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ABSTRACT
A novel interaction style is presented, allowing in-pocket mu-
sic selection by tapping a song’s rhythm on a device’s touch-
screen or body. We introduce the use of rhythmic queries
for music retrieval, employing a trained generative model to
improve query recognition. We identify rhythm as a funda-
mental feature of music which can be reproduced easily by
listeners, making it an effective and simple interaction tech-
nique for retrieving music. We observe that users vary in
which instruments they entrain with and our work is the first
to model such variability. An experiment was performed,
showing that after training the generative model, retrieval per-
formance improved two-fold. All rhythmic queries returned a
highly ranked result with the trained generative model, com-
pared with 47% using existing methods. We conclude that
generative models of subjective user queries can yield signif-
icant performance gains for music retrieval and enable novel
interaction techniques such as rhythmic filtering.
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INTRODUCTION
Interaction with music was previously as simple as turning
the dial of a radio or selecting the desired music CD. With
music libraries now digital, mobile and of increasingly large
scales, listeners are often confronted with hierarchical menus
or must type in a query to retrieve their desired music. In mo-
bile music-listening contexts users instead often simply give
up control and randomly shuffle their music e.g. using an
iPod shuffle [18]. We identify a need for casual mobile inter-
action with music, with users able to assert control over their
music listening experience when they need to without having
to divert their full attention to their device.
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Figure 1. Users are able to select music without taking their device out
of their pocket by simply tapping a rhythm or tempo on the device –
allowing for casual eyes-free music interaction.

We present a novel interaction style using rhythmic input for
sorting music, supported by a Bayesian approach to modeling
the user’s music-listening intent. An initial study is described
with findings about the subjective way in which users anno-
tate musical rhythm. We describe methods for interpreting
rhythmic queries and identifying relevant musical works, and
also detail a generative model for rhythmic queries which can
be trained to specific users. Experimental results are given
demonstrating the benefit of the use of a trained generative
model over existing onset detection approaches. Feedback
from participants was generally positive and included a sug-
gested use case for in-pocket interaction.

Our approach involves a Bayesian combination of evidence
about the user’s intended song from the rhythmic pattern and
tempo of their query. The system orders the music collection
according to the inferred belief about the user’s intent, pre-
senting the intended song and other songs with similar tempo
or rhythmic properties. The approach outlined sets a founda-
tion for incorporating additional sources of evidence.

As a demonstrator for the techniques discussed in this paper,
we present a mobile phone interface for searching music by
tapping the music’s rhythm or general tempo onto the device,
detected by accelerometer, as depicted in figure 1. This sys-
tem allows for a casual style of music interaction, allowing
the user to assert control over their mobile music player with-
out needing to remove it from their pocket.



MOTIVATION
Tapping the rhythm of a song onto a mobile device does not
require the full attention of the user, indeed it does not even
require the user to look at the screen or remove the device
from their pocket. The case for such casual music interaction
is outlined, along with a consideration of musical rhythm as
a universal music feature.

Casual Music Interaction
In mobile music listening contexts, users are often unable to
micro-manage their music listening experience. As in [17],
we consider the interaction from a control-theory perspective,
with casual interactions not requiring the user to engage in
a tight control loop. When listening to music whilst walk-
ing for example, users would have to stop to enter a tightly-
coupled interaction with a touchscreen device to select the
next track. Instead, mobile music listening devices offer a
random shuffle feature, allowing users to give up control and
enjoy a serendipitous listening experience [12]. By allowing
users to casually provide evidence about their music listen-
ing intent, they can be empowered to influence their music
listening experience without suffering undue distraction.

Rhythm as Input Modality
Rhythm is a fundamental feature of music – more important
for comprehending musical sequences than the absolute posi-
tioning of events in the time domain [24] and one which lis-
teners can easily reproduce [4]. Perhaps surprisingly, rhythm
is a greater factor for people when they assess the similarity
of musical patterns than pitch [15]. Exploiting this predispo-
sition to tapping rhythm as a form of music retrieval would
allow for music selection on a device with very limited sens-
ing ability – a microphone, button or single capacitive sensor
would suffice.

Recent work has enabled capacitive sensors to detect touch
input through fabric, supporting gestural input including
drawn letters [20]. Whilst such an input modality could sup-
port explicitly ‘typing’ a music query, it would require users
to engage in a more tightly-coupled interaction loop than with
rhythmic querying i.e. having to think of an exact track and
spelling it rather than casually tapping a beat. Tapping input
can now also be detected via headphones [13] making it an
ideal input for mobile music-listening contexts. Minimising
the technological footprint of an interaction in this way not
only lowers cost but also frees designers from the encumber-
ance of integrating displays, keyboards etc.

Cultural Aspects
Our goal is not only to allow users to sort their music by tap-
ping a rhythm. We seek to show that modelling the variance
in how users represent music can improve a system’s ability
to understand users’ queries. How users query for music is
subjective and culturally dependent [11] with no one interac-
tion style suitable for all. We envision a style of music inter-
action where users can combine a variety of querying styles
to refine their search through a music collection. Of partic-
ular interest is that while common music filtering techniques
such as genre classification are culturally specific, the use and

cognition of rhythm is universal across cultures [4]. This po-
sitions our work as a cross-cultural style of music interaction
– a theme we explore in our evaluation.

BACKGROUND & RELATED WORK
We consider the existing efforts to implement a system of re-
trieving music by tapping a song’s rhythm and also recent de-
velopments in the detection of the music event onsets which
underpin any such system.

Query by Tapping
The retrieval of a musical work by tapping its rhythm is a
problem which has received some consideration in the Mu-
sic Information Retrieval community and is termed ‘Query
by Tapping’ (QBT). The term was introduced in [7] which
demonstrated that rhythm alone can be used to retrieve musi-
cal works, with their system yielding a top 10 ranking for the
desired result 51% of the time. Their work is limited how-
ever in considering only monophonic rhythms i.e. the rhythm
from only one instrument, as opposed to being polyphonic
and comprising of multiple instruments. Their music corpus
consists of MIDI representations of tunes such as ”You are my
sunshine” which is hardly analogous to real world retrieval of
popular music.

Rhythmic interaction has been recognised in HCI [10, 25]
with [5] introducing rhythmic queries as a replacement for
hot-keys. In [2] tempo is used as a rhythmic input for explor-
ing a music collection – indicating that users enjoyed such a
method of interaction. The consideration of human factors is
also an emerging trend in Music Information Retrieval [22].
Our work draws upon both these themes, being the first QBT
system to adapt to users. A number of key techniques for
QBT are introduced in [6] which describes rhythm as a se-
quence of time intervals between notes – termed inter-onset
intervals (IOIs). They identify the need for such intervals to
be defined relative to each other to avoid the user having to ex-
actly recreate the music’s tempo. A major limitation of prior
QBT systems is that they do not support music data which is
polyphonic (comprises of multiple voices/instruments). Such
systems use one rhythmic sequence as being the de facto
rhythm for a musical work, requiring that all users tap a mu-
sical rhythm in the same way.

In previous implementations of QBT, each IOI is defined rel-
ative to the preceding one [6]. This sequential dependency
compounds user errors in reproducing a rhythm, as an erro-
neous IOI value will also distort the following one. The ap-
proach to rhythmic interaction in [5] however used k-means
clustering to classify taps and IOIs into three classes based on
duration. The clustering based approach avoids the sequen-
tial error however loses a great deal of detail in the rhythmic
query and so we explore a hybrid approach in this note.

Onset Detection
In order to compare user queries against a music library,
we must compute the intervals (IOIs) between the rhythmic
events within the music. Onset detection is the task of finding
such events and has been studied at length within the field of
Music Information Retrieval.



Figure 2. Music playlist initially sorted alphabetically (left) and after a
query for an upbeat hard rock song “Any Way You Want it” (right)

An evaluation of onset detection algorithms in [1] showed
the most precise onset detection method reviewed was their
variant of the ‘spectral flux’ technique introduced by [14]
which measures how quickly the power spectrum of a sig-
nal is changing. They also discuss the benefits of adaptive
whitening introduced in [23] which adaptively normalises fre-
quency bands’ magnitudes to improve onset detection in mu-
sic with highly varying dynamics, such as the rock music used
in this work. We use these onset detection techniques to up-
date the existing work on query by tapping to a state of the art
implementation. This is then used as a baseline to which we
compare our use of user query models with polyphonic data.

INTERACTION TECHNIQUE
It is common when interacting with music systems to be pre-
sented with a list of music, perhaps as a playlist which is
played sequentially. We propose that rhythmic queries can
be used to infer a belief over such a music space about which
songs a user wishes to listen to. In this work we develop a
complete interaction which allows a user to ‘shake up’ a list
of music by tapping a rhythm on their device, with the music
then being sorted by rhythmic and tactus similarity. The user
can then play through a playlist arranged by these features
or proceed to select their intended song. Such an interaction
highlights the flexibility of rhythmic queries, allowing users
to find songs of a given tempo or with certain rhythmic prop-
erties or to simply select a specific song. We implement a
demonstrator system and evaluate it with Singaporean users,
demonstrating its viability and cross-cultural application, as
well as addressing some issues inherent to Query by Tapping.

Exposing System Belief & Uncertainty
Displaying a ranked list of songs would lose some of the in-
formation about the user’s interest which the system has in-
ferred. For example several songs may have a very similar
level of belief held about them and this would not be commu-
nicated by simply displaying a sorted list. By exposing the
uncertainty in the interaction, we expect users will be better
able to understand the state of the system and produce the
most discriminative queries.

Figure 3. Participants entered rhythmic queries via the touchscreen of a
Nokia N9 mobile phone.

To better expose the beliefs held by the system, we scale the
size of each list entry by this belief. If one song alone is a
particularly strong candidate then it will be much larger than
the other entries. Similarly, where there is uncertainty across
a number of songs, these will be a similar size – making the
user aware of the uncertainty within the interaction. This ap-
proach incorporates the uncertainty in the output as well as
the input of the system and can be applied generally, for ex-
ample distorting a music map based on the beliefs or scaling
words in a word cloud of the music.

INITIAL STUDY
We conducted an initial study to explore the feasibility of mu-
sic filtering using rhythmic queries. 10 European participants
were invited to produce rhythmic queries of songs which they
selected from a corpus of 1000 songs. The corpus was col-
lected from the participants’ own MP3 music collections and
was the same for all participants, with IOIs obtained using
the state-of-the-art onset detection techniques discussed pre-
viously. The rhythmic queries were entered by the partici-
pant tapping on the touchscreen of a Nokia N9 which had
been configured to log the time intervals between taps. A
query comparison was also performed using the techniques
described later in this paper. For this initial study, the phone
screen was blank and users were instructed to select a song
and then “tap the rhythm of the song on the touchscreen, in
order to select that piece of music.”

Observations
As an initial sanity check, queries produced by multiple users
for the same song were compared against each other. Surpris-
ingly, little similarity was identified for a large number of the
songs. In discussions with users, it became apparent that a va-
riety of strategies were employed when annotating the rhythm
of a piece of music. In particular, users identified particular
instruments which they would entrain with – annotating those
instruments’ onset events when available. Also, not all users
were as verbose when producing the queries, with some users
using fewer taps than others to represent the same rhythm in
a piece of music. A depiction of how two users sample from
the available instrument onsets is given in figure 4.
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Figure 4. Users construct queries by sampling from preferred instruments. User 1 prefers Vocals and Guitar whereas User 2 prefers Drums and Bass.

The queries were compared against the entire corpus and a
belief about the user’s intent for each song was inferred. It
was expected that rhythmic queries would at the very least
improve the belief about the target song. An additional metric
is to rank the songs in terms of this belief, with the intended
song ideally ranking first. In this case only 68% of the queries
collected led to an increase in belief about the target song,
indicating that the corpus entries for the remaining 32% did
not match the users’ queries. This reinforces the observation
that users do not annotate rhythm in the same way as each
other, or indeed as the onset detection algorithm.

Discussion
The observations made in this initial study indicate that music
retrieval using rhythmic queries is much more complex than
originally estimated. In particular, there is a need for learning
user-specific habits in producing rhythmic queries. The con-
versations with users provided some insight into how their
tapping strategy may be modelled, with their affinities for the
various instruments and their verbosity identified as impor-
tant features. Instrument affinity can be captured as a list of
the available instruments, ordered in terms of priority. Users
switched instruments when their preferred instrument became
available. User verbosity is more difficult to model, in the
next section we turn to music literature to identify ‘referent
level’ as a means of capturing the user’s degree of verbosity.

The work in this paper explores the use of these features to
construct a generative model of a user’s queries, addressing
the variance between user query production and allowing in-
put queries to be predicted and matched. An alternative ap-
proach however would be to provide instruction or feedback
to the user about how to tap rhythmic queries in a way which
the system understands.

INTERPRETING RHYTHMIC QUERIES
The task of interpreting a rhythmic query has been broken
up here into two steps – identifying a reference beat (tactus)
for the query and then defining the rhythm relative to this
beat. We must take this approach of defining rhythmic events
relative to each other as users cannot accurately reproduce
the absolute timing of music. We introduce a third step which
allows the use of the tactus as additional noisier evidence.

Tactus
The way in which people process rhythm has been proposed
by [4] to be universal across cultures, in that we hear an IOI
as being relative to a previous IOI according to simple ratios.

Complex rhythms are thus distorted into distinct categories
of IOIs, each defined relative to each other. Crucially, the
absolute timing values and thus the tempo are not of interest,
only the pattern of relative IOIs encode the rhythm. In order
to represent the relative IOIs that make up this pattern, we
need to first identify the lowest common denominator of the
intervals. Such a common unit is termed the ‘tactus’ and is
estimated here by taking the autocorrelation of the histogram
of IOI categories, giving a unit in which they can be defined.

For controlled non-musical rhythms, [5] used k-means clus-
tering to identify long and short interval clusters. As we ex-
pect users to generate IOIs by sampling from distributions
around an unknown number of IOI categories, we identify
the categories by fitting a Gaussian Mixture Model selected
using the Bayes Information Criterion. An example of such
clustering can be seen in figure 5. Whilst the autocorrelation
could be performed on the histogram of raw IOI values, we
have found using the clustered values to be more robust.

Figure 5. Histogram of IOIs in a rhythmic query, showing the clustering
around categories of IOI values. Note that the mean of each category is
double the previous, e.g. 170, 340, 680mS giving a tactus of 170mS.

Rhythmic String Matching
As rhythm is comprehended categorically, each interval is
classified to an IOI category i.e. multiple of the tactus. These
categories are assigned labels ‘A’, ‘B’ etc. We thus encode the
rhythmic query as a string of category labels. For example,
an interval double the length of the tactus would be classified
as ‘B’. An example query is depicted in figure 6, showing the
mapping from interval to string character.



Figure 6. A rhythmic query depicted with alternately coloured intervals.
The mapping between interval duration and string characters is shown.

The problem of matching rhythm can now be generalised to
string matching, for which many efficient algorithms exist.
As in [6], the Smith-Waterman local alignment algorithm is
used as this is able to match a query against any part of a song.
Similarly, the algorithm was adapted to scale the penalty with
the mismatch error. An advantage of our approach over that in
[6] is that no thresholds are required with the mismatch error
being proportional to the difference between normalised IOIs:

EIOI ∝ (IOIquery − IOIsong)

A further feature of the Smith-Waterman algorithm is that
it was developed to allow for gaps in sequences, in order
to match spliced DNA sequences [21]. This feature is also
useful in QBT, as sections of a song in which the generative
model fails to correspond to the user’s query will simply be
considered as a gap and given a limited penalty. The cost
function of the string matching algorithm can assign a differ-
ent score S for matched, missing or incorrect IOIs. A param-
eter G weights the penalty for a gap, such that a gap is equiv-
alent to G IOI mismatches. In this work we take G = 2, as-
suming that if a query has two consecutive mismatched IOIs
then the query is no longer conforming to the model at that
point. The penalty scores are calculated as follows:

Smatch = 1

Smismatch = −abs(IOIA − IOIB)

Sgap = −G× Smatch

The algorithm constructs an nquery×msong matrix H (as in fig-
ure 7) where n is query length and m is the target sequence
length. If the strings were identical then the diagonal of the
matrix would identify each matching character pair, thus di-
agonal movements incur no penalty. In the example shown,
one sequence has an ‘A’ removed (the downward step) to give
a better match and thus a penalty is deducted from the score.

Penalties are assigned when the other movements are required
in order to create a match, with a back-tracking process used
at the end to find the (sub)path with the least penalty. This
process allows for the best matching subsequences to be iden-
tified – in this work, a query matched against a larger song.

Tactus as a Feature
Previous work on QBT defines the rhythm irrespective of
tempo (or tactus), as is done here. It has been shown however
that tempo can be a useful feature in browsing a music col-
lection [2]. We propose that tactus (being related to tempo)
should be used as an additional feature to weight the rank-
ing of rhythmic queries. The weighting given to this feature

H =



C C B D C B C
B 0 0 10 0 0 10 0
C 10 10 0 0 10 0 20
C 10 20 0 0 10 0 10
B 0 0 30 10 0 20 0
D 0 0 10 40 20 0 10
A 0 0 0 20 20 10 0
C 10 10 0 0 30 10 20
B 0 0 20 0 10 40 20
C 10 10 0 10 10 20 50


Figure 7. The Smith-Waterman algorithm compares a query against a
target sequence, matching ‘CCBD-CBC’.

could additionally be adapted to each user though that is not
explored in this work. We defined the tactus error function
logarithmically such that halving a duration was equivalent
to doubling it:

ESB =

(
log2

(
SBQuery

SBSong

))2

The tactus error is used as a prior over the music space when
performing the rhythmic string comparison, biasing the re-
sults to those with similar tactus values. This helps discern
amongst songs which are temporally very different but which
share a similar rhythmic pattern. Where users only wish to
listen to a particular style of music or cannot recall the rhythm
of a song, they can simply tap a query at a desired tempo. If
the rhythmic events are equally spaced (as in a metronome)
then only the tactus is used to discriminate amongst the songs.

It is worthwhile to note that tactus is not necessarily the
inverse of tempo. Tempo is often calculated as ‘beats per
minute’, with an average value acquired across all the rhyth-
mic events. It follows from this that the measured tempo
would be highly dependent upon the section of song used
to produce a query. Tactus however is the base unit which
all the rhythmic events are multiples of and should be more
stable throughout a piece of music. This distinction is only
of interest from a technical perspective and generally, tactus
is inversely proportional to tempo. In this paper and in dis-
cussions with users, we use the term tempo for the sake of
convenience.

GENERATIVE MODEL
Rhythmic queries for a given song can vary greatly between
subjects though are typically consistent within subjects. In
order to build a database against which rhythmic queries can
be matched, a generative model is required which can account
for this variability. The use of the generative model encodes
the knowledge about user behaviour obtained from the ini-
tial study. In essence, the model is designed to answer the
question “What would the user do?” to achieve an outcome
(selecting a target song). Training the model to users can be
done by setting a fixed outcome and asking users to provide
the input they would provide to achieve that outcome. The
inference of the user’s intended music is conditioned entirely
upon the model and so should inherently improve as the gen-
erative model is improved or trained.



Figure 8. The generative model samples onset events from multiple in-
strument streams, producing a single output sequence.

Instrument Affinity
Music which is polyphonic will have a sequence of notes for
each instrument and thus a sequence of IOIs for each in-
strument. As observed in the initial study, users typically
switch between instruments as they feature in the music. This
switching behaviour follows the user’s preference of instru-
ments to tap to. We have termed this set of preferences for
instruments the affinity vector Aff which ranks the available
instruments in terms of the user’s affinity. The generative
model uses Aff to switch to a preferred instrument’s IOI se-
quence as those instruments feature. The behaviour of this
model can be considered as a finite state transducer with a
state for each instrument, sampling from the instrument se-
quence corresponding to the current state, as in figure 8.

Users are able anticipate notes and will not switch to an-
other instrument state if their preferred instrument sequence
will shortly resume, this look-ahead behaviour is also imple-
mented in the generative model. The model samples notes
up to 500mS in advance and stores them in a look-ahead
buffer, only when the buffer is empty does the state change
to the next available in the affinity vector. Whenever a note
event occurs for an instrument with a greater affinity, the
model immediately changes state. A simplifying assumption
is made that the model is entirely deterministic, a probabilis-
tic approach to switching may better model user behaviour
but would add a great deal of complexity.

Referent Period
As music is highly structured, rhythm can be thought of as a
hierarchy, where a note on one level could be split into multi-
ple notes on a lower level. Individuals have a referent period
i.e. a tempo at which information processing is natural to
them and are likely to synchronize at a level in the hierarchy
closest to their referent period. It has been shown that musical
training and acculturation result in higher referent levels [3].
Modeling such variables allows for optimized rhythm match-
ing. In order to model the differing referent periods of users,
a music corpus must contain onset data for several levels of
rhythmic complexity. The appropriate level is selected when
training the generative model, though varies between songs.

INFERRING USER INTENT
The task of ranking songs based on some rhythmic evidence
can be seen as an inference task and not only as a traditional
retrieval task. Previous work in information retrieval has in-
troduced the use of query models to encode knowledge about
how a user produces a query [9]. Our work is similar in the
use of a generative model as a query likelihood model. When
producing a rhythmic query, the user uses their internal query
model ~Mu. They then produce a query using this model,
which is matched against the music corpus. The problem can
thus be expressed using Bayes’ theorem:

p
(
dj |q, ~Mu

)
=

p
(
q |dj , ~Mu

)
p
(
dj | ~Mu

)
p
(
q | ~Mu

)
That is, we can infer a belief about the intended song condi-
tioned upon the query q by computing the likelihood of the
query being produced for each song dj in the music space.

The prior p
(
dj | ~Mu

)
should be non-informative, currently

there is no evidence that music listening intent is directly con-
ditioned upon the user’s query model for tapping to music. In
order to perform the above inference we must train the gen-
erative model of user queries ~Mu. As described earlier, for
training we take a fixed outcome (i.e. selecting a target song
dt) and ask users to provide a suitable query q so as to achieve
that outcome. We then infer a belief about which generative
model parameters were used to construct the query:

p
(
~Mu |q, dt

)
=

p
(
q |dt, ~Mu

)
p
(
~Mu |dt

)
p (q |dt)

In this work the prior p
(
~Mu |dt

)
is uninformative however it

is probable that the user’s approach to tapping music is con-
ditioned upon the particular song to some extent. In wider
use where a large corpus of queries has been collected, we
could compute a prior belief about the tapping model used
for a given song. This should improve the inference of the
user’s general tapping model. For the work here we train the
model for a given song and a given participant to account for
this however also look at training across songs for a subset of
participants.

Query Likelihood Function
In order to infer a belief about whether a user is interested in
a given song, we must compute the likelihood p

(
q |dj , ~Mu

)
of their query conditioned upon their wanting that song and
the user’s query model. We use the string matching function
to compare user queries with those in the database and assign
beliefs to songs accordingly. The more edits that are required
to match the query to the stored song sequence, the lower
the estimated likelihood of that query for that song. As we
are only interested in ranking the songs, we do not need to
compute the marginals.



EVALUATION
To evaluate the performance difference due to the various
query likelihood models discussed in this paper, a within-
subjects experiment was performed. The use of the query
likelihood models was controlled as a factor with three levels:
Baseline (onset detection), Untrained GM (polyphonic data
with generative model) and Trained GM (polyphonic data
with trained generative model). Given the parameters of the
generative model, the target space against which queries are
matched is greater than in the baseline case. For the baseline,
there is one possible sequence for each of the 300 songs. The
model has four instrument sequences for each song, sampled
using the generative model with 96 possible parameter per-
mutations, yielding a target song space of 28, 800 sequences.

Experimental Setup
A corpus of MIDI and MP3 music data was acquired from
popular rhythm games, featuring note onset times (from
which we compute IOIs) for each instrument in 300 rock and
pop songs. Whilst the size of this corpus was limited by our
source of data, it does reflect real-world usage – [8] gives it
as the median music file collection size in Germany. Partici-
pants selected at least two songs from the corpus and listened
to them to ensure familiarity. They were then asked to pro-
duce at least three rhythmic queries for each song by tapping
a section of the song’s rhythm on the touchscreen of a Nokia
N9 mobile phone. No feedback was provided to the partic-
ipant after each query. The queries were used to train the
generative model using leave-one-out cross-validation. Par-
ticipants were provided with a set of headphones to control
background noise as a factor,

Quantitative data was captured in the form of rank results,
with songs ranked according to the inferred belief. Qualita-
tive data was captured during a discussion with participants
where they were asked to comment on the style of interac-
tion presented and whether they found it enjoyable and/or
useful. Eight unpaid British participants volunteered, four fe-
male, four male, ages 18 – 72 (mean: 30). Half of the partic-
ipants were university students and one a retiree. Participants
were instructed to ”tap the rhythm of the song on the touch-
screen, in order to select that piece of music.” No limit was
made on the length of the queries. The participants were not
musicians, otherwise musical background was not controlled.

Rhythmic queries were captured using a Nokia N9, running
software developed in QML and C++ using the Qt frame-
work. Our variant of the Smith-Waterman algorithm was im-
plemented in C. We chose to infer a belief over the model
parameters rather than use the Maxmimum Likelihood Esti-
mate as our goal was for the target song to always be in the
on-screen (top 20) rankings, rather than optimising for the
highest possible rankings at the cost of some queries failing.

Results
The two measures of interest are how rapidly a user can fil-
ter their music collection and the probability distribution of
achieving a rank position in the results. Query performance
typically improves with query length as seen in figure 9.
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Figure 9. Percentage of queries yielding a highly ranked result (in the
top 20 i.e. 6.7%) plotted against query length in seconds.

Higher rankings are achieved for all query lengths when us-
ing the trained generative model. Queries with lengths of ap-
proaching 10 seconds always yielded an on-screen result (in
the 8.5% of the corpus). Up to this point the recognition rate
improves with query length, as the additional information is
incorporated. A key feature of the results is that queries over
10 seconds lead to a rapid fall-off in performance.

A general linear model repeated measures ANOVA showed
that mean rank score differed statistically with the training of
the generative model (F (2, 48) = 9, 31, P < 0.001). A pair-
wise comparison was performed, showing a statistically sig-
nificant mean improvement of the trained generative model
over the other two query likelihood models (P < .001).
Notably, the improvement of the untrained generative model
over the the baseline monophonic model was not statistically
significant (P = .279). A comparison of performance using
the three query models can be seen in figure 10, showing dis-
tributions of result rankings of the queries’ target songs. Four
users provided queries for additional songs. In these cases
the model could be trained on the queries for the other songs
however performance fell, yielding a top 20 result only 70%
of the time.

Participants said they enjoyed using QBT as an interaction
style, often choosing to continue the interaction beyond the
requirements of the experiment. The experiment was viewed
as a game, with half of the participants requesting further at-
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Figure 10. Box plots of retrieval ranks using the query models.



tempts to improve their results. One participant identified in-
pocket music selection as an interesting use case. Another
expressed concern about the scalability of using rhythmic
queries for especially large music libraries. All the partici-
pants immediately grasped the concept of query by tapping
and were able to readily produce rhythmic queries. Notably,
one participant claimed to only tap to one instrument.

Focus Group
An exploration of the application concept was conducted us-
ing a prototype demonstrator with a small focus group of five
Singaporean participants – four female, one male. The par-
ticpants all used mobile media players and were aged 26 –
59 (mean: 40). They also spoke and listened to music in
Chinese and English, giving a view of how the system per-
forms cross-culturally. The demonstrator was presented to
them and they were able to interact freely with it, an informal
conversation followed to capture their impressions. Each par-
ticipant was asked to compare the interaction with their usual
way of listening to music in a mobile context, to consider the
‘in-pocket’ use case, whether they would feel comfortable us-
ing the interaction style in public and whether the interaction
style was suitable to the music they listened to.

The discussions with participants identified that they all often
listened to music using the ‘shuffle’ feature of their phones
or music players, occasionally using the menu interface to se-
lect particular music. The use of rhythm to shuffle music was
well received as a superior option to random shuffle, with P3
noting that random shuffle can lead to inappropriate music se-
lections at night and that shuffling by tempo could avoid this.
Participants were very positive about the in-pocket use case,
with P1 saying that it “means I can select music when it’s
raining” and P2 saying that “it can be hard to take my phone
out to change song because I have small pockets.” P3 and P4
noted that fear of theft sometimes prevented them from re-
moving their phone to select music. Social acceptability of
the interaction is important as the use-case for in-pocket mu-
sic selection includes being in mobile public contexts. None
of the users indicated an issue with tapping rhythms on the
phone on the bus (P5 likened it to drumming on your lap).

Participants also offered up some concerns about the interac-
tion technique. P2 doubted their ability to produce rhythmic
queries for all their music despite doing well with the demo,
citing their lack of musical knowledge. They appreciated the
inclusion of the tempo-only sorting ability to mitigate this. P5
pointed out that the ‘intensity’ of their taps is an overlooked
feature of rhythm and expected it would be interpreted.

DISCUSSION
The results show that accounting for subjectivity in users’
rhythmic queries greatly improves retrieval performance de-
spite increasing the target space. Whilst validity was shown
for average music collections, scalability is a concern, with
larger music libraries requiring additional sources of evidence
for effective retrieval. A further concern is the drop-off in per-
formance for large rhythmic queries, possibly due to the user
having a limited section of music in mind when they begin
producing a rhythmic query.

Improving the System
Our results suggest that performance for ours and existing
techniques may be greater if query length is limited. Fur-
ther improvements for the generative model should also allow
for participants who tap one instrument exclusively. Training
across songs for a subset of users showed a fall in perfor-
mance for some songs, indicating that tapping style varies
with song as well as with user. As we discuss previously,
the prior belief of tapping style for particular songs could be
learned after acquiring a large amount of queries across users.

Users
As expected, participants stated they used shuffle frequently
– the ubiquity of shuffle is noted in [18] and attributed to
the popularity of the iPod shuffle MP3 player. Similarly,
users felt comfortable with the interaction technique – pre-
vious work has shown that users feel comfortable producing
rhythmic and tapping gestures in public [19]. Of great in-
terest is that all of the participants felt the interaction suited
both their English and Chinese music, we noted before that
existing techniques such as browsing by genre are culturally
specific and so this is a key advantage of this interaction style.

Limitations
While we have demonstrated the benefits of the techniques
presented, much work remains in studying rhythmic query-
ing as an interaction technique. The evaluations here aim to
validate the use of the generative model. A wider study could
provide further insight into rhythmic querying behaviour –
already we have identified additional features to incorporate
such as tap intensity, single-instrument annotation and song-
specific tapping strategies. A key limitation of our work is
that the training and validation queries are acquired in the
same session - a longitudinal study may show that users’
rhythmic querying behaviour changes over time. Overall, we
show that QBT can be greatly improved with the use of a
trained generative model and is an interaction technique wor-
thy of much further exploration.

Incorporating Subjectivity
It could be argued that one would of course expect better re-
sults from the use of ground-truth polyphonic music data than
from the use of detected onset events. The untrained genera-
tive model provides an example of this, showing an apparent
though non-significant improvement over the baseline (onset
detection). After training the generative model, the improve-
ment in retrieval performance is dramatic. It is not surpris-
ing that incorporating knowledge about the user improves the
performance of the system. The use of a generative model
does not in itself yield much of an improvement however
it provides a mechanism by which one can incorporate the
prior knowledge about the user. It is only when we address
the issue of subjectivity in how users produce their queries
that significant performance increases are seen. We addressed
subjectivity through the use of a simple model based on ini-
tial discussions with users, it is likely that far more powerful
models could be constructed. That this interaction style is
only made usable by addressing the user’s subjectivity in ex-
pressing their rhythmic query is a key outcome of this work.



Scalability
The techniques employed aimed to ensure a top 20 (onscreen)
result (as shown in the quantitative results) to avoid the issue
of failed queries. That users were unsure of their ability to
achieve this level of performance indicates that further work
could be done to improve users’ confidence during the inter-
action, for example with real-time feedback. It is to be ex-
pected that as the size of the music collection is increased,
retrieval performance using rhythmic queries will fall. We
have shown this style of interaction to be valid for an average
music collection of 300 songs. Performance is far greater as
collection size is reduced, with queries yielding first ranked
results 65% of the time when the collection is halved to 150
songs. Our Bayesian approach allows for this issue of scal-
ability to be addressed through the introduction of additional
sources of evidence. For example a different interaction style
would use sung queries – providing pitch, rhythm and tactus
as evidence. Such an interaction would also benefit from the
user query modelling approach introduced here. Other evi-
dence sources could include the dynamics of the tap events,
for example a ‘strumming’ action could denote guitar events.

Rather than implement a simple retrieval of a musical work
by tapping its rhythm, we were able to re-order an entire col-
lection of music according to the rhythm and tempo evidence.
This means that for this or larger collections, the drop-off in
retrieval performance is acceptable as the user is still able to
assert control over their music collection, ordering it accord-
ing to the evidence they provide. The queried song could even
just be a landmark track, which the user selects to indicate the
type of music they want. At the very least, the user can shuffle
their music by tempo and rhythmic similarity. The intended
song need only be ranked in the top 20 results displayed on-
screen, with the user then able to select the song easily.

Query Performance
A surprising result is the sharp drop-off in retrieval perfor-
mance with query length. One might expect that as more evi-
dence is introduced, retrieval performance would increase, in-
deed such a relationship is seen in queries up to 10s in length.
It is unlikely that users recall the entirety of a song in advance
of producing a rhythmic query – instead they would select a
memorable or distinctive passage of the music. The drop-off
in performance could reflect that users have continued beyond
the salient part of the music they had in mind. This issue
could be addressed by limiting the length of rhythmic queries
or by providing real-time visual or haptic feedback to the user
so that they entrain with the song as it begins playing. This
result has wider implications for rhythmic interaction (for ex-
ample in the use of rhythmic ‘hot-keys’ in [5]) in that it indi-
cates an upper length for rhythmic patterns. More generally,
this result could suggest that any music content based query-
ing technique such as humming or singing may also suffer
from falling performance for queries over ten seconds. It is
worth noting that whilst mean rank result improves with the
use of the generative model and with training, the most signif-
icant change is in the ‘long tail’ of poor results. In the initial
study we saw that around two thirds of elicited queries had
some match to the music data. The use of a generative model
allows for the retrieval of the remaining third of queries which

suffer from subjectivity. Our work not only improves mean
query performance but also makes for a more consistent user
experience, cutting off the long tail of poor results caused by
subjectivity in query production.

Combining Evidence
An advantage of taking this Bayesian approach to sorting the
music space is that we can combine evidence in the form of
a prior over the music space. In this paper we use this to in-
corporate the tactus as an additional source of evidence, hav-
ing previously separated the rhythmic pattern from the tactus.
There are many other sources of evidence about listening in-
tent which could be taken as a prior belief over the music
space, for example the user’s listening history for the music
tracks. A further benefit is in being able to introduce a hyper-
prior i.e. a belief about the distribution of some hyperparame-
ter of the prior. In our case this allows us to avoid over-fitting
our belief about the user’s query model based on a limited
number of training cases. We infer a belief about which query
model is used with a uniform hyperprior, to ensure that the
inferred belief is not too concentrated upon one model. This
reduces the ranking of good queries however has the effect
of improving the recall of queries where the learned model
is not the best match. A trade-off must be struck with this
uncertainty acting as something of a twiddle-factor, though
in real-world usage it would not be required due to the avail-
ability of more training data.

FURTHER CHALLENGES
This work has implications for future research in interaction
with music, demonstrating a need for considering user vari-
ance. We aim to demonstrate the utility of generative models
of user queries for inferring user intent in a range of music
querying interaction styles. Having identified the benefits of
improving consensus with the user with a trained model, there
is an opportunity for further study in using feedback to train
users towards a consensus. The rhythmic matching algorithm
could be improved further through the use of music theory,
for example where a whole note is replaced by four quar-
ter notes, the penalty should be very little. Applying such
techniques in similar efforts in matching pitch in melodies
led to the Mongeau-Sankoff algorithm [16] and eventually
to services such as Shazam and SoundHound. Such work
combined with improvements in onset detection could allow
robust commercial applications of rhythmic music retrieval.
Given that users can recall a great number of musical works
and the results shown here, future research could build upon
this work to use musical rhythm for interaction tasks other
than just the retrieval of music e.g. tapping a rhythm on a
phone in-pocket to dial a corresponding contact when using a
bluetooth headset.

CONCLUSIONS
The interaction technique presented in this work enables users
to enjoy a casual style of music retrieval – empowering them
to interact with their music in new contexts such as in-pocket
music selection. By shuffling the music playlist by the rhyth-
mic query, users can provide uncertain queries about a type
of song or query for a particular song without having to recall
its title etc.



We show that existing state-of-the-art techniques for rhythmic
querying perform poorly for real music with multiple instru-
ments. We improve upon previous efforts by using trained
user query models to sample from polyphonic music data.
These user models allowed for a dramatic improvement in
retrieval performance, with the intended song always appear-
ing in the top ranked results. This work highlighted the issues
caused by subjective music queries and developed a person-
alisable music retrieval system. We have developed a novel
technique that is not only effective in the sorting or retrieval
of music but also introduces an enjoyable game-like element
to music retrieval. Users enjoyed using the system in trials,
often asking to continue use beyond the experimental require-
ments in order to attempt to improve their ranking. In partic-
ular we highlight that users were able to generate rhythmic
queries from their subjective interpretation and memory of
music rather than using a memorised rhythmic pattern. Re-
moving the need for memorisation in this way has applica-
tions beyond music retrieval, for example the work on rhyth-
mic hot-keys could benefit from the presented approach.

The techniques developed here achieve our goal of casual in-
pocket music control with users able to see the benefit of the
interaction style and identify use cases relevant to them. Per-
sonalised rhythmic querying is an effective and enjoyable in-
teraction technique. Using a generative model of subjective
queries has taken rhythmic music retrieval from a concept
with potential to a usable interaction style. By understand-
ing how users query for music and encoding this knowledge
as a generative model, we present an interaction technique
which ensures the right song is only ever a few taps away.
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