
Introduction to JDBC

Based on slides by Tony Printezis

Dept of Computing Science

University of Glasgow

17 Lilybank Gardens

Introduction to JDBC – p. 1/36

Introduction to JDBC

o A framework for accessing and manipulating (tabular) data stored in a

relational database

o The API is independent of

í machine architecture

í database used

í Java virtual machine

o The API is not independent of the database access language

í JDBC relies on SQL (SQL-92)

o JDBC does not provide totally transparent database access

Introduction to JDBC – p. 2/36

JDBC Architecture

o Client Application

í the application that is accessing the DB

o Driver

í the “bridge” between the client and the DB

í vendor-specific

í sends the client requests to the server (after possibly some

processing) and presents the results to the client

o DriverManager

í manages the different drivers that can co-exist in the same client

o Database Server

í the DB engine that supports the application

í located most likely on a different machine than the client

Introduction to JDBC – p. 3/36

JDBC Architecture Types (i)

Type 3Type 4

Application /
Java Applet

DB
Server

Pure Java
JDBC Driver

Pure Java
JDBC Driver

DB Middleware

DB
Server

JDBC
Driver Manager

JDBC API

Introduction to JDBC – p. 4/36

JDBC Architecture Types (ii)

Type 1 Type 2

Application /
Java Applet

DB
Server

DB
Server

JDBC
Driver Manager

JDBC API

ODBC

DB Client Lib

JDBC-ODBC
Bridge Driver

Partial Java
JDBC Driver

DB Client Lib

Introduction to JDBC – p. 5/36

Write Once, Run Everywhere?

o As we’ve seen

í Java is platform independent, and

í JDBC is also platform and database independent

o Then, it follows

í code that uses JDBC is also platform and database independent,

í . . . Right?

o Well. . .

í SQL is not totally standardised over all platforms

– lots of vendor-specific features and extensions

í to be JDBC-compliant, a driver should implement the whole of the

ANSI SQL-92 standard

í this does not prevent it to understand vendor-specific extensions

í lowest common denomintator (SQL-92) should be re-usable

Introduction to JDBC – p. 6/36

JDBC Versions — JDBC 1.0

o One of the very first defined Java APIs

o Simple facilities

í connect to a database via an appropriate driver

– Driver, DriverManager, Connection

í construct SQL statements to query or update the database

– Statement

í retrieve and extract the results

– ResultSet

Introduction to JDBC – p. 7/36

JDBC Versions — JDBC 2.0

o 2.1 is the latest “official” release

o Split into

í Core API

í Optional Package

o Compared to 1.0, the Core API has been extended to include

í scrollable result sets

í batch updates

í performance hints

í support for Unicode characters

í etc.

o The JDBC Optional Package (or Standard Extension API) includes new

facilities targetted for high-performance, heavy-duty, server-side

applications

Introduction to JDBC – p. 8/36

JDBC Versions — JDBC 3.0

o Currently in draft form (4th draft), under review

í planned to be included in Java 1.4

o Unifies Core API and Optional Package and adds more functionality

Introduction to JDBC – p. 9/36

JDBC API

o JDBC classes/interfaces are included in the java.sql package

o Any errors are indicated by an SQLException

o For clarity, all try/catch blocks are omitted from most of the code in this

lecture

í This does not mean you do not need to use them!

o You do not need to run on the machine that has the Oracle system on

(i.e. crooked) to use JDBC and access the DB

í you can run the Java applications on any lab machine

í client-server model, remember?

Introduction to JDBC – p. 10/36

Concrete Example

o The following table will be used to illustrate the basic facilities of JDBC

MID Title Year Explosions

1 StarWars 1977 3,653,543

56 BladeRunner 1982 3,203

75 Aliens 1986 343,400

98 Junior 1994 0

123 Pocahontas 1995 0

Introduction to JDBC – p. 11/36

Creating a Database

o Creating a database is not a standard feature of JDBC

o Some drivers support it, some not

o Typically, the database is created by the database administrator

o This refers to initialising the database structures

í not creating the table. . .

Introduction to JDBC – p. 12/36

Connecting to the Database — Step 1

o Step 1: Load the appropriate JDBC driver

í the driver is vendor-specific

í therefore its name is also vendor-specific

o For Oracle in the Dept

Class.forName("oracle.jdbc.driver.OracleDriver");

(remember to deal with the ClassNotFoundException)

í Your (runtime) CLASSPATH should include

/users/students4/software/ojdbc14.jar

Introduction to JDBC – p. 13/36

Connecting to the Database — Step 2 (i)

o Step 2: Establish the connection

í requires a specific type of URL to find the DB server

í this URL is JDBC and vendor specific

o We establish the connection with the getConnection static method of

the DriverManager class

Connection conn =

DriverManager.getConnection(connectionString);

o It returns an object that implements the Connection interface

í this object represents this particular connection

Introduction to JDBC – p. 14/36

Connecting to the Database — Step 2 (ii)

o For Oracle in the Dept, connectionString is something like

"jdbc:oracle:thin:" +

USER_NAME + "/" + PASSWD +

"@crooked.dcs.gla.ac.uk:1521:lev3"

í where USER_NAME and PASSWD are your Oracle user name and

password, NOT the Unix ones!

í the DriverManager will determine from the connection string which

driver to use

– as multiple drivers can be loaded at the same time

o The format of the connection string might be different for other drivers

Introduction to JDBC – p. 15/36

Creating a Table (i)

o We now want to execute the following SQL statement

CREATE TABLE Movies (

MID INTEGER NOT NULL,

Title VARCHAR(30) NOT NULL,

Year INTEGER NOT NULL,

Explosions INTEGER NOT NULL,

PRIMARY KEY (MID)

);

that creates the table Movies in the database

Introduction to JDBC – p. 16/36

Creating a Table (ii)

o First, we need to create a new Statement object, associated with the

connection we have already established

Statement stmt = connection.createStatement();

o Then, we can execute the statement by invoking the executeUpdate

method (creating a table actually updates the database)

stmt.executeUpdate(

"CREATE TABLE Movies (" +

"MID INTEGER NOT NULL," +

"Title VARCHAR(30) NOT NULL," +

"Year INTEGER NOT NULL," +

"Explosions INTEGER NOT NULL," +

"PRIMARY KEY (MID)" +

")"

);

Introduction to JDBC – p. 17/36

Executing Updates — Some Notes

o Depending on the SQL statement used, executeUpdate performs any

update, not only table creation

o The string containing the SQL statement was broken up for clarity

í it is not necessary to break it up

í it is good practice though as it looks tidier

o Notice that no terminator is included at the end of the statement

í this is vendor-specific

í the JDBC driver deals with it

Introduction to JDBC – p. 18/36

Populating the Table (i)

o We now want to populate the table with some values

INSERT INTO Movies VALUES

(1, ’StarWars’, 1977, 3653543);

INSERT INTO Movies VALUES

(56, ’BladeRunner’, 1982, 3203);

INSERT INTO Movies VALUES

(75, ’Aliens’, 1986, 343400);

INSERT INTO Movies VALUES

(98, ’Junior’, 1994, 0);

INSERT INTO Movies VALUES

(123, ’Pocahontas’, 1995, 0);

Introduction to JDBC – p. 19/36

Populating the Table (ii)

o Again, we can do it in a simple way with executeUpdate

stmt.executeUpdate(

"INSERT INTO Movies VALUES " +

"(1, ’StarWars’, 1977, 3653543)"

);

stmt.executeUpdate(

"INSERT INTO Movies VALUES " +

"(56, ’BladeRunner’, 1982, 3203)"

);

...

This is a bit tedious though!

Introduction to JDBC – p. 20/36

Populating the Table (iii)

o Why, don’t we create a method to add a movie?

void addMovie(Statement stmt,

int mid, String title,

int year, int explosions) {

stmt.executeUpdate("INSERT INTO Movies VALUES " +

"(" + mid + ", " +

"’" + title + "’, " +

year + ", " +

explosions + ")");

}

We can then call it after we read user input, iterate over an array, read a

file containing the data, etc.

Introduction to JDBC – p. 21/36

Querying the Table (i)

o We now want to perform a query on the Movies table

“Which movies have more than 100 explisions?”

o The SQL for it is

SELECT * FROM Movies WHERE Explosions > 100;

o We now need to use executeQuery to perform the query (no updates

this time!)

ResultSet results =

stmt.executeQuery("SELECT * " +

"FROM Movies " +

"WHERE Explosions > 100");

Introduction to JDBC – p. 22/36

Querying the Table (ii)

o Notice that executeQuery returns an object that implements the

ResultSet interface

í this contains the results of the query

o The facilities (methods) that ResultSet provides are quite elaborate

í read the API documentation!

o However, a few useful ones are

í int getInt (String columnName)

í String getString (String columnName)

– return the value of the specified column for the current row in the

specified format

í boolean next ()

– determines whether the result set has another row and, if it does,

it moves to it

Introduction to JDBC – p. 23/36

Querying the Table (iii)

o Example usage of ResultSet

ResultSet results =

stmt.executeQuery("SELECT * " +

"FROM Movies " +

"WHERE Explosions > 100");

while (results.next()) {

String title = results.getString("Title");

int year = results.getInt("Year");

System.out.println(title + " " + year);

}

Introduction to JDBC – p. 24/36

Handling Errors (i)

o Any JDBC call will throw an SQLException to indicate an error

í these have been omitted until now. . .

o Such exceptions must be caught and dealt with

try {

// do some JDBC calls

} catch (SQLException e) {

e.printStackTrace();

System.exit(-1);

}

. . . or show the error in a window, in the case of a GUI!

Introduction to JDBC – p. 25/36

Handling Errors (ii)

Connection could not be established

java.sql.SQLException:

The Network Adapter could not establish the connection

at java.lang.Throwable.fillInStackTrace(Native Method)

at java.lang.Throwable.fillInStackTrace(Compiled Code)

...

Duplicate primary key

java.sql.SQLException: ORA-00001:

unique constraint (L32001_TONY.SYS_C00216118) violated

at java.lang.Throwable.fillInStackTrace(Native Method)

at java.lang.Throwable.fillInStackTrace(Compiled Code)

...

etc.

Introduction to JDBC – p. 26/36

Putting It All Together

static public void main (String args[]) {

try {

Class.forName("oracle.jdbc.driver.OracleDriver");

} catch (ClassNotFoundException e) { /* deal with it */ }

try {

String connString = "jdbc:oracle:thin:" + USER_NAME +

"/" + PASSWD + "@crooked.dcs.gla.ac.uk:1521:lev3";

Connection conn = DriverManager.getConnection(connString);

Statement stmt = conn.createStatement();

ResultSet results = stmt.executeQuery("SELECT * " +

"FROM Movies WHERE Explosions > 100");

while (results.next()) {

String title = results.getString("Title");

int year = results.getInt("Year");

System.out.println(title + " " + year);

}

} catch (SQLException e) { /* deal with it */ }

}
Introduction to JDBC – p. 27/36

More On Statements

o Statements executed with executeUpdate and executeQuery on the

Statement interface are parsed and checked dynamically, e.g.

ResultSet results =

stmt.executeQuery("SELECT * FROM Movies");

o Every time this will be invoked, the statement will be parsed, checked (for

syntax, consistency, etc.), and executed

o This is why you can generate the SQL string at runtime

int target;

...

ResultSet results =

stmt.executeQuery("SELECT * FROM Movies " +

"WHERE Explosions > " + target);

Introduction to JDBC – p. 28/36

Prepared Statements

o Sometimes, we want to perform the same query several times

í parsing and checking complex queries is not very efficient

í why do we need to have to parse them every time?

o Prepared Statements

í PreparedStatement is a subinterface of Statement

í created with the prepareStatement method on Connection

í the SQL statement is registered with the DB once

– i.e. compiled or prepared by the DB

í then, it can be used without needing to be parsed again

í less dynamic compared to Statement

– after it’s been registered, the SQL cannot change

í both updates and queries are supported

Introduction to JDBC – p. 29/36

Using Prepared Statements — Queries

o Using a “standard” Statement

Statement stmt = connection.createStatement();

ResultSet results = stmt.executeQuery

("SELECT * FROM Movies WHERE Explosions > 100");

o Using a PreparedStatement

PreparedStatement pstmt = connection.prepareStatement

("SELECT * FROM Movies WHERE Explosions > 100");

...

ResultSet results = pstmt.executeQuery();

o The two approaches are equivalent

í Statement will be parsed by every executeQuery

í PreparedStatement will be parsed once by prepareStatement

and then only executed by every executeQuery

Introduction to JDBC – p. 30/36

Using Prepared Statements — Updates

o Same idea as queries

PreparedStatement pstmt = connection.prepareStatement

("INSERT INTO Movies VALUES " +

"(1, ’StarWars’, 1977, 3653543)");

...

pstmt.executeUpdate();

o Notice however that executing a prepared statement that always adds the

same row to a database is not particularly useful!

í it would be nice if we could parametarise it. . .

Introduction to JDBC – p. 31/36

Parameterised Prepared Statements (i)

o It turns out that prepared statements can be parameterised

o If you want to introduce “arguments”, introduce a ? inside the SQL

statement

í before executing the statement you have to explicitly specify what the

values of the “arguments” will be

– i.e. what the ?s should be replaced with

í there are methods on PreparedStatement that do this

– setInt to set an int argument

– setString to set a String argument

– . . .

o You can have more than one ? inside the same statement

Introduction to JDBC – p. 32/36

Parameterised Prepared Statements (ii)

o Let’s revisit the “add a movie to the DB” example

void addMovie(PreparedStatement pstmt,

int mid, String title,

int year, int explosions) {

pstmt.setInt(1, mid);

pstmt.setString(2, title);

pstmt.setInt(3, year);

pstmt.setInt(4, explosions);

pstmt.executeUpdate();

}

...

PreparedStatement pstmt = connection.prepareStatement

("INSERT INTO Movies VALUES (?, ?, ?, ?)");

addMovie(pstmt, 1, "StarWars", 1977, 3653543);

addMovie(pstmt, 56, "BladeRunner", 1982, 3203);

...

Introduction to JDBC – p. 33/36

Parameterised Prepared Statements (iii)

o Same for queries

PreparedStatement pstmt = conn.prepareStatement

("SELECT * FROM Movies WHERE Explosions > ?");

pstmt.setInt(1, 0);

ResultSet results1 = pstmt.executeQuery();

// do something with results1

pstmt.setInt(1, 5000);

ResultSet results2 = pstmt.executeQuery();

// do something with results2

pstmt.setInt(1, 1000000);

ResultSet results3 = pstmt.executeQuery();

// do something with results3

Introduction to JDBC – p. 34/36

JDBC Resources on the WWW

o Sun’s JDBC Homepage

http://java.sun.com/products/jdbc/index.html

o JDBC Overview

http://java.sun.com/products/jdbc/datasheet.html

o Getting Started with the JDBC API

http://java.sun.com/j2se/1.3/docs/guide/jdbc/getstart/GettingStartedTOC.fm.html

o JDBC API Documentation

http://java.sun.com/j2se/1.3/docs/guide/jdbc/index.html

o Links to these (and a few other) sites here:

http://www.dcs.gla.ac.uk/˜tony/teaching/db3

Introduction to JDBC – p. 35/36

Books

o Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark

Hapner. JDBC API Tutorial and Reference, Second Edition. Addison Wesley,

1999. ISBN 0201433281.

o George Reese. Database Programming with JDBC and Java, 2nd Edition.

O’Reilly, 2000. ISBN 1565926161.

o Both cover JDBC 2.0. They are not required. But do have a look at them

if you happen to come across them.

Introduction to JDBC – p. 36/36

