBC

[Driver Manager]
Type 4 Type 3
Pure Java Pure Java
JDBC Driver / JDBC Driver

l DB Middleware

DB ‘\\\‘ DB
Server Server,

to JDBC™ — p. 4/%

JDBC Architecture Types (ii)

Application /
Java Applet

| JDBC AP |
JDBC

[Driver Manager]

Type 1 / \ Type 2
JDBC-ODBC Partial Java
Bridge Driver JDBC Driver

| ODBC | | DBClientLib |
| DBClientLib | !
DB / DB
Server Server,

to JDBC™ —p. 5/¢

Write Once, Run Everywhere?

0 As we've seen
© Java is platform independent, and
© JDBC is also platform and database independent
@ Then, it follows
© code that uses JDBC is also platform and database independent,
@ ...Right?
a Well...

© SQL is not totally standardised over all platforms
— lots of vendor-specific features and extensions

& to be JDBC-compliant, a driver should implement the whole of the
ANSI SQL-92 standard

© this does not prevent it to understand vendor-specific extensions
© Jlowest common denomintator (SQL-92) should be re-usable

Introduction to JDBC™ — p. 6/¢

JDBC Versions — JDBC 1.0

[One of the very first defined Java APls
[Simple facilities
© connect to a database via an appropriate driver
— Driver, DriverManager, Connection
© construct SQL statements to query or update the database
— Statement

© retrieve and extract the results
— ResultSet

Introduction to JDBC™ — p. 7/¢

JDBC Versions — JDBC 2.0

0 2.1 is the latest “official” release
O Split into

© Core API

© Optional Package

& Compared to 1.0, the Core API has been extended to include
© scrollable result sets
© batch updates
© performance hints
© support for Unicode characters
o etc.
1 The JDBC Optional Package (or Standard Extension API) includes new

facilities targetted for high-performance, heavy-duty, server-side
applications

Introduction to JDBC™ — p. 8/¢

JDBC Versions — JDBC 3.0

[Currently in draft form (4th draft), under review
© planned to be included in Java 1.4

1 Unifies Core APl and Optional Package and adds more functionality

Introduction to JDBC™ — p. 9/¢

JDBC API

[

JDBC classes/interfaces are included in the java.sqgl package

U

Any errors are indicated by an SQLException

Q For clarity, all try/catch blocks are omitted from most of the code in this
lecture
= This does not mean you do not need to use them!
O You do not need to run on the machine that has the Oracle system on
(i.e. crooked) to use JDBC and access the DB
& you can run the Java applications on any lab machine
© client-server model, remember?

Introduction to JDBC™ — p. 10/¢

Concrete Example

1 The following table will be used to illustrate the basic facilities of JDBC

‘ MID ‘ Title ‘ Year ‘ Explosions
1 | StarWars 1977 | 3,653,543

56 | BladeRunner | 1982 3,203
75 | Aliens 1986 343,400
98 | Junior 1994 0
123 | Pocahontas 1995 0

Introduction to JDBC™ — p. 11/¢

Creating a Database

[Creating a database is not a standard feature of JDBC
1 Some drivers support it, some not

O Typically, the database is created by the database administrator

O This refers to initialising the database structures
© not creating the table. ..

Introduction to JDBC™ — p. 12/¢

Connecting to the Database — Step 1

J step 1: Load the appropriate JDBC driver

© the driver is vendor-specific

© therefore its name is also vendor-specific
[For Oracle in the Dept

Class.forName ("oracle. jdbc.driver.OracleDriver");
(remember to deal with the ClassNotFoundException)

© Your (runtime) cLASSPATH should include
/users/students4/software/ojdbcléd. jar

Introduction to JDBC™ —p. 13/¢

Connecting to the Database — Step 2 (i)

d step 2: Establish the connection
© requires a specific type of URL to find the DB server
© this URL is JDBC and vendor specific
d We establish the connection with the get Connection static method of
the DriverManager class
Connection conn =
DriverManager.getConnection (connectionString);
O It returns an object that implements the Connection interface
© this object represents this particular connection

Introduction to JDBC™ — p. 14/

Connecting to the Database — Step 2 (ii)

[For Oracle in the Dept, connectionString is something like
"jdbc:oracle:thin:" +
USER_NAME + "/" + PASSWD +
"@crooked.dcs.gla.ac.uk:1521:1ev3"

© where USER_NAME and PASSWD are your Oracle user name and
password, NOT the Unix ones!

© the DriverManager will determine from the connection string which
driver to use
— as multiple drivers can be loaded at the same time

[The format of the connection string might be different for other drivers

Introduction to JDBC™ — p. 15/

Creating a Table (i)

O We now want to execute the following SQL statement

CREATE TABLE Movies (
MID INTEGER NOT NULL,
Title VARCHAR(30) NOT NULL,
Year INTEGER NOT NULL,
Explosions INTEGER NOT NULL,
PRIMARY KEY (MID)

)i

that creates the table Movies in the database

Introduction to JDBC™ — p. 16/

Creating a Table (ii)

[First, we need to create a new statement object, associated with the
connection we have already established
Statement stmt = connection.createStatement () ;

[Then, we can execute the statement by invoking the executeUpdate
method (creating a table actually updates the database)

stmt.executeUpdate (
"CREATE TABLE Movies (" +
"MID INTEGER NOT NULL," +
"Title VARCHAR(30) NOT NULL," +
"Year INTEGER NOT NULL," +
"Explosions INTEGER NOT NULL," +
"PRIMARY KEY (MID)" +

Introduction to JDBC™ —p. 17/¢

Executing Updates — Some Notes

0 Depending on the SQL statement used, executeUpdate performs any
update, not only table creation
0 The string containing the SQL statement was broken up for clarity
© it is not necessary to break it up
© it is good practice though as it looks tidier
O Notice that no terminator is included at the end of the statement
© this is vendor-specific
© the JDBC driver deals with it

Introduction to JDBC™ — p. 18/¢

Populating the Table (i)

1 We now want to populate the table with some values

INSERT INTO Movies VALUES

(1, ’"StarWars’, 1977, 3653543);
INSERT INTO Movies VALUES

(56, ’"BladeRunner’, 1982, 3203);
INSERT INTO Movies VALUES

(75, ’'Aliens’, 1986, 343400);
INSERT INTO Movies VALUES

(98, ’"Junior’, 1994, 0);
INSERT INTO Movies VALUES

(123, ’'Pocahontas’, 1995, 0);

Introduction to JDBC™ — p. 19/¢

Populating the Table (ii)

O Again, we can do it in a simple way with executeUpdate

stmt.executeUpdate (
"INSERT INTO Movies VALUES " +
"(1, ’'StarWars’, 1977, 3653543)"
)i
stmt.executeUpdate (
"INSERT INTO Movies VALUES " +
"(56, ’'BladeRunner’, 1982, 3203)"
) i

This is a bit tedious though!

Introduction to JDBC™ — p. 20/

Populating the Table (iii)

1 Why, don’t we create a method to add a movie?

void addMovie (Statement stmt,
int mid, String title,
int year, int explosions) {
stmt.executeUpdate ("INSERT INTO Movies VALUES " +

"(" 4+ mid + ", " +
"rmo+ title + "7, " o+
year + ", " +
explosions + ")");

}

We can then call it after we read user input, iterate over an array, read a
file containing the data, etc.

Introduction to JDBC™ — p. 21/¢

Querying the Table (i)

1 We now want to perform a query on the Movies table
“Which movies have more than 100 explisions?”

O The SQL foritis
SELECT * FROM Movies WHERE Explosions > 100;

O We now need to use executeQuery to perform the query (no updates

this time!)

ResultSet results =
stmt.executeQuery ("SELECT * " +
"FROM Movies " +
"WHERE Explosions > 100");

Introduction to JDBC™ — p. 22/¢

Querying the Table (ii)

1 Notice that executeQuery returns an object that implements the
ResultSet interface

© this contains the results of the query

1 The facilities (methods) that ResultSet provides are quite elaborate
© read the APl documentation!

1 However, a few useful ones are
@ int getInt (String columnName)
© String getString (String columnName)
— return the value of the specified column for the current row in the
specified format
© boolean next ()
— determines whether the result set has another row and, if it does,
it moves to it

Introduction to JDBC™ — p. 23/

Querying the Table (iii)

0 Example usage of ResultsSet

ResultSet results =
stmt.executeQuery ("SELECT * " +
"FROM Movies " +
"WHERE Explosions > 100");
while (results.next()) {
String title = results.getString("Title");
int year = results.getInt("Year");
System.out.println(title + " " + year);

Introduction to JDBC™ — p. 24/

Handling Errors (i)

1 Any JDBC call will throw an sQLException to indicate an error
© these have been omitted until now. ..

[Such exceptions must be caught and dealt with

try {
// do some JDBC calls

} catch (SQLException e) {
e.printStackTrace();
System.exit (-1);

}

...or show the error in a window, in the case of a GUI!

Introduction to JDBC™ — p. 25/¢

Handling Errors (ii)

Connection could not be established
java.sgl.SQLException:
The Network Adapter could not establish the connection
at java.lang.Throwable.fillInStackTrace (Native Method)
at java.lang.Throwable.fillInStackTrace (Compiled Code)

Duplicate primary key
java.sgl.SQLException: ORA-00001:
unique constraint (L32001_TONY.SYS_C00216118) violated
at java.lang.Throwable.fillInStackTrace (Native Method)
at java.lang.Throwable.fillInStackTrace (Compiled Code)

etc.

Introduction to JDBC™ — p. 26/¢

Putting It All Together

static public void main (String args([]) {
try {
Class.forName ("oracle. jdbc.driver.OracleDriver");
} catch (ClassNotFoundException e) { /* deal with it */ }
try {
String connString = "jdbc:oracle:thin:" + USER_NAME +
"/" + PASSWD + "@crooked.dcs.gla.ac.uk:1521:1lev3";
Connection conn = DriverManager.getConnection(connString);
Statement stmt = conn.createStatement();
ResultSet results = stmt.executeQuery ("SELECT * " +
"FROM Movies WHERE Explosions > 100");
while (results.next()) {
String title = results.getString("Title");
int year = results.getInt ("Year");
System.out.println(title + " " + year);
}
} catch (SQLException e) { /* deal with it */ }

Introduction to JDBC™ — p. 27/

More On Statements

O Statements executed with executeUpdate and executeQuery on the
Statement interface are parsed and checked dynamically, e.g.

ResultSet results =
stmt.executeQuery ("SELECT * FROM Movies");

[Every time this will be invoked, the statement will be parsed, checked (for
syntax, consistency, etc.), and executed

 This is why you can generate the SQL string at runtime
int target;
ResultSet results =

stmt.executeQuery ("SELECT * FROM Movies " +
"WHERE Explosions > " + target);

Introduction to JDBC™ — p. 28/%

Prepared Statements

1 Sometimes, we want to perform the same query several times
© parsing and checking complex queries is not very efficient
& why do we need to have to parse them every time?
[d Prepared Statements
© PreparedStatement is a subinterface of Statement
© created with the prepareStatement method on Connection

© the SQL statement is registered with the DB once
— i.e. compiled or prepared by the DB

© then, it can be used without needing to be parsed again

© less dynamic compared to Statement
— after it's been registered, the SQL cannot change

© both updates and queries are supported

Introduction to JDBC™ — p. 29/¢

Using Prepared Statements — Queries

[Using a “standard” statement

Statement stmt = connection.createStatement () ;
ResultSet results = stmt.executeQuery
("SELECT * FROM Movies WHERE Explosions > 100");

0 Using a PreparedStatement

PreparedStatement pstmt = connection.prepareStatement
("SELECT * FROM Movies WHERE Explosions > 100");

ResultSet results = pstmt.executeQuery();

O The two approaches are equivalent
© Statement will be parsed by every executeQuery

© PreparedStatement will be parsed once by prepareStatement
and then only executed by every executeQuery

Introduction to JDBC™ — p. 30/¢

Using Prepared Statements — Updates

1 Same idea as queries

PreparedStatement pstmt = connection.prepareStatement
("INSERT INTO Movies VALUES " +
"(1, ’'StarWars’, 1977, 3653543)");

pstmt.executeUpdate () ;

1 Notice however that executing a prepared statement that always adds the
same row to a database is not particularly useful!

© it would be nice if we could parametarise it. . .

Introduction to JDBC™ — p. 31/¢

Parameterised Prepared Statements (i)

O It turns out that prepared statements can be parameterised
O If you want to introduce “arguments”, introduce a 2 inside the SQL
statement

& before executing the statement you have to explicitly specify what the
values of the “arguments” will be
— i.e. what the 2s should be replaced with
© there are methods on PreparedStatement that do this
— setInt tosetan int argument
— setStringto seta String argument

[You can have more than one ? inside the same statement

Introduction to JDBC™ — p. 32/¢

Parameterised Prepared Statements (ii)

[Let’s revisit the “add a movie to the DB” example

void addMovie (PreparedStatement pstmt,
int mid, String title,
int year, int explosions) {
pstmt.setInt (1, mid);
pstmt.setString (2, title);
pstmt.setInt (3, year);
pstmt.setInt (4, explosions);
pstmt.executeUpdate () ;
}

PreparedStatement pstmt = connection.prepareStatement
("INSERT INTO Movies VALUES (2, 2, 2, 2)");

addMovie (pstmt, 1, "StarWars", 1977, 3653543);

addMovie (pstmt, 56, "BladeRunner", 1982, 3203);

Introduction to JDBC™ — p. 33/¢

Parameterised Prepared Statements (iii)

O Same for queries

PreparedStatement pstmt = conn.prepareStatement
("SELECT * FROM Movies WHERE Explosions > ?");

pstmt.setInt (1, 0);
ResultSet resultsl = pstmt.executeQuery();
// do something with resultsl

pstmt.setInt (1, 5000);
ResultSet results2 = pstmt.executeQuery();
// do something with results2

pstmt.setInt (1, 1000000);
ResultSet results3 = pstmt.executeQuery();
// do something with results3

Introduction to JDBC™ — p. 34/

JDBC Resources on the WWW

4 Sun’s JDBC Homepage
http://java.sun.com/products/jdbc/index.html

a JDBC Overview
http://java.sun.com/products/jdbc/datasheet.html

1 Getting Started with the JDBC API
http://java.sun.com/j2se/1.3/docs/guide/jdbc/getstart/GettingStarted TOC.fm.html

1 JDBC API Documentation
http://java.sun.com/j2se/1.3/docs/guide/jdbc/index.html

[Links to these (and a few other) sites here:
http://www.dcs.gla.ac.uk/tony/teaching/db3

Introduction to JDBC™ — p. 35/

Books

O Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark
Hapner. JDBC™ API Tutorial and Reference, Second Edition. Addison Wesley,
1999. ISBN 0201433281.

0 George Reese. Database Programming with JDBC and Java, 2nd Edition.
O’Reilly, 2000. ISBN 1565926161.

0 Both cover JDBC 2.0. They are not required. But do have a look at them
if you happen to come across them.

Introduction to JDBC™ — p. 36/¢

