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Executive Summary: The initial UK government strategy of

a timed intervention as a means of combating Covid-19 is

in stark contrast to policies adopted in many other countries

which have embraced more severe social distancing policies.

Our objective in this report is to enunciate the differences

between these policies and to suggest modified policies, for

post lock-down, that may allow management of Covid-19,

while at the same time enabling some degree of reduced social

and economic activity. The suggested polices can also be used

to augment and compliment other post lock-down strategies to

provide additional levels of robustness in the post lock-down

period.

Disclaimer : Our results are based on elementary SIR, SIQR

and SIDARTHE models. We are also not epidemiologists.

More extensive validation is absolutely necessary on ac-

curate Covid-19 models. Our intention is simply to make

the community aware of such policies. All the authors are

available for discussion via email addresses or by contacting

the corresponding author R. Shorten.

Change-log : Version 2: edited to include some of the

related literature. Also mitigation strategy is further verified

on a recent Italian model [1]. All results presented here are

qualitatively consistent with this model.

Version 3: more refined numerical results are now included

using hybrid systems integration solver [2].

Version 4: More extensive report with: (i) detailed simulations;

(ii) description of outer loop; and (iii) sensitivity analyses.
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I. Background

Presently, governments worldwide are struggling to contain

the Covid-19 epidemic. Most countries, such as Italy, China,

USA, Germany and France, have adopted severe social

distancing policies, which amount to a total lock-down of

their populations, in an attempt to combat the virus [4]. In

contrast, other governments have attempted to control the

effect of the virus through timed interventions [3]. We call

the first policy, the lock-down policy (LDP), and the second

policy, the timed intervention policy1 (TIP).

Roughly speaking, the LDP attempts to stop the virus in

its track, and in doing so, buys society some time to find

effective mitigation strategies such as a vaccine, or to build

healthcare capability. While such measures are likely to be

effective in reducing the spread of the virus (c.f. China)

they do come at a heavy economic cost. For example, in

India in the first two weeks of lock-down it is estimated

that 100 Million people got unemployed and in the first two

days of lock-down in Ireland, it is estimated that 140,000

people were made redundant (approx 6% of the workforce).2

These statistics are likely to become more grim, and may be

followed by even more severe economic consequences, as

personal/mortgage loan defaults emerge, which may spread to

the banking sector. Despite these costs, the LDP makes sense

if we are able to utilise the time gained to develop a vaccine

for the general population. On the other hand, if we are

unable to develop a vaccine quickly, this policy gives no clear

exit strategy from the current crisis, and the virus may simply

re-emerge once the policy of strict social distancing is relaxed.

The TIP can be considered as a demand-management policy.

The key consideration here is the capacity of the healthcare

system to absorb and treat new illnesses that arise as a

result of Covid-19. As interventions such as social distancing

place difficult burdens on society, the argument is that these

1https://www.technologyreview.com/s/615375/what-is-herd-immunity-and-
can-it-stop-the-coronavirus/

2https://www.irishpost.com/news/140000-people-ireland-lose-jobs-due-
coronavirus-crisis-forcing-businesses-close-181717

http://arxiv.org/submit/3124504/pdf
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interventions must be timed for maximum benefit to the

healthcare system by reducing the number of infected people

to a manageable level. The difficulty with this approach is

timing. Intervene too early, and one simply shifts the peak

of ill people to a later date, whereas too late an intervention

will not limit the peak of infections at all. The issue of

timing is exacerbated by the virus (apparently) having up to

a 14-day incubation period3, as well as an initial exponential

growth rate. Thus, the problem of observing the true state of

the epidemic, in the face of exponential growth, makes the

effectiveness of this policy very sensitive to the timing of

intervention.

Our suggestion in this note, as in [5], is to use multi-shot

interventions to manage the epidemic, once the current lock-

down policies have brought the epidemic under control. The

principle is to allow some level of social interaction, followed

by social distancing. This, as suggested in the recent report by

a team at Imperial College [5], is in fact the basis of TIPs. The

policy suggested therein is developed from the perspective of

intermittent social distancing policies with a view to manage

the amount of infected people at a given time, so that the

healthcare system is able to cope. A consequence of this

policy, which is based on measurements from the healthcare

system, is to control the spread of the virus at a rate to

ensure a level of infected at any time is below the healthcare

capacity. In this note, but in contrast to [5], we argue that

open-loop interventions over very short time-scales, rather

than interventions based on measurements over long time-

scales, may also be good as a strategy. We also propose

an outer supervisory control loop that takes explicitly into

account the significant delays inherent in the measurements to

enhance – at a slow rate – the switching characteristics of the

open-loop intervention policy. This is not only to control the

number of infections, but to also suppress the virus at a lower

cost to society. The possible advantages of this approach are

that, as an exit from the current lock-down strategy, a multi-

shot policy may allow some level of economic activity, as well

as reducing the sensitivity to the timing of interventions and

mitigating the risk of a new wave of the epidemic.

II. Modelling and Control of the Covid-19

Disease: Overview

A. Epidemiological Models

While time series analysis for modelling infectious diseases

has a long history [16], it was only in the first half of the last

century [15] that compartmental models were first proposed to

describe the relationships between susceptible, infected, and

recovered people in a population. Accurate epidemiological

models are fundamental to take measures to mitigate the

effects of a disease. For example, the predictive ability of a

model can be used for better planning of health services [17],

and to compare the expected impact of different mitigation

interventions, including non-pharmaceutical interventions

such as wearing masks and social distancing, or full isolation

3https://www.healthline.com/health/coronavirus-incubation-period

of positive cases (e.g., quarantines).

The SIR model [8] is the classic model that is widely

adopted to describe epidemiological dynamics in a well-

mixed population (see, for example [3], [4], [9]):

dS
dt = −βSIN

dI
dt

=
βSI
N − γI

dR
dt

= γI.

(1)

In this model S, I , and R denote the aforementioned suscep-

tible, infected, and recovered people in a total population of

N individuals. All quantities vary in time, but for simplicity

of notation the dependency on time has been dropped in

the previous equations (and the time dependency will not be

written explicitly in the remainder of the section either). Note

that at any instant in time one individual can only belong to

one of such three classes, as at any time instant S+I+R = N .

Finally, note that R may be interpreted as the number of

resistant people as well, as they are supposed to have acquired

immunity after recovering from the disease [4], which is

usually true for most epidemics. The parameter β represents

the rate of effective contacts between infected and susceptible

individuals, and γ represents the disease-specific rate at which

infected individuals recover. An important quantity character-

ising an epidemic is the basic reproduction number, defined

as R0 = β/γ [3].

B. SIR-like Models

Many variants have been derived from the original SIR

model, to capture peculiar aspects of specific diseases. Some

interesting generalisations include the following.

• Forced SIR Models, where the contact rate β is

assumed to be a time-varying quantity that is affected

by a seasonal forcing term that takes into account the

seasonally changing contact rates in recurrent epidemics

[18].

• SEIR Models, where a further class of exposed people

is added to the states of the SIR model to take into

account that fact that in some cases the infected people

may become infectious only after a latent period of time.

• SIQR Models, where a further class of people who are

in quarantine is added to the three classes of the SIR

model [11];

• Meta Population Models, where the population is

sub-divided into sub-populations [3], to take into account

that the spreading of the disease will in general be

different in sub-populations that may correspond to

people of different ages, or to people living in different

areas where the homogeneous assumption of SIR-like

https://www.healthline.com/health/coronavirus-incubation-period
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models does not hold.

The SIQR model appears to be particularly convenient for

modelling the Covid-19 disease [9], as it has the advantage

of considering infectious people and those who are in

quarantine. This is convenient because it models the fact

that many governments, including the Italian one, are forcing

individuals tested positive (positive individuals) to self-isolate

from the community, and also because it distinguishes

between the infectious people who do self-isolate, and/or

those who do not (mostly likely because they have not

developed the symptoms of the disease and are not aware of

actually being infectious). For this reason, we now provide in

more detail the equations underlying an SIQR model:

dS
dt

= −βSIN

dI
dt

=
βSI
N − (α+ η)I

dQ
dt

= ηI − δQ

dR
dt

= δQ+ αI.

(2)

In this SIQR model, the I state actually includes positive

individuals who will never develop symptoms; positive

individuals who have not developed symptoms yet; and

positive individuals who have symptoms, but have not been

tested positive and isolated (i.e., they may believe that they

are experiencing flu-like symptoms) [9]. The parameters in (2)

have the same meaning as the classic SIR model, i.e., α + η
playing the role of γ in (1). In addition, we have parameter δ,

whose inverse δ−1 can be estimated considering the average

number of days after which isolated and hospitalized patients

recover or die (in both cases, they are assumed to pass to the

R state).

Finally, we conclude this section by noting one further

SIR-like model, which has been introduced with the purpose

to describe the specific behaviour of the COVID-19 model.

This is called the SIDARTHE model [1], and it is convenient

as it introduces a large number of classes to partition the

infected people according to the degree of severity of their

symptoms. In particular, eight states are identified that

correspond to: ‘S’, the susceptible people as usual; ‘I’, the

asymptomatic undetected infected people; ‘D’, the diagnosed

people, corresponding to asymptomatic detected cases;

‘A’, the ailing people, corresponding to the symptomatic

undetected cases; ‘R’, the recognized people, corresponding

to the symptomatic detected cases; ‘T’, the threatened people,

corresponding to the detected cases with life-threatening

symptoms; ‘H’, the healed people; and the ‘E’, the extinct

or dead people. Obviously, this model is more detailed than

the previous ones, and it takes into account that, for instance,

the transition from the ‘infected’ state to a ‘recovered’ state

depends on the severity of the infection. Also, this model is

convenient as not all states of an SIR model may be regarded

as observable, or in other words, directly measurable. For

instance, it may be simpler to quantify the number of

recovered people with life-threatening symptoms, than the

number of overall infected people, that actually includes

asymptomatic cases as well.

The eight ordinary differential equations of a SIDARTHE

dynamical system are reported below (from [1]. Note that

parameter names have been adapted for consistency with the

previously introduced models):

dS
dt = −βSN · (σ1I + σ2D + σ3A+ σ4R)

dI
dt =

βS
N · (σ1I + σ2D + σ3A+ σ4R)− (σ5 + σ6 + σ7) I

dD
dt

= σ5I − (σ8 + σ9)D

dA
dt

= σ6I − (σ10 + σ11 + σ12)A

dR
dt

= σ8D + σ10A− (σ13 + σ14)R

dT
dt

= σ11A+ σ13R− (σ15 + σ16)T

dH
dt

= σ7I + σ9D + σ12A+ σ14R + σ15T

dE
dt

= σ16T.
(3)

The interpretation of the parameters is as follows (from [1]):

• Parameters σ1, σ2, σ3 and σ4 denote the transmission

rate from the susceptible state to any of the four infected

states;

• Parameters σ5 and σ10 denote the rate of detection of

asymptomatic and mildly symptomatic cases;

• Parameters σ6 and σ8 denote the probability rate with

which (asymptomatic and symptomatic) infected subjects

develop clinically relevant symptoms;

• Parameters σ11 and σ13 denote the probability rate

with which (undetected and detected) infected subjects

develop life-threatening symptoms;

• Parameter σ16 denotes the mortality rate for people who

have already developed life-threatening symptoms;

• Parameters σ7, σ9, σ12, σ14 and σ15 denote the rate

of recovery for the five classes of infected subjects

(including those in life-threatening conditions).

In the remainder of the report we shall describe results

obtained using these models. As expected, qualitatively similar

results have been obtained in general, since all SIR-like models

contain, at their core, the same SIR dynamics.
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C. Tuning of the COVID-19 Parameters

The COVID-19 outbreak has given rise to an unprecedented

world-wide epidemic in terms of cases of infections and

deaths. Consequently, research communities all over the

world have joined efforts to improve the mathematical

modelling of the disease, as a means to investigate and

compare possible countermeasures. Here we briefly discuss

some of the challenges in estimating the model parameters:

• Undetected cases: Since a consistent number of

cases is asymptomatic, it is very hard to estimate the

correct number of infected people, especially in the

initial phase of the outbreak when Covid-19 test kits

were very few in number limiting meaningful disease

surveillance. For instance, it is estimated in [19] that

during the initial spread of the virus in China (in the

period 10-23 January, 2020), 86% of the infections went

undocumented and that of these 55% were contagious.

While such number can be reduced with different

sampling and testing strategies, recalibrated models for

the Italian case similarly estimate a number of 40− 50%
of non-diagnosed infected individuals ([1], [9]). Such

numbers may be even higher should the findings of [23]

be confirmed.

• Time-varying parameters: Models are usually

calibrated under the assumption that parameters are

constant in time (at least for a significant number of

days). Obviously, most parameters actually change in

time due to changes in the environment such as changes

in human behaviour (e.g., washing hands frequently and

wearing protective masks), and evolutions of the disease.

Clearly, parameters are expected to change even more

dramatically when total lock-down measures are taken.

• Geographical differences: While similar patterns of

the evolution of infected people have been observed in

different countries, possibly with some delays, models

calibrated upon data from one country cannot be used

as-is for other countries. This is also true even within

countries, from one region to another [10].

• Heterogeneity of the population: Demographic aspects

(e.g., the density of the population, see for instance the

particular case of the Diamond Princess Ship [20]), age

of the population, and to a lesser extent other factors like

religion, ethnicity or socio-economic status are known

to also have an impact on the spreading of a disease [3].

• Time delays: While many quantities may be measurable,

it should be noted that often they can only be measured

with systemic delays (for instance, an infected individual

takes some time before eventually showing symptoms;

then it takes some time before he/she gets tested; plus

a further few hours before a diagnosis is received [4]).

This is a critical aspect to consider any time a control

action is designed on the basis of a measured quantity.

While qualitative analyses can provide an intuitive under-

standing and notionally predict the evolution of an epidemic,

particular care is required when making quantitative predic-

tions as estimates of parameters are inherently uncertain. One

approach to dealing with this uncertainty is via sensitivity

analyses, whereby effects of changes in estimated parameters

on dependent variables of interest are investigated. Bayesian

inference is a principled approach to quantify uncertainty by

estimating posterior distributions over model parameters from

prior knowlegde and observed data. This has been applied to

infer the impact of non-medical interventions onR0 and deaths

avoided through interventions, and for sensitivity analysis with

respect to subsets of the data and prior assumptions [23].

D. Control and Mitigation Actions

In most countries, governments have gradually increased

measures to limit social mixing to abate the course of

the epidemic. Basic measures include maintaining a safe

distance from other people, frequent washing of hands, and

encouraging other general behaviours (e.g., not touching

ones own face, or how to properly sneeze or cough). As the

epidemic progressed governments have started taking more

severe measures (often in a gradual fashion), which include

closing schools and universities, restaurants and bars/pubs,

theaters and cinemas, and eventually forcing a lock-down.

While lock-downs themselves have been implemented in

different ways in different countries, and sometimes with a

different level of social compliance, the lock-down policies

appear to be the most effective and heavily implemented

worldwide. For example, the authors in [22] conclude that

in some plausible scenarios, case isolation alone would be

unlikely to control transmission within 3 months. Yet China

appears to show that isolation of infected populations can

contain the epidemic [21] within such a time-scale.

There is general agreement that a lock-down phase is

necessary to abate the number of infected people to negligible

values. However, as soon as normal activities are restored,

there is a significant risk of a new wave of the epidemic.

Thus, several exit strategies are being discussed as a means

to allowing economic activity after an initial period of

lock-down. Roughly speaking, these can be classified as

follows.

(i) Data driven intermittent lock-downs: Some authors

have suggested using feedback to trigger lock-down and

release-from-lock-down interventions [5]. As we have

suggested, the use of feedback in the context of Covid-19

is potentially problematic due to the speed at which the

virus grows, and measurement delays. In addition, such

policies are likely to be highly localised, meaning that

policies would be implemented non-uniformly across

geographic areas, and thus be non-trivial to implement.

(ii) Contact tracing with/without testing: Contact tracing,

however interesting an option, is also not without
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flaws. Apart from the obvious ethical, privacy and

technical challenges (Bluetooth reliability, GPS errors,

data management, scalability issues), other issues arise,

including that large demographic groups may not find

it easy to access this technology, and thus would act as

un-observables in any nationwide strategy. For example,

over 70’s have limited access to smart-phones in many

countries. Furthermore, asymptomatic Covid-19 carriers

would also be difficult to detect. Finally, contact tracing

is also open to cyber-physical attacks that can, in this

case, be very-harmful to society.

(iii) One-shot interventions: One-shot interventions have

also been discussed in [3]. Such interventions are also

problematic as any optimal strategy would require the

number of infectious in society to be large. Such policies

would not cope with localised disease dynamics and

demographic heterogeneity.

(iv) Population scheduling: Another approach is to split

the population into a number of bins, and for members

of these bins to take turns in lock-down. Apart from

the complexities of organising society around such a

strategy, significant cross-bin leakage is likely, due to

social interactions in households.

(v) Immunity passports: Finally, some governments suggest

the use of immunity passports to identify and bestow

rights on citizens who are immune to the disease. Again,

such policies are problematic. Apart from stratifying

society, they are open to being exploited, and may in fact

encourage individuals in financial need to deliberately

contract the virus.

We are interested in developing multi-shot epidemic inter-

ventions, as an alternative, or perhaps more likely, to com-

plement to the above strategies, and as a generalisation of

the one-shot interventions previously described. Our objective

is to demonstrate that after an initial lock-down period, a

frequently alternating sequence of lock-down and working

days is expected to provide positive results in terms of overall

expected infected people, while at the same time mitigating

the huge economic impact of the epidemic. It should be noted

that such an idea is not totally new, for instance [5] had

already investigated the impact of an ‘ON’-‘OFF’ triggered

quarantine policy (i.e., where quarantine is enforced when then

number of cases gets above a given threshold) in terms of the

overall number of infected people (i.e., summing the number

of infections at every open window of time). However, the

frequency was on average very low (i.e., months) and driven

by a feedback signal. Other switched, and more specifically,

open-loop periodic strategies have been suggested in the

context of other epidemics. In particular, periodic vaccination

is suggested in [12], and periodic quarantines for combating

computer worms, and viral epidemics, are suggested in [13],

[14], [26]. Note however, that most of the research findings in

these papers appear to relate to impulsive strategies; namely,

states of the viral dynamics are reset periodically to reflect

the effect of an intervention policy. In contrast, our approach

differs in that we assume to have limited or no room for

intervention on the people that are already infected. Our

policy consists of adjusting the infection rate of the disease

by introducing a periodic suppression based on switching

between the transmission rates of lock-down and not-lock-

down. Notwithstanding this difference, we believe these works

are closely related to our approach and may be consistent with

the hypothesis that fast periodic switching may be useful, and

consequently that such a policy may be a viable exit strategy

to the current lock-down situation.

III. The Fast Periodic Switching Policy (FPSP)

The strategy proposed in [5] – and advocated in this document

– gives rise to what is known as a switched system [6]. In

the proposed strategy, we simply switch between allowing

society to return to normality and accept virus to spread slowly,

and enforced strict social isolation. Switched systems have

been studied extensively since the mid-1990’s and give rise to

many interesting phenomena. Among these, it is well known

that the choice of switching strategy fundamentally affects the

behaviour of the system being influenced by the switching, and

that sometimes – rather counter-intuitively – fast switching

can be better than slow switching. More specifically, in the

language of switching systems, the policy suggested in [5]

is a slow switching strategy based upon a feedback signal

(here hospitalised patients), and in fact resembles closely

the multiple-Lyapunov function ideas developed by Michael

Branicky [7] in the late 1990’s. Furthermore, as we have

already mentioned, control of systems growing exponentially

fast with large time delays is very difficult. Our suggestion, on

the other hand, is to use an open-loop fast switching strategy

to control and suppress the growth of the virus in society.

In this policy, we simply allow society to function as normal

forX days, followed by social isolation of Y days. This is then

repeated (hence the periodic nature of the switching policy).

As we shall see, policies for which X and Y are small, can

be developed for which the virus is suppressed rapidly, and

for which the peak level of infections is (relatively) low. To

understand the effect of this policy in terms of the SIR and

SIQR models described in Section II, the effect of the open-

loop FPSP policy is to adjust the parameter β in accordance

to the policy adopted:

β =







β+ during inactive lock-down

(society functioning as normal)

β− during lock-down and social isolation

(4)

where β+ and β− are values corresponding to each situation,

as described in Section II. Figure 1 shows a possible FPSP

instance characterised by a period T = 7 days and a duty-

cycle D = 28.6%.

IV. Illustrative Simulations

In this section, we present some simulations of the proposed

FPSP policy applied to the SIQR and SIDARTHE models
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day
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XXX YYY

Fig. 1: Example of a FPSP policy with T = 7 days and D =
28.6%.

described in Section II. The parameters for the different sets

of equations can be found in Table I (for a full discussion

on these models and their parameters, please refer to [1] and

[9]). For all models, the starting number of susceptibles and

infected and the total population are chosen as (S(0), I(0)) =
(N − ε, ε), with ε = 83.333, while the initial conditions for

all the other state variables are set to 0. Moreover all the

simulations follow the pattern below:

• Phase 1: The virus spreads with no containment

attempts. This happens for t < 20 days and in this phase

β = β+.

• Phase 2: A strict lock-down is enforced to contain the

spread of the virus. This can be considered analogous

to the policies that some European governments are

enforcing at the moment. We assume that the value β+

switches to the value β− = qβ+ with q = 0.15 in the

SIQR model, and q = 0.175 in the SIDARTHE model.

This happens for 20 ≤ t < 50 days.

• Phase 3: Once the number of infected people has

decreased, the FPSP policy is enforced. This happens

for t ≥ 50 days.

Different simulations are obtained for different values of the

period and the duty cycle. In particular, each FPSP is identified

by a specific pair (X,Y ). The period of a (X,Y )-FPSP

policy is defined as T = X + Y days, while the duty

cycle as D = 100 · X/(X + Y ). Figures 2-3 show the

distribution of the maximum peak-values (in percentage) of

infected people obtained for each model by each (X,Y )-
FPSP policy with X and Y ranging from 0 to 14 (i.e., the

value of (100/N) · supt≥50[I(t) +Q(t)] for the SIQR model

and (100/N) · supt≥50[I(t) +D(t) +A(t) +R(t) + T (t)] for

the SIDARTHE model). Figures 4-5, instead, show the time

instants at which such peaks are attained. Finally, only for the

SIQR model, Figures 6 and 7, show the distribution of the

peaks and peak-times for the FPSP obtained with X and Y
ranging from 0 to 98 days with a resolution of 7 days.

For each model, we notice the following:

• There is a stability region, painted in light blue and

located in the bottom-left part of the images, in which

the peak values are similar to the one we would observe

with a complete lock down, i.e. with any policy in which
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Fig. 2: Percentage of peak infections parametrised by (X,Y )
in a population of 107 individuals in the SIQR model.
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Fig. 3: Percentage of peak infections parametrised by (X,Y )
in a population of 107 individuals in the SIDARTHE model.

the number X of work days is set to zero, and the peak

times are close to the time (t = 50 days) in which the

policies are started. More precisely, with reference to

Figures 4-5 and 7, we observe that a policy (X,Y )
belonging to the stability region attains the peak at time

t ≤ 50 + X . This, in turn, implies that the trajectory

of the total infected population obtained under these

policies starts to decay after the first X days of the first

period. We further underline that, although two policies

belonging to the stability region have a similar peak

value, the may show quite different behaviours. This is

shown, for instance for the SIQR model, in Figure 8, in

which the (1, 6) and (1, 3) policies are compared.

• There is an instability region, painted in dark blue and

located in the top-right part of the images, in which the

peak values are similar to the one we would observe

without lock down, i.e. with any policy in which the

number Y of quarantine days is set to zero. As the

peak-time distributions in Figures 4-5 and 7 show,

the policies belonging to this instability region do not

necessarily lead to the same time evolution. In fact,

policies with more days of quarantine (i.e., larger Y ) are

associated with larger peak times. This, in turn, implies

that more days of quarantine still have the positive effect

of delaying the peak.

• There is a compromise region, which contains the
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TABLE I: Parameters of the different models

Model Parameters Values

SIQR (β;α; η; δ; q;N) (0.373; 0.067; 0.067; 0.036; 0.175; 107)

SIDARHTE (β;σi, i = 1, . . . , 16; q;N) (1, 0.570, 0.011, 0.456, 0.011, 0.171,

0.371, 0.125, 0.125, 0.012, 0.027, 0.003,

0.034, 0.034, 0.017, 0.017, 0.017, 107)
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Fig. 4: Distribution of the peak times corresponding to Figure

2.
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Fig. 5: Distribution of the peak times corresponding to Figure

3.

remaining policies, and which is located in the central

band going from the top-left to the bottom-right corner.

The policies of this region yield a peak of the number

of infected people which is considerably larger than the

value attained after the initial lock-down phase. However,

they are associated with a larger duty cycle (i.e. a large

fraction of work days X) than the policies belonging

to the stability region, thus allowing a larger number

of work days. Figure 9 compares the two policies, in

the SIQR model, obtained with (X,Y ) = (2, 5) and

(X,Y ) = (14, 35). Both the policies have the same duty

cycle D = 100 ·X/(X + Y ) = 28, 6%.

• All the figures show a main growth direction going

from the bottom-left to the top-right corner. This growth

direction is associated with a reduction of the duty cycle

D = 100 · X/(X + Y ) of the policies, and reflects the

fact that a higher number of work days leads to higher
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Fig. 6: Percentage of peak infections parametrised by (X,Y )
in a population of 107 individuals in the SIQR model. In this

instance, the distribution is obtained with X and Y ranging

from 0 to 98 days with a resolution of 7 days.
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Fig. 7: Distribution of the peak times corresponding to Figure

6.

peaks in the infected population.

• All the figures show a secondary growth direction, which

is orthogonal to the previous one, from the top-left to

the bottom-right corner. This growth direction concerns

only the stability and compromise regions, and it is

associated with an increment in the period T = X + Y
of the policies. As shown in Figures 10-11, indeed,

the simulations suggest that, for similar values of the

duty cycle, higher frequencies are associated with

smaller and delayed peaks of the infected population.

This aspect is also shown in Figure 9, in which the two

compared policies on the SIQR model, one obtained

with (X,Y ) = (2, 5), the other with (X,Y ) = (14, 35),
have the same duty cycle but different periods.
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Fig. 8: Time evolution of the percentage of infected people

(100/N) · (I(t) + Q(t)) in the SIQR model for the FPSP

policies obtained with (X,Y ) = (1, 6) and (X,Y ) = (1, 3)
respectively. The red dashed line marks time t = 20 days, in

which the lock-down phase starts. The blue dashed line marks

time t = 50 days, when the FPSP policy commences.
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Fig. 9: Time evolution of the percentage of infected people

(100/N) · (I(t) + Q(t)) in the SIQR model for the FPSP

policies obtained with (X,Y ) = (2, 5) and (X,Y ) = (14, 35)
respectively. The two policies have equal duty cycle D =
100 ·X/(X + Y ) = 28.6%. The red dashed line marks time

t = 20 days, in which the lock-down phase starts. The blue

dashed line marks time t = 50 days, when the FPSP policy

commences.

Finally, notice that the peak level of infections (see Figures 2,

3) depends on the level of infected citizens at t = 50 (i.e.,

when the FPSP policy is enforced). However, if this number

can be driven low enough (e.g., by prolonging the lock-

down period), then this policy appears to be an effective

quarantine exit strategy, that avoids a second increase in

infected individuals while at the same time allowing a certain

level of economic activity.
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Fig. 10: Value of the peak (in percentage) of the infected

population for different values of the duty cycle and period

of the FPSP policies applied to the SIQR model. The plotted

lines are obtained as linear interpolations of the peak values

shown in Figures 2 and 6.
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Fig. 11: Value of the peak times of the infected population

for different values of the duty cycle and period of the FPSP

policies applied to the SIQR model. The plotted lines are

obtained as linear interpolations of the peak values shown in

Figures 4 and 7, by removing the peak times of the policies

belonging to the stability region (i.e., the peak times less than

55 days).

V. SENSITIVITY ANALYSIS

This section explores the sensitivity of the number of infected

individuals in the SIQR model (I+Q) and in the SIDARTHE

model (I + D + A + R + T ) with respect to quarantine

effectiveness, anticipatory and compensatory population

behavior, and uncertainty in the model parameters. Unless

stated otherwise, parameters are defined as in Table I.

1) Quarantine Effectiveness: The effectiveness of quarantine

on a reduction q in the rate of infectious contacts cannot
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Fig. 12: Sensitivity analysis of the quantity Q + I in the

SIQR model on quarantine effectiveness q. The FPSP-(1, 6)
policy remains stable for q ≤ 0.255, corresponding to a 74.5%
reduction in infectious contacts during periodic quarantine

days. In comparison to the assumed effectiveness q = 0.175,

this leaves a safe error margin of 8%.
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Fig. 13: Sensitivity analysis of the quantity I+D+A+R+T
in the SIDARTHE model on quarantine effectiveness q. The

FPSP-(1, 6) policy remains stable for q ≤ 0.33, corresponding

to a 66% reduction in infectious contacts during periodic

quarantine days. In comparison to the assumed effectiveness

q = 0.175, this leaves a safe error margin of 15.5%.

be observed directly and can only be estimated with some

delay from the start date of the initial quarantine period. It is

commonly assumed that this effect is constant over time. The

population’s compliance with quarantine measures may reduce

once a less stringent policy as proposed here is introduced.

Exemplary simulation results are presented showing the effect

of varying quarantine effectiveness q and an FPSP policy with

(X=1, Y=6) working days and quarantine days, respectively.
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Fig. 14: Sensitivity analysis of the quantity Q + I in the

SIQR model on increased infection rate (1 + d)β+ during

periodic working days. The FPSP-(1, 6) policy remains stable

for d ≤ 0.40, corresponding to a 40% increase in infectious

contacts during periodic working days due to compensatory

and anticipatory population behavior.
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Fig. 15: Sensitivity analysis of the quantity I +D+A+R+
T in the SIDARTHE model on increased infection rate (1 +
d)β+ during periodic working days. The FPSP-(1, 6) policy

remains stable for d ≤ 0.80, corresponding to a 80% increase

in infectious contacts during periodic working days due to

compensatory and anticipatory population behavior.

In simulation with the SIQR model (Fig. 12), the policy

remains stable for q ≤ 0.255, corresponding to a 74.5%
reduction in infectious contacts during periodic quarantine

days. In comparison to the assumed effectiveness q = 0.175,

this leaves a safe error margin of 8%. In simulation with the

SIDARTHE model (Fig. 13), the policy remains stable for

q ≤ 0.33, corresponding to a 66% reduction in infectious

contacts during periodic quarantine days. In comparison to
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the assumed effectiveness q = 0.175, this leaves a safe error

margin of 15.5%.

2) Anticipatory and Compensatory Population Behavior:

Thus far, it has been assumed that the rate of infection during

working days β+ would revert back to the rate observed

pre-quarantine. However, it is possible that it may increase

above pre-quarantine level if the population mixes with higher

frequency during working days. This may occur initially

in response to prolonged quarantine, and subsequently

in anticipation of future quarantine periods. Exemplary

simulation results are presented modelling increased mixing

with an infection rate (1 + d)β+ during periodic working

days with an FPSP-(1,6) policy. The SIQR model (Fig. 14)

remains stable for d ≤ 0.40, corresponding to a 40% increase

in infectious contacts during periodic working days. The

SIDARTHE model (Fig. 15) remains stable for d ≤ 0.80,

corresponding to a 80% increase in infectious contacts during

periodic working days due to compensatory and anticipatory

population behavior.

3) Uncertainty in Model Parameters: Deterministic epidemic

models are highly sensitive to their parameters, which in

practice cannot be observed directly but are instead inferred

from test results or prior knowledge. It is important to

quantify uncertainty in the model parameters and explore the

range of possible effects of policy decisions under uncertainty.

a) SIQR: We consider uncertainty in the following parame-

ters. The basic reproduction rate R0 ∼ N (µ = 2.676, σ =
0.572) was sampled from the consensus distribution in [25].

The probability of an infected individual to show symptoms

ps = 0.5, the rate with which individuals develop symptoms

and get tested rt = 0.2, the probability of an infected symp-

tomatic individual to test positive pd = 0.67, the recovery rate

of non-quarantined individuals rI = 0.1, and the recovery rate

of quarantined individuals δ = 0.036 were taken from [9] and

were each sampled from a truncated Normal distribution with

mean as above and 10% standard deviation. The remaining

parameters of the SIQR model were derived as in (5),

pq = pspd
α = (1− pq)rI
η = pqrt
β+ = R0(α + η).

(5)

Monte Carlo simulations with 1000 draws from the joint

distribution were performed with varying FPSP policy

parameters. In order to isolate the effect of (X,Y ), the

median number of quarantined individuals after 50 days

was estimated as Q(50) = 3251 or 0.0325% of the total

population. Initial quarantine periods were extended to

argmint≥50Q(t) ≤ 3251. The median, 75-percentile and

95-percentile of infected individuals under example policies

are shown in Fig. 16. Note that the equi-percentile graphs

do not correspond to individual Monte Carlo samples. The

depicted examples illustrate that fast switching policies exist

that are stable under a wide range of basic reproduction rates

and considerable uncertainty in all other model parameters.

b) SIDARTHE: We consider uncertainty in model parameters

represented as zero-truncated Normal distributions with

means σ1, ..., σ16 and 10% standard deviation, and

estimate β from samples of the basic reproduction rate

R0 ∼ N (µ = 2.676, σ = 0.572). Analogously to Monte

Carlo simulations with the SIQR model, 1000 samples were

drawn from the joint distribution and initial quarantine periods

were extended to argmint≥50D(t) +R(t) + T (t) ≤ 212433.

The median, 75-percentile and 95-percentile of infected

individuals under example policies are shown in Fig. 17.

Stable FPSP parameterisations avoiding a second peak

of infections with 95% probability exist also under the

SIDARTHE model, both for weekly (X ≤= 2) and biweekly

(X ≤ 4) switching periods.

c) Remark: SIR-like models assume a fraction of each com-

partment moving from one compartment to another. For ex-

ample, if γ−1 is the average recovery time, then γI is the rate

at which infectious individuals leave the I class and enter the

R class. Of course, this is an approximation, and recoveries,

quarantines, and other quantities, are in reality governed by

a distribution. More accurate modelling will be explored to

incorporate such effects, and establish their impact on the

fidelity of the control schemes proposed in this document.

VI. Slow Outer Supervisory Control Loop

In the previous section, we showed how a fixed switching

policy between quarantine and work days can be effectively

used to reduce the number of infected individuals in a

population without resorting to a complete lock down. While

these results are promising and show that the several FPSP

policies are feasible, it remains to establish how to select a

specific pair (X,Y ). In fact, even though it is possible to

specifically select one such policy from the examples above,

we are still left with the question of how reliably we can

estimate a model and its parameters in order to make such

a choice with the caveat that standard feedback mechanisms

may fail dramatically due to the high-level of uncertainty and

delay in the measurements [4].

Due to the critical nature of this issue, we investigate the

design of a slow outer supervisory control loop to compensate

for model mismatch, that does not depend on the specific

choice of the model, nor its parameters, and that satisfies the

following basic requirements:

(i) The supervisory control loop needs to find a policy

(X,Y ) such that the infection is suppressed.

(ii) The supervisory control loop needs to be robust with

respect to the uncertainties on the parameters and

independent on the choice of the model.

(iii) The supervisory control loop needs to take into account

the delays in the observed measurements and inherent in
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Fig. 16: Sensitivity analysis of the quantity Q+ I in the SIQR model on uncertainty in epidemiological model parameters. The

basic reproduction rate R0 ∼ N (µ = 2.676, σ = 0.572) was sampled from the consensus distribution in [25]. The probability

of an infected individual to show symptoms ps = 0.5, the rate with which individuals develop symptoms and get tested

rt = 0.2, the probability of an infected symptomatic individual to test positive pd = 0.67, the recovery rate of non-quarantined

individuals rI = 0.1, and the recovery rate of quarantined individuals δ = 0.036 were taken from [9] and were each sampled

from a truncated Normal distribution with mean as above and 10% standard deviation. The remaining parameters of the SIQR

model were derived as in (5).

the system’s dynamics (e.g., the incubation period of the

disease).

Owing to Requirements (i)-(iii), we propose to design

an hysteresis-based supervisory control loop which is

characterized by the simplicity of implementation and by its

inherent robustness due to the independence on the structure

of the model of the infection.

The supervisory outer control policy can be described as

follows. Denote by t0 the time-instant when the control

action starts (i.e., the end of a prolonged lock-down) and

set X(t0) = 0, Y (t0) = c. We consider the set of integers

Tc(t) = {X,Y ∈ N : X + Y = c}, where c is the time

period during which the pair (X,Y ) remains constant. Then,

by considering the half-closed intervals (tk, tk+1], with

tk+1 − tk = c, and using the shorthand X(k + 1) to denote

X(tk+1), the hysteresis-based supervisory outer control law

can be expressed as follows:

X(k + 1) = mid(0, X(k) + sign(ψX(k + 1)), c), (6)

Y (k + 1) = mid(0, Y (k)− sign(ψY (k + 1)), c), (7)

where

mid(a, b, c) =







a, if b ≤ a

b, if a < b < c

c, otherwise

.

In (6) and (7), functions ψX and ψY are given by

ψX(k + 1) = (1− αX)

∫ tk

tk−1

[O(s) −O(tk−1)]ds

−

∫ tk+1

tk

[O(s) −O(tk)]ds,

ψY (k + 1) = −(1 + αY )

∫ tk

tk−1

[O(s) −O(tk−1)]ds

+

∫ tk+1

tk

[O(s)− O(tk)]ds.

where αX , αY represent two positive design constants and

O(t) denotes the observed amount of infected people (recall

that O(t) is affected by significant uncertainty and delay).

To show the effectiveness of the open-loop FPSP with the

duty-cycle tuned over time by the hysteresis-based supervisory

outer control law, the following simulation analysis using

the SIDARTHE model is reported. The control parameters

are c = 14, αY = 0, O(t) = D(t) + R(t) + T (t) + E(t).
Specifically, we consider two possible scenarios.

• Scenario 1: During work days the infection behaves

as if there were no social distancing measures and

people could behave exactly as if there was no pandemic

(R0 = 2.38). We consider αX = 0.4. Results are
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Fig. 17: Sensitivity analysis of the quantity I +D + A+R + T in the SIDARTHE model on uncertainty in epidemiological

model parameters. Parameters were sampled from zero-truncated Normal distributions with means σ1, ..., σ16 and 10% standard

deviation. β was estimated from samples of the basic reproduction rate R0 ∼ N (µ = 2.676, σ = 0.572) representing the

consensus distribution in [25].

shown in Figure 18: a rather conservative policy

(X,Y ) = (3, 11) is reached.

• Scenario 2: During work days we assume mild social

measures to diminish the effect of the spread of the

disease (R0 = 1.66). We consider αX = 0.4. Results

are shown in Figure 19: a reasonably non-conservative

policy (X,Y ) = (6, 8) is reached.

In both scenarios, the controller is able to find a suitable

FPSP policy such that the disease is suppressed and the

social cost to contain the pandemic is reduced. Of course, as

expected, the control action in Scenario 1 leads to a more

conservative policy due to the lack of social measures taken

during the work days.

Notice that, unlike a control action that regulates a pulsed

quarantine period using a threshold feedback (i.e., based

on the amount of population being infected), the proposed

system fixes a time window c (effectively the frequency of

the control action) and slowly varies the duty cycle of the

policy in order to have as many working days as possible,

while at the same time maintaining the virus suppression.

The main difference between the two strategies, lies in the

use of a slow varying duty cycle with a fast switching policy

instead of a threshold-based one. Intuitively this means that,

unlike the threshold-based approach. In our protocol, if the

control action is slower than the maximum incubation time

of the disease (i.e., if c ≥ 14) then time delays will not affect

the performance of the controller.
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Fig. 18: Outer Loop effects for the Scenario 1. The upper

panel shows the total amount of infected, the middle panel

shows the observed state, O(t), the lower panel shows the

control action. Notice that O(t) is delayed with respect to the

number of infected people. In this simulation αX = 0.4. The

two vertical lines in the upper and middle panel represent,

respectively, the beginning of the full lock-down and of the

FPSP policy. In the lower panel, we show only the vertical

line corresponding to the beginning of the FPSP policy.

As a final important consideration, it is worth noting that the

combined open-loop FPSP/closed-loop outer supervisor paves
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Fig. 19: Outer Loop effects for the Scenario 2. The upper

panel shows the total amount of infected, the middle panel

shows the observed state, O(t), the lower panel shows the

control action. Notice that O(t) is delayed with respect to the

number of infected people. In this simulation αX = 0.3. The

two vertical lines in the upper and middle panel represent,

respectively, the beginning of the full lock-down and of the

FPSP policy. In the lower panel, we show only the vertical

line corresponding to the beginning of the FPSP policy.

the way to the future possibility of pursuing an optimization-

based design with the aim of minimizing an expected “total

cost” J(t), measuring how the control strategy is believed

to impact on the epidemic growth and on the society. For

example, with reference to the models described in Section II,

a possible total cost may be written as

J(t)
︸︷︷︸

total cost

= ρ
(
S(t), I(t)

)

︸ ︷︷ ︸

epidemic growth

+ κ ·C(t)2
︸ ︷︷ ︸

societal cost

in which the “epidemic growth” term ρ
(
S(t), I(t)

)
measures

how bad is the current epidemic state, the “social cost” C(t)
measures the cumulative social cost due to the overall lock-

down period already imposed, and κ is a free parameter

defining the relative importance of the two terms in the sum.

VII. Findings

In this note we consider strategies that may mitigate the effect

of Covid-19. Such strategies currently include: (i) complete

lock-down for a long duration; (ii) managed strategies in a

manner that does not overwhelm the healthcare system. Our

findings are as follows.

(i) Fast switching between two societal modes appears to

be an interesting mitigation strategy. These modes are

normal behaviour and social isolation.

(ii) The fast switching policy may allow a predictable (X
days on, Y days off) and continued (albeit reduced)

economic activity.

(iii) Fast switching may suppress the virus propagation,

mitigate secondary virus waves, and may be a viable

alternative to sustained lock-down (LDP) and timed

intervention (TIP) policies.

(iv) The fast switching policy may be a viable exit strategy

from current lock-down policies when the number of

infected individuals reduces to a lower level.

(v) The fast switching policy can be implemented through

the aid of a outer loop whose aim is to slowly increase

the duty cycle of the policy, given a fixed frequency.

Finally we emphasize that the fast switching policy should

not necessarily be viewed as a stand-alone policy, and can

also be used to augment and compliment other post lock-

down strategies to provide additional levels of robustness in

the post lock-down period. For example, it may be worth

considering in combination with other strategies such as using

contact tracing, face-masks, and reduced social distancing. In

combination with these, or as the number of susceptible people

decreases, the policy may allow a gradual return to normality

over time.
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