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Abstract

This thesis presents extensions of the Gaussian Process (GP) model, based on approximate methods
allowing the model to deal with input uncertainty. Zero-mean GPs with Gaussian covariance function
are of particular interest, as they allow to carry out many derivations exactly, as well as having been
shown to have modelling abilities and predictive performance comparable to that of neural networks
(Rasmussen, 1996a). With this model, given observed data and a new input, making a prediction cor-
responds to computing the (Gaussian) predictive distribution of the associated output, whose mean can
be used as an estimate. This way, the predictive variance provides error-bars or confidence intervals
on this estimate: It quantifies the model’s degree of belief in its ‘best guess’. Using the knowledge of
the predictive variance in an informative manner is at the centre of this thesis, as the problems of how
to propagate it in the model, how to account for it when derivative observations are available, and how
to derive a control law with a cautious behaviour are addressed.

The task of making a prediction when the new input presented to the model is noisy is introduced.
Assuming a normally distributed input, only the mean and variance of the corresponding non-Gaussian
predictive distribution are computed (Gaussian approximation). Depending on the parametric form of
the covariance function of the process, exact or approximate moments are derived. These results are
then used for the multiple-step-ahead iterative forecasting of nonlinear dynamic systems, with prop-
agation of the uncertainty. Within a nonlinear auto-regressive representation of the system, modelled
by a GP, a one-step-ahead model is iterated up to the desired horizon. At each time-step, the uncer-
tainty induced by each successive prediction is propagated, that is, the whole predictive distribution
of the output just predicted is fed back into the state for thenext time-step. Not only are the predictive
variances of each delayed output accounted for, but also thecross-covariances between them. The
approach is illustrated on the simulated Mackey-Glass chaotic time-series, as well as on two real-life
dynamic processes, a gas-liquid separator and a pH neutralisation process.

The emphasis is on the use of Gaussian Processes for modelling nonlinear dynamic systems.
GPs have not yet gained widespread popularity among the engineering community. It is well known
that the modelling of such systems is in practice rendered difficult by the fact that most available
data lies around equilibrium regions, and very few points intransient areas, and a common approach
has been to consider linearisations around those equilibrium points. Derivative observations can be
elegantly integrated in a GP model where function observations are already available, as shown in
(Solak et al., 2003). As well as being in accord with engineering practice, derivative observations can
potentially reduce the computational burden usually associated with GPs (typically, a linear region
can be summarised by one derivative observation, instead ofmany function observations). For this
mixedtraining set, the explicit expressions of the predictive mean and variance of a function output
corresponding to a noise-free and to a noisy input are then derived, the latter being tackled within the
Gaussian approximation.

The other field where GPs can present an advantage other over models is in the control of nonlinear
dynamic systems. Commonly, researchers have used nonlinear parametric models and have adopted
the certainty equivalence principlewhen deriving the control law, whereby the model’s predictions
are used as if they were the true system’s outputs. Deriving controllers with ‘cautious’ and ‘probing’
features is difficult and has been the scope of much work in thecontrol community. The propagation
of uncertainty method is applied for a cautious controller,where the cautiousness is accounted for in
a cost function that does not disregard the variance associated with the model’s estimate.
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Chapter 1

Introduction

I present various extensions of the Gaussian Process model for use in engineering applications. Central

to this work is the prediction of a system output when presented with a new noisy (or random) input.

This problem is addressed using an analytical approximation that consists of computing only the mean

and variance of the corresponding predictive distribution(Gaussian approximation). These results are

then applied to the iterative multiple-step-ahead prediction of nonlinear time-series, showing how the

uncertainty induced by each successive prediction can be propagated ahead in time. Also presented is

a methodology for using the propagation of uncertainty framework in the control of nonlinear dynamic

systems, and in the case where derivative observations of the system are available.

1.1 Motivation and background

Mathematical modelling seeks to describe, ormodel, a given phenomenon (system) from observations

or measurements of it. It might be the weather we wish to forecast, the dynamics of an aeroplane we

want to simulate, or getting more understanding about how our minds work. There are many possible

levels of description, but the choice will be in general dictated by our knowledge of the phenomenon,

our goals, tools and computational resources.

In this thesis, the emphasis is on systems whose responses (outputs) correspond to given causes

(inputs). In this supervised learning setting, modelling then corresponds to finding the underlying data

1



2 CHAPTER 1. INTRODUCTION

generative mechanism, that is, the mapping from the input (‘causal’) space to the output (‘observa-

tional’) space. To do so, empirical models are here considered, sometimes called black-box models,

because they do not require a detailed understanding of the process or system under study, as opposed

to first-principles models. These functional mappings can conveniently be divided into two classes:

parametric and nonparametric. Whereas parametric models assume a given form of the mapping, no

parametric form is fixed in advance for the nonparametric class, allowing a greater flexibility (we re-

fer to (Hastie et al., 2001; Bishop, 1995) as general textbooks, and to (Gershenfeld, 1999) for a more

broad-audience introduction to mathematical modelling).

The GP alternative

Gaussian Processes (GPs) came to the attention of the machine learning community in the nineties,

after Neal showed that, in their Bayesian treatment, neuralnetworks with one hidden layer converged

to a Gaussian Process as the number of hidden neurons tends toinfinity, given suitable priors for the

weights (Neal, 1994; Neal, 1995). They became increasinglypopular after Rasmussen carried out

a thorough empirical comparison of the GP with more widely used models, showing that, in many

instances, the GP outperforms them (Rasmussen, 1996a). Since then, a great deal of research has

been done, dealing with diverse aspects of the model. Thorough introductions of the model and its

relation to Bayesian kernel models can be found in (Williams, 2002; Mackay, 2003; Seeger, 2003).

The probabilistic nature of the GP model allows to directly define the space of admissible func-

tions relating inputs to outputs, by simply specifying the mean and covariance functions of the process.

In this framework, the observations correspond to an (incomplete) realisation of the process. Although

a parametric form is actually pre-supposed (albeit not on the functional itself but on the family from

which it can come from), the model is very powerful and flexible, with the Gaussian assumption

keeping most derivations analytically tractable and simple.

Predictions and uncertainties

Most commonly, a model will be used to generalise from measurements, that is, to make predictions

about new observations. But predicting the system’s response to a given new input, alone, is not satis-

factory. In general, we do not only wish to have an estimate ofa quantity, we also need to quantify our
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degree of belief in that estimate (how (un)certain are we in our prediction? how much can we trust it?).

With the GP model, the learning task (teaching through observations) corresponds to tuning the

parameters of the covariance function of the process to the data at hand, which, here, is simply done

in a Maximum-Likelihood-like manner. With this model, given a new input, and conditional on past

observations, we naturally obtain a prediction and the uncertainty attached to it, respectively given

by the mean and variance of the predictive distribution of the future output. This distribution is

Gaussian, readily obtained using the definition of conditional probabilities, as a consequence of the

GP assumption.

This is not a perfect world. . .

What if the inputs are ‘uncertain’? Noisy inputs can arise indifferent situations, for instance when

using faulty sensors, such that the system senses the inputsimperfectly. Dealing with noisy inputs is

a well known difficult task which is the scope of much research. In the statistics literature, models

dealing with noisy regressors are known as errors-in-variables models (Kendall and Stuart, 1958), and

the problem has been tackled using deterministic (Freedmanet al., 2004) and Bayesian (Dellapor-

tas and Stephens, 1995; Snoussi et al., 2002) approaches to recover the unknowns. In the machine

learning community, it has been shown that closed-form solutions exist for Gaussian basis function

networks (Ahmad and Tresp, 1993), and mixture models have been proved to deal naturally with

missing features (Tresp et al., 1994; Ghahramani and Jordan, 1994a). In most cases, the major diffi-

culty stems from the unknown probability distribution of the input, which has to be either assumed or

learnt from the data. In this thesis, the task of dealing withnoisy inputs is handled within an analytical

approximation, assuming normally distributed inputs.

Accounting for time

Even though it has not yet been mentioned, dynamic systems, whose properties and behaviour vary

with time, can be modelled in a similar way, provided a suitable representation and a few hypothe-

ses (Takens, 1981). In time-series analysis (Box et al., 1994), a common approach is to assume a

(possibly nonlinear) relationship between past and present values of an observed time-series. Within
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this nonlinear auto-regressive (NAR) representation of the system,1 once a one-step-ahead model2 has

been identified, a challenging task is to forecast the value of the time-series at, say,k steps ahead in

time. This is known as multiple-step-ahead iterative forecasting, where a one-step-ahead model is

iterated up to the desired horizon (Farmer and Sidorowich, 1988; Judd and Small, 2000). Although an

obvious naive way of performing iterative prediction is to feed back only previous estimates (i.e. the

mean of the Gaussian predictive distribution in the GP case), it has been shown to be a sub-optimal

solution (Ahmad and Tresp, 1993; Tresp and Hofmann, 1995).

The modelling of nonlinear dynamic systems with GPs is stillin its infancy (Murray-Smith et al.,

1999; Murray-Smith and Girard, 2001; Kocijan et al., 2003b;Kocijan et al., 2003a). The possible

reason for that simply being that the engineering communityis more used to parametric models, and

the probabilistic GP model has not yet gained widespread popularity among it. Nevertheless, GPs

appear to be well suited for modelling such systems. Indeed,the identification of nonlinear dynamic

systems from experimental data is often rendered difficult by the fact that, usually, most of the data

lie around equilibrium points, and only sparse data are available in transient regions (i.e. far from

equilibrium). In such conditions, a GP proves to be efficient, as the model retains the available data,

and performs inference conditional on the current state andlocal data. Also, the uncertainty of model

predictions can be made dependent on local data density, andthe model complexity directly relates to

the amount of available data (more complex models needing more evidence to make them likely). This

work on the propagation of uncertainty when predicting ahead in time, along with the incorporation

of derivative observations and of the variance for the cautious control of systems, will hopefully

contribute towards the wider use of Gaussian Processes in dynamic systems modelling.

1.2 Contribution and outline

Chapter 2briefly introduces Gaussian random functions and the GP machinery as the model is used in

regression tasks. In this thesis, since only zero-mean processes are considered, the covariance function

alone defines the process. It is a parametric function of the inputs that gives the covariances between

1Or possibly a Nonlinear Auto-Regressive with eXogeneous inputs (NARX) structure, if control inputs are present.
2When the observation at timet is a function of that at timet� 1, and possibly other delayed values.
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the corresponding outputs. A popular covariance function is the Gaussian (squared exponential) one,

conveying the belief that functions drawn from the process should be smooth and continuous. It is

such that points close together in the input space lead to outputs that are more correlated than points

further apart, with the covariance decaying exponentially. As well as having proved to be a useful

covariance function in many applications (Rasmussen, 1996a), it is also very convenient as it enables

many derivations to be analytically carried out exactly.

Assuming a GP model was identified using ‘clean’ (i.e. noise-free) inputs, the task of making

a prediction at a noisy input is addressed inChapter 3. It involves the integration of the predictive

distribution over the input distribution, which cannot be done without approximations. This problem

is solved by taking an analytical approach that consists of computing only the mean and variance of

the new (non-Gaussian) predictive distribution, an approach that I refer to as theGaussian approxi-

mation. Depending on the form of the covariance function of the process, these moments are derived

exactly (in the cases of the Gaussian and the linear kernels), or approximately, within a Taylor ap-

proximation of the covariance function at hand. On a simple static example, this analytical approach

is compared to the numerical approximation of the integral,approximating the true predictive distri-

bution by simple Monte-Carlo. In experiments, the Taylor approximation is validated by computing

the approximate moments using the Gaussian covariance function, and comparing them to the exact

ones (this approximation is briefly discussed in Appendix B). At the end of this chapter, I indicate

how the challenging task of training a model when the inputs are noisy can be tackled, within a similar

Gaussian approximation.

In Chapter 4, the results presented in the previous chapters are appliedto the modelling and the

multiple-step-ahead iterative forecasting of nonlinear dynamic systems. Based on the results derived

in Chapter 3, a methodology to propagate the uncertainty induced by each successive prediction is

suggested. After each iteration, the whole predictive distribution of the output just predicted is fed

back into the state for the next time-step. Therefore, the state is now a random vector, with mean

composed of the delayed predictive means, and covariance matrix with the corresponding predictive

variances on its diagonal. Not only are the predictive variances fed back, but the cross-covariances
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between the delayed outputs are also accounted for, resulting in a full input covariance matrix as

the model proceeds ahead in time. On the Mackey-Glass chaotic time-series, the iterative prediction

with propagation of the uncertainty, obtained within theGaussian approximation, is compared to the

Monte-Carlo solution. Also, the naive approach, using onlythe delayed predictive means, is shown to

lead to poor predictions, highlighting the importance of accounting for the uncertainty induced by the

successive predictions.

Chapter 5 illustrates the modelling with a Gaussian Process of two real-life applications. The

gas-liquid separator process is part of a plant situated at the Jozef Stefan Institute in Slovenia. Based

on measurements of the gas pressure and the water level in thereservoir, subject to the (controlled)

openness of a pressure valve, the aim is to model the gas pressure. Using a subset-selection approach

based on the Automatic Relevance Determination tool (Neal,1995; MacKay, 1994), the identification

of a zero-mean GP with Gaussian covariance function is first discussed. Then, a number of simulations

(i.e. ‘infinite-step’-ahead prediction) of the test signalare performed, and the predictions obtained

with and without propagation of the uncertainty are examined, depending on the point at which the

simulations are started.

The other application is the challenging pH neutralisationprocess benchmark (Henson and Se-

borg, 1994), where the measured pH is subject to control inputs. Although the process is well known

to be nonlinear, the identification of a linear model first andthen that of a GP on the residuals leads

to a better one-step-ahead predictive performance than a GPalone. Using this ‘mixed model’, the

iterativek-step-ahead prediction of a new signal, with and without propagation of the uncertainty, is

performed. To do so, a modified version of the propagation of uncertainty algorithm is presented,

to account for the interaction between the GP and the linear model at each time-step. Also, for this

experiment, the iterative scheme is compared to the direct multi-step-ahead prediction method, where

a model is trained to directly predictk steps ahead.

Finally, Chapter 6 presents further extensions of the model. First, the incorporation of deriva-

tive observations in the GP model, which is of interest for atleast two reasons. Local linear models

(linearisations) are commonly found in engineering applications, and should therefore been taken into
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account in a model where function observations are available. Also, derivative observations can po-

tentially reduce the computational burden usually associated with GPs, as few derivative points can

lead to a similar performance to a model with more function observations (Solak et al., 2003). Con-

veniently, the derivative process of a GP being a GP itself (Pugachev, 1967), derivative observations

can relatively easily and elegantly be incorporated into the model. For thismixedtraining set, the re-

sulting predictive mean and variance of a function output corresponding to a new input are composed

of a ‘functional part’, a ‘derivatives part’ and mixed components (arising in the variance). Within the

Gaussian approximation, I then address the problem of predicting at a noisy input (the details for the

computation of the predictive mean and variance, in the particular case of the Gaussian covariance

function, can be found in Appendix C, Section C.1).

The importance of the uncertainty associated with a point prediction has already been outlined, as

it quantifies one’s degree of belief in an estimate. Therefore, it seems natural that if this prediction is to

be used in a decision-making process, the uncertainty attached to it should be accounted for, in order

to make ‘cautious’ decisions. In this line of thought, in a control context, the knowledge of the predic-

tive variance can be used in an informative manner, to derivea ‘cautious’ cost function (Murray-Smith

and Sbarbaro, 2002; Murray-Smith et al., 2003; Sbarbaro andMurray-Smith, 2003). The propagation

of uncertainty method is then applied to a cautious controller, for the multi-step-ahead control of a

MISO (multi-input single-output) system.

Appendix A provides some useful mathematical formulae usedthroughout the thesis. The multi-

disciplinary nature of this work, involving aspects of computing science, statistics and control engi-

neering, has led me to make the derivations as transparent aspossible, to a broad readership, in order

to ease the task of potentially interested researchers and engineers accessing and implementing these

ideas.

1.3 Joint work and publications

The idea of propagating the uncertainties in Gaussian Processes followed discussions between Rod-

erick Murray-Smith and Carl Edward Rasmussen. The derivations of the approximate moments when
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predicting at a noisy input were started together with Carl Edward Rasmussen (Girard et al., 2002). It

is with Joaquin Quiñonero Candela that the exact moments were derived, in the case of the Gaussian

covariance function (Girard et al., 2003), and Joaquin Qui˜nonero Candela outlined how these results

directly apply to the Relevance Vector Machine model (Quinonero-Candela et al., 2003; Quinonero-

Candela and Girard, 2002). In the present document, I have worked on the derivation of simpler

expressions and how to link the different cases in a consistent manner. As for the training of a GP

model with noisy inputs, the approach presented in Section 3.6 is significantly different from (Girard

and Murray-Smith, 2003).3 I am grateful to Professor Mike Titterington and Roderick Murray-Smith

for their useful comments.

I derived the expressions for the incorporation of derivative observations into a GP model, which

were implemented and tested by Jus Kocijan. Preliminary results can be found in (Kocijan et al.,

2004b) and a paper will be submitted to the16th IFAC World Congress, to be held in 2005.

Although in the current document only additive white noise on the observed outputs is considered,

I also worked on coloured noise models such as AR, MA or ARMA (Murray-Smith and Girard, 2001).

I have taken part in the evaluation of the GP model and the methodology presented in Chapter 4

on various dynamic systems (Kocijan et al., 2003b; Kocijan et al., 2003a). Roderick Murray-Smith

introduced me to the application of GPs in a control context,and the propagation of uncertainty

applied in that case led to (Murray-Smith et al., 2003; Kocijan et al., 2004c; Kocijan et al., 2004a).

In the remainder of this document, I will use the first person plural. Although this document is at

my sole responsibility, I believe it represents the achievement of collaborative work, if only through

useful discussions and comments from researchers I have metduring the last four years.

3I would like to thank an anonymous reviewer whose comments onthe results presented in the technical report helped
me to revise my approach.



Chapter 2

Modelling with a Gaussian Process

This chapter intends to provide a comprehensive introduction to Gaussian random functions and Gaus-

sian Processes, as used for modelling purposes. The emphasis is not on the mathematical theory

behind the concepts involved, but rather on their practicalutility for our ends. We hope our simple

illustrations will convince the unfamiliar reader of the potential and flexibility of the model. In Sec-

tion 2.4, we simply recall the Bayesian approach to parametric modelling and, how GPs relate to that

framework.

2.1 Brief historic

In his chapter on Gaussian Processes (Mackay, 2003), MacKaygoes back to 1880 for the first use

of the model for time-series analysis (Lauritzen, 1999). Ingeostatistics, where the model is known

askriging (after (Krige, 1951)), it was developed by Matheron (Matheron, 1963), and much work is

still being done in this field (Cressie, 1993). Also, in geophysics, Tarantola and Valette pioneered the

Bayesian formulation of inverse problems using GPs (Tarantola and Valette, 1982). The model was

clearly formulated to solve regression problems in statistics (O’Hagan, 1978) and gained popularity

in the machine learning community, mainly after the works of(Neal, 1994; Neal, 1995; Rasmussen,

1996a). The Bayesian interpretation of the model can be found in (Williams and Rasmussen, 1996;

Williams, 1997c; Neal, 1997; Mackay, 1997) and detailed introductions in (Williams, 2002; Mackay,

2003; Seeger, 2003). In these last two references in particular, the relation of the GP model to gen-

9
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eralised radial basis functions, spline smoothing methodsand kernel models such as support and

relevance vector machines is presented (we refer to (Mackay, 1997; Tipping, 2001; Kimeldorf and

Wahba, 1970) for these models).

2.2 Gaussian random functions

Random functions are very complex mathematical objects anda Gaussian process is the simplest ran-

dom function in that it is fully characterised by its mean andcovariance functions (Pugachev, 1967;

Papoulis, 1991). If the argument is time, it will usually be called a Gaussian stochastic process, and a

Gaussian random field if the argument represents a position in, say,R3.

Let f(x) be a stochastic field, forx 2 RD, with mean functionm(x) = E[f(x)℄ and covariance

functionC(xi;xj) = Cov[f(xi); f(xj)℄. We can denote the Gaussian Process (GP)f(x) byf(x) � GP(m(x); C(xi;xj)) :
A Gaussian Process can be be thought of as a generalisation ofmultivariate Gaussian random vari-

ables to infinite sets: The process is Gaussian if all joint distributions are multivariate normal. There-

fore, foranygiven set of inputsfx1; : : : ;xng, the corresponding random variablesff(x1); : : : ; f(xn)g
have ann-dimensional normal distribution:p(f(x1); : : : ; f(xn)jx1; : : : ;xn) = N (m;���)
wherem is then � 1 vector of expectations (mean values) and��� then � n matrix of covariances

between all pairs of points, i.e.mi = E[f(xi)jxi℄�ij = Cov[f(xi); f(xj)jxi;xj ℄ = E[f(xi)f(xj)jxi;xj ℄�E[f(xi)jxi℄E[f(xj)jxj ℄ :
The covariances between two outputs are given by the covariance function evaluated at the corre-

sponding inputs: We have�ij = C(xi;xj), that is��� = 266664 C(x1;x1) : : : C(x1;xn): : : : : : : : :C(xn;x1) : : : C(xn;xn)
377775 :
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In this thesis, we consider zero-mean processes, assuming no prior information is available to

contradict this hypothesis. In the following example, we will see that this assumption is not overly

restrictive in practice as a great variety of functions can be generated by a zero-mean process. The rea-

son for the constant mean assumption is that we will mostly beinterested in second-order stationary

processes (recall that a process is second-order stationary if it has a constant mean and a covariance

function that only depends on the distance between the inputs (Pugachev, 1967)). In that respect,

the constant-mean (or, without loss of generality, zero-mean1) assumption is natural. We refer to

(O’Hagan, 1978; Cressie, 1993) for non-constant mean processes.

In the remainder of this thesis, we then considerp(f(x1); : : : ; f(xn)jx1; : : : ;xn) = N (0;���) : (2.1)

Picturing an object in three dimensions is at most what we arecapable of and we are now facing

ann-dimensional probability density. We can get a feeling of what it represents by visualising realisa-

tions of the process. We hope the following illustration will highlight how wide a variety of functions

can be produced by a process with zero-mean and a simple covariance function.

2.2.1 A simple illustration

Consider a Gaussian Processf(x), for a one-dimensionalx 2 R, with zero-mean and covariance

function Cg(xi; xj) = v exp ��12w(xi � xj)2� : (2.2)

For xi = xj , v corresponds to the variance off(xi), Cg(xi; xi) = Cov[f(xi); f(xi)℄ = v. The

correlation length, which represents the length along which successive values are strongly correlated

(the correlation diminishing exponentially as the distance between the points increases), is defined to

be� = 1=pw. We will look at this particular covariance function in greater detail later.

Let GP1 be the GP for whichv = 1; w = 0:25 and let GP2 be another GP with the same covariance

function but withv = 2; w = 1.

1In practice, the zero-mean simplification can be dealt with by centring the data ast = t��t, where�t is the data sample
mean. One can also add an extra constant term to the covariance function, reflecting how far the mean of the function is
expected to fluctuate from the mean of the process (Mackay, 2003; Gibbs, 1997).
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Figure 2.1: Gaussian covariance functionCg(x; xj), for x = 5 andxj 2 [1; 10℄. Thew parameter
relates to the width of the kernel and thev parameter to the amplitude.

Figure 2.1 shows the covariance functions betweenx = 5 andxj 2 [1; 10℄, for GP1 (continuous)

and GP2 (dashed). For GP1, w = 0:25 implies a correlation length of2, corresponding to a broader

function that for GP2, for which the correlation length is1. The smaller variance of GP1 (v = 1)

implies a maximum (corresponding toC(x = 5; x = 5)) with lower amplitude than that of GP2, for

which v = 2.
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Figure 2.2: Symmetric covariance matrices with Gaussian kernel given by (2.2), forxi; xj 2 [1; 10℄.
The amplitude of the covariances and the variances (on the diagonal) are controlled byv. For GP1
(left), with a smallerw than GP2, points further apart are still correlated.

For given values ofxi andxj , the knowledge of only these two parameters enables us to compute
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the matrix of covariances between the corresponding outputs, f(xi) andf(xj). Figure 2.2 shows the

covariance matrices formed using the Gaussian kernel (2.2), for xi andxj in [1; 10℄. As the distance

between inputs increases, the covariances between the points for GP1 (left) decreases less rapidly

than for GP2 (right), because of the smaller value of thew parameter. Again, we can note the smaller

variances for GP1 (diagonal terms), controlled by thev parameter.

Let us now illustrate the ‘action’ or impact of these two parameters on the possible realisations

(sample functions) of the process.2 Figure 2.3 (left) shows typical realisations drawn from GP1 (con-

tinuous lines) and GP2 (dashed lines). We can first notice that all the realisationsare ‘smooth’, which

is a characteristic of this covariance function. The samples from GP2 vary much more rapidly in the

horizontal direction than do those of GP1, as well as having a larger amplitude of variation. These

two observations are again to be related to thew andv parameters: A largew corresponds to a small

correlation length, thus implying rapid horizontal variations, and a large variancev parameter allows

the realisations to have larger fluctuations away from the zero-mean. One can think ofw andv as

knobs for controlling horizontal as well as vertical variations.

As noted earlier,f(x) is a GP if forany given set of inputsfx1; : : : ;xng, ff(x1); : : : ; f(xn)g
have ann-dimensional normal distribution. On the right panel of Figure 2.3, are the normalised

histogram plots of1000 samples off(x = 4) for GP1 (left) and GP2 (right), along with the ‘true’

probability distribution of this random variable (f(x = 4) � N (0; v), with v = 1 for GP1 andv = 2 for GP2). To further illustrate this point, Figure 2.4 shows the scatter-plot of1000 samples off(x = 4); f(x = 6) andf(x = 4); f(x = 9), for GP1 (left) and GP2 (right). Also plotted is the

normalised joint distribution of the random variables, computed using the true mean and covariances.

Recall that the covariance function gives the covariances betweenf(xi) andf(xj) as a function ofxi andxj. In the particular case of the covariance functionCg, it is a weightedfunction (weighted

byw) of the Euclidean distance between the inputs. Given the value ofw for GP1 compared to GP2,

we see that, for GP1, p(f(x = 4); f(x = 6)) presents a strong correlation betweenf(x = 4) andf(x = 6), whereasp(f(x = 4); f(x = 9)) corresponds to almost uncorrelated random variables (the

2It can easily be shown that realisations of a Gaussian Process can be obtained by the convolution of a white noise and
the square root of the covariance function of the process.
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Figure 2.3: Left panel: Smooth samples from GP1 (continuous lines) and GP2 (dashed lines), two
zero-mean Gaussian Processes with Gaussian covariance function, with different values of parame-
ters. The short correlation length and the largerv parameters of GP2 imply realisations with rapid
horizontal variation and with larger fluctuations about zero. At x = 4, the correspondingf(x) is a
random variable normally distributed with zero-mean and variance1 for GP1 and2 for GP2. The
right panel shows the normalised histogram plot of the1000 samples off(x = 4) and the true corre-
sponding one-dimensional density function (red line).

inputs being further apart). However, for GP2, for whichw is much larger,x = 4 andx = 6 are

already too far apart to allowf(x = 4) to be strongly correlated tof(x = 6).
2.2.2 Covariance functions

Since we consider zero-mean processes, all that is needed tocharacterise the GP is its covariance

function. Our simple example will have hopefully already highlighted its central role, as it conveys all

the information on the kind of function generated by the process. The covariance function thus deter-

mines the properties of samples drawn from the GP and, when applied to regression, it controls how

much the data are smoothed in estimating the underlying function. A wide choice of valid covariance

functions can be found in (Abrahamsen, 1997; Genton, 2001).

Any form of covariance function is admissible, provided it generates a non-negative-definite co-

variance matrix. That is, any covariance functionC(:; :) must satisfyXi;j aiajC(xi;xj) � 0
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(left) and GP2 (right). For GP2, the distance betweenx = 4 andx = 6 is already too large (wrt tow)
to allow noticeable correlations between the corresponding f(x = 4) andf(x = 6). For GP1, we see
that, as the distance between the inputs increases, the correlation decreases.

for any finite set of pointsx1; : : : ;xn and arbitrary real coefficientsa1; : : : ; an.

Stationary covariance function

As previously mentioned, the process is (second-order) stationary if it has constant mean andCov[f(xi); f(xj)℄ = C(jjxi � xj jj)
for all xi;xj 2 RD (note thatC(x) is Cov[f(x); f(0)℄). In practice, such isotropic covariance

functions are widely used. They are invariant by translation, so that the covariance betweenf(xi) andf(xj) does not depend on the values of the corresponding inputsxi andxj but only on the distance

separating them. In geostatistics, the variogram, defined asVar[f(xi)� f(xj)℄ = 2(jjxi � xj jj)
is more widely used (see, e.g. (Cressie, 1993)). Such a process is called intrinsically stationary. In-

trinsic stationarity is weaker than second-order stationarity as considered above but, if the latter holds,

we have(jjxi � xj jj) = C(0)� C(jjxi � xj jj) where(:) is the semi-variogram.
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Let � be the Euclidean distancejjxi � xj jj. A general class of stationary covariance functions is

the Matern form, C(�) = 1�(�)2��1 �2p��� �� K� �2p��� � ;
where� is the Gamma function andK�(:) is the modified Bessel function of the second kind whose

order is the differentiability parameter� > 0. Then,� controls the smoothness of typical sample

functions which are(� � 1) times differentiable. This class allows us to express the prior lack of

knowledge about the sample function differentiability. (Gneiting, 2002) derived compactly supported

kernels (covariance functions which vanish when the distance between the inputs is larger than a cer-

tain cut-off distance) from this class. Although not used inthis thesis, these kernels are especially

interesting as they can allow for computationally efficientsparse matrix techniques (a property much

appreciated when we have to invertN �N matrices, whereN is the size of the data set).

For � ! 1, the Matern approaches the Gaussian squared exponential3 covariance function.

Such a covariance function has sample functions with infinitely many derivatives which are there-

fore smooth and continuous (as observed in the example in Section 2.2.1). In the machine learning

community, this covariance function became a popular choice after Rasmussen demonstrated that a

GP with such a covariance function performed as well as, if not better than, other popular models like

neural networks (Rasmussen, 1996a). It is usually expressed asC(xi;xj) = v exp ��12(xi � xj)TW�1(xi � xj)� (2.3)

with W�1 = diag[w1 : : : wD℄ and where each parameterwd (sometimes referred to as roughness

parameter) relates to the correlation length in directiond (wd = 1=�2d). As already mentioned, the

correlation length represents the length along which successive values are strongly correlated, the

correlation diminishing exponentially as the distance between the points increases. Then, if�d is

large, a typical function is expected to be nearly constant in that direction and the corresponding input

feature can then be thought of as being irrelevant, as in the Automatic Relevance Determination tool

of MacKay and Neal (Neal, 1995; MacKay, 1994). Here, we only consider a diagonalW, but a full

matrix, allowing for modelling interactions between different input dimensions, can be used (Vivarelli

3This covariance function is sometimes referred to simply as‘Gaussian covariance function’, in statistics, or ‘squared
exponential covariance function’ in the machine learning community.
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and Williams, 1999). The parameterv is the variance of the process, controlling the overall vertical

scale of variation relative to the zero mean of the process inthe output space (the vertical amplitude

of variation of a typical function). As we will see in Chapter3, this covariance function is of special

importance to us as it allows for the exact evaluation of integrals involved when dealing with noisy

inputs.

Non-stationary covariance function

If the covariances are believed not to depend on the distancebetween the points in the input space but

on the values the inputs take, one can consider non-stationary covariance functions. The simplest one

is the one corresponding to a linear trend,C(xi;xj) = DXd=1 �dxdi xdj ; (2.4)

wherexdi is thedth component ofxi 2 RD. This covariance function is easily derived by considering

a linear model with a Gaussian prior on the parameters: Letf(x) = xTw andp(w) = N (0;���w)
with ���w = diag[�1 : : : �D℄. We then haveE[f(xi)jxi℄ = E[xTi w℄ = xTi E[w℄ = 0
and therefore Var[f(xi)jxi℄ = E[(xTi w)2℄ = xTi E[wwT ℄xi = xTi ���wxi :
Similarly, the covariance betweenf(xi) andf(xj) isCov[f(xi); f(xj)jxi;xj ℄ = xTi ���wxj = DXd=1 �dxdi xdj :
Although we have not yet discussed the relationship betweenGPs and parametric models, we can al-

ready feel the tight link between Bayesian parametric modelling and the GP model, as here, the form

of the covariance function can be thought of as dictated by the form of the parametric model assumed

in the first place.

In (Paciorek and Schervish, 2004), a class of non-stationary covariance functions is introduced,

which includes a non-stationary version of the Matern covariance. Also, (Gibbs, 1997) uses a similar
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form to that of the Gaussian covariance function (2.3), allowing for spatially varying length scales by

letting�d be a function ofx.

Following the work of Neal (Neal, 1995), Williams derives analytically the covariance function

corresponding to networks with sigmoidal and Gaussian hidden units (Williams, 1997a):C(xi;xj) = 2� sin�10� 2~xTi S~xjq(1 + 2~xTi S~xi)(1 + 2~xTj S~xj)1A (2.5)

that corresponds to the Multi-Layer Perceptron (neural network with sigmoidal transfer function),

which is in the range[�1; 1℄, where~x is the input augmented by a unit entry (by analogy with the bias

term), andS is the covariance matrix of the normally distributed hiddenunit weight.4

An alternative to a non-stationary GP is to use a mixture of stationary processes, allowing for

variable smoothness in different parts of the input space, as done in (Tresp, 2001; Rasmussen and

Ghahramani, 2002; Shi et al., 2002).

2.3 GP for modelling noisy observations

We now turn to the use of Gaussian Processes in regression problems. Given a set ofN D-dimensional

inputs,xi 2 RD, and corresponding observed scalar outputs,ti 2 R, we wish to find a mapping

between these inputs and outputs so as to be able to make predictions of the system’s future responses,

given new inputs. Due to external disturbances (such as measurement noise), the observations are seen

as noisy versions of the ‘true’ system’s responses. Although more ‘realistic’ noise models have been

considered (Mackay, 1997; Gibbs, 1997; Goldberg et al., 1998; Murray-Smith and Girard, 2001),

we restrict our attention to an additive white noise with a priori unknown variancevt (the noise is

independent and identically distributed across observations). The data generative mechanism can

then be written ti = yi + �i ; (2.6)

4This covariance function has been implemented by Rasmussen(http://www.gatsby.ucl.ac.uk/vcarl/Code) in the formC(xi;xj) = v sin�10� ~xTi S~xjq(1 + ~xTi S~xi)(1 + ~xTj S~xj)1A :
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for i = 1 : : : N , whereyi = f(xi) is the noise-free response of the system to the inputxi and�i � N (0; vt).
2.3.1 From the joint . . .

For the moment, we do not wish to specify the form of the covariance function and simply assume

that it depends on a set of unknown parameters�. If f(x) is a zero-mean GP with covariance functionC(xi;xj), then, for givenx1; : : : ;xn, the joint probability distribution off(x1); : : : ; f(xn) is normal

with zero mean vector and covariance matrix��� such that�ij = C(xi;xj). The noise being white

with variancevt, we simply havep(t1; : : : ; tnjx1; : : : ;xn) = N (0;Kn) with Kn = ���+ vtI ; (2.7)

whereI is then� n identity matrix.

We can splitt1; : : : ; tn into two sets, or, for our purpose, into one vectort = [t1; : : : ; tN ℄T and

one scalart� (and similarly for the corresponding inputs). SplittingKn accordingly, we can write the

joint distribution as follows:p(t; t�jX;x�) / exp0B��12 264 tt� 375T 264 K k(x�)k(x�)T k(x�) 375�1 264 tt� 3751CA ; (2.8)

whereK is now anN�N matrix, giving the covariances betweenti andtj (Kij = C(xi;xj)+vtÆij ,
for i; j = 1 : : : N and whereÆij = 1 for i = j and zero otherwise),k(x�) is anN � 1 vector giving

the covariances betweenti andt�, such thatki(x�) = C(x�;xi) for i = 1 : : : N , andk(x�) is the

variance oft�, that isk(x�) = C(x�;x�) + vt.
It is from this joint distribution that we perform the learning and prediction task, by respectively

marginalizing and conditioning on the observed data5 (see Figure 2.5).

2.3.2 . . . To the marginal . . .

Once we have observedD = fxi; tigNi=1, the likelihood of the data corresponds to the appropriate

marginal part ofp(t; t�jx;x�). It corresponds to the joint probability distributionevaluatedat the

5Refer to Appendix A for a brief note on joint, marginal and conditional Gaussian distributions.
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Figure 2.5: Modelling with Gaussian Processes (circled variables are random variables, non-circled
ones are observed/given). For givenfx1; : : : ;xN ;x�g, the corresponding set of random variablesff(x1); : : : ; f(xN ); f(x�)g have a joint multivariate Gaussian distribution. With the additive inde-
pendent white noise assumption, the corresponding circledft1; : : : ; tN ; t�g are also jointly normally
distributed. The marginal part of the joint gives us the probability of the dataft1; : : : ; tNg, and the
posterior predictive distribution off(x�) (or equivalentlyt�) corresponding tox� is obtained by con-
ditioning on the data andx�.
observed data: p(t1; : : : ; tN jx1; : : : ;xN ) = N (0;K) ; (2.9)

whereK is theN �N ‘data covariance matrix’.

Let��� = f�; vtg be the set of free parameters (parameters� of the covariance function and the

noise variancevt). Here, we take a maximum-likelihood approach and find the unknown parameters

by minimising L(���) = � log[p(tjx)℄ = N2 log(2�) + 12 log jKj+ 12tTK�1t ; (2.10)

wherejKj denotes the determinant ofK. For doing so, we use a conjugate gradient optimisation

technique with line-search (Rasmussen, 1996a), that requires the computation of the derivatives of theL(���) with respect to each parameter�j of ���:�L(���)��j = 12Tr �K�1 �K��j �� 12tTK�1 �K��jK�1t ; (2.11)
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whereTr denotes the trace. This requires the inversion of theN � N covariance matrixK at each

iteration which can be computationally demanding asN increases (techniques have recently been

developed to reduce the computational cost, see (Williams and Seeger, 2001; Seeger et al., 2003;

Murray-Smith and Pearlmutter, 2003; Shi et al., 2002)). Note that, for non-zero-mean processes, the

method of restricted (or residual) maximum-likelihood canbe used (Patterson and Thompson, 1971).

We refer to (Rasmussen, 1996a; Neal, 1997) for a Bayesian treatment, where priors are put on the

parameters of the covariance function.

2.3.3 . . . And the conditional

Having found the set of most likely parameters, the predictive (posterior) distribution oft� corre-

sponding to a new given input6 x� is readily obtained by conditioning the joint probability distributionp(t; t�jx;x�) on the observed dataD andx�. It can be shown (Von Mises, 1964) that this conditional

distributionp(t�jD;x�) is Gaussian, with meanE[t�jD;x�℄ = k(x�)TK�1t (2.12)

and variance Var[t�jD;x�℄ = k(x�)� k(x�)TK�1k(x�) : (2.13)

We are in general more interested in the predictive distribution of the noise-freef(x�). Denoting

the predictive mean by�(x�) and the predictive variance by�2(x�), we directly have8><>:�(x�) = k(x�)TK�1t�2(x�) = C(x�;x�)� k(x�)TK�1k(x�) : (2.14)

The most probable output�(x�) can then be used as an estimate for the response of the system

and�(x�), the associated uncertainty, can define a confidence interval for the predictor (error-bars�2�(x�)). As the data are used directly for making predictions, the uncertainty of the model pre-

dictions depends on the local data density, and the model complexity relates to the amount and the

distribution of available data (Williams et al., 1995; Qazaz et al., 1996).

6Note that since there is no particular ordering of the inputs, x� can be in[x1;xN ℄, thus corresponding to smoothing or
filtering. If x� < x1 or x� > xN , it corresponds to an extrapolation task (or prediction in the last case).
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There are two alternative ways of writing the predictive mean, giving more insight into this esti-

mate:�(x�) can be seen as a weighted sum of the observed targets,�(x�) = ���T t with ���T = k(x�)TK�1 ; (2.15)

where��� is the vector of weights (also called smoothing or effectivekernel), or as a linear combination

of k(x�) and the observations:�(x�) = k(x�)T��� with ��� = K�1t : (2.16)

As the number of data points increases, the value of the beta-coefficients becomes larger and

the amplitude of the smoothing kernel (alpha-coefficients)smaller. The latter relates directly to the

behaviour ofk(x�), depending on the number of data points as well as on how far/close the newx�
is from the training inputs.

The following example illustrates the GP modelling of noisydata. In this particular case, we

choose the data to actually come from a realisation of a zero-mean Gaussian Process with Gaussian

covariance function, wherew = 0:04 (corresponding to a correlation length of5) andv = 2, given a

one-dimensional argumentx in [0; 10℄. We selectN = 10 training cases at random and corrupt the

outputs with a white noise with variance0:01. Starting the optimisation of the minus log-likelihood

with an initial ‘guess’ of1 for all parameters, it converges toL(���) = �0:9765 after100 iterations.

The Maximum Likelihood (ML) parameters found arew = 0:0531, v = 1:4363 andvt = 0:0076.

Both v and vt are under-estimated, whereasw is over-estimated but these values are satisfactory,

considering the very small number of data points and their unevenly spread in the input space. We

then make two predictions, atx� = 1 andx� = 9. Figure 2.6 (left) shows the underlying function

(that is the realisation of the ‘true’ underlying GP), the training cases (crosses) and the predictions

with their�2� error-bars (circles). The right upper plot corresponds to the covariances between the

test and training cases (forx� = 1, crosses andx� = 9, circles) and the bottom plot to the smoothing

kernels.

For x� = 1, which is between training points, the predictive varianceis small, as the model is

confident about its prediction, but forx� = 9, the error-bars are significantly larger, as the the test

input lies in a region where there are few or no training inputs. Indeed, the plot of the covariances
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Figure 2.6: Left: GP modelling of the noisy observations (crosses). Mean predictions atx� = 1 andx� = 9 with their associated error-bars (circles), along with thetrue function (continuous line). Right:
Covariances between the test and the training inputs (upperplots), and smoothing kernels (bottom
plots). The crosses correspond tox� = 1 and the circles tox� = 9.

between the test and training inputs indicates that, those with x� = 9 diminish more rapidly and to

smaller values than those withx� = 1.

Figure 2.7 shows samples drawn from the zero-mean GP prior (dashed lines) and from the predictive-

posterior process, conditioned on the training data and100 test inputsx� in [0; 10℄ (that is, the realisa-

tions are drawn from a100-dimensional normal distribution, with mean vector�(x�) and covariance

matrix�2(x�), computed for100 x�). We can notice the ‘edge effect’ fromx = 8, where the samples

start diverging, due to the lack of training data.

In all our experiments, we assess the predictive performance of the model by computing the aver-

age squared error, E1 = 1Nt NtXi=1(yi � ŷi)2 ;
and the average negative log-predictive densityE2 = 12Nt NtXi=1 �log(2�) + log(�2i ) + (yi � ŷi)2�2i � ;
whereyi is the ‘true’ output,̂yi is the model estimate (predictive mean),�2i the associated predictive

variance and the average is over the numberNt of test points. This last measure of predictive perfor-
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Figure 2.7: Samples from the prior process (dashed lines) and from the posterior (dotted lines), con-
ditioned on the training data (crosses), forx 2 [0; 10℄.
mance is of greater interest thanE1 as it accounts for the model uncertainty (the predictive variance).

It trades-off between the quality of the estimate and the accuracy of the model (how confident the

model is in its prediction).

For this example, we obtainE1 = 0:0113 andE2 = �0:1932 for the prediction atx� = 1 andE1 = 0:0657, E2 = 0:2038 for that atx� = 9. The smallerE1 and the more negativeE2, the ‘better’

the prediction is.

2.4 Relationship to Bayesian parametric modelling

For the reader more familiar with parametric models and the Maximum-Likelihood approach, this last

section might be of interest, as we simply recall the Bayesian approach to parametric modelling and

how GPs fit into this framework.

The Bayesian paradigm rests on Bayes’ formula, which comes from a ‘double use’ of the defini-

tion of the joint probability density as the product of marginal and conditional densities: Letz1 andz2 be two continuous variables andp(z1; z2) their normalised probability density. By definition, the
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marginal probability density forz2 is obtained by integratingz1 out, asp(z2) = Z p(z1; z2)dz1 ; (2.17)

and the conditional probability density forz1 givenz2 isp(z1jz2) = p(z1; z2)R p(z1; z2)dz1 = p(z1; z2)p(z2) : (2.18)

From these definitions, it follows that the joint probability density is given byp(z1; z2) = p(z1jz2)p(z2) : (2.19)

Similarly, if we consider the marginal forz1 and the conditional forz2, we can writep(z1; z2) = p(z2jz1)p(z1) : (2.20)

Bayes’rule is then simply obtained by equating (2.19) and (2.20), asp(z1jz2)p(z2) = p(z2jz1)p(z1) ;
leading to p(z1jz2) = p(z2jz1)p(z1)p(z2) = p(z2jz1)p(z1)R p(z2jz1)p(z1)dz1 (2.21)

where the second equality is obtained using (2.17) along with (2.20).

Although Bayes’ formula can first appear as a mathematical tautology, the beauty of the Bayesian

approach is to interpret it as a combination of states of information which have been translated into

probability densities. Equation (2.21) therefore tells ushow to update our state of information onz1
givenz2, i.e. how to go fromp(z1) to p(z1jz2). The unconditionedp(z1) is then called theprior, to

convey the idea that it represents our state of knowledge before observingz2. In the same logic, the

conditionedp(z1jz2) is theposteriorandp(z2jz1), seen as a function ofz1, is thelikelihood of z1,

based onz2. The denominatorp(z2), independent ofz1 (the variable of interest), is the normalising

constant, calledevidenceor marginal likelihood, obtained by integrating out the parametersz1. Up to

the normalising constantp(z2), the posterior ofz1, given thatz2 has been observed, is then propor-

tional to its likelihood multiplied by its prior.
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When applied to parametric data modelling,z1 corresponds to the parametersw the model de-

pends on, andz2 to the observed dataD. Then, equation (2.21) enables us to update our prior on the

parameters, wherep(z2jz1) corresponds to the probability of the data when the parameters are fixed:p(wjD) / p(Djw)p(w) : (2.22)

Seen as a function of the parameters,p(Djw) is the likelihood ofw. For fixedw, p(Djw) corresponds

to the generative model for the data: Given our white noise assumption,� � N (0; vt), ti = f(xi)+ �i
reads as E[tijxi;w℄ = f(xi) +E[�i℄ = f(xi)Var[tijxi;w℄ = Var[�i℄ = vt ;
and we havep(Djw) = p(tjX;w) =QNi=1 p(tijxi;w) wherep(tijxi;w) = Nti(f(xi); vt).

The predictive distribution off(x�) corresponding to a newx� is obtained by integration over the

posterior distribution of the parameters:p(f(x�)jD;x�) = Z p(f(x�)jD;x�;w)p(wjD;x�)dw ; (2.23)

where it is in general assumed that the posterior is independent of the new input, such that we havep(wjD;x�) = p(wjD).
Note that the normalised distributions require the evaluation of p(D) = R QNi=1 p(tijw)p(w)dw

which is usually intractable, even in simple cases. It can besolved numerically, using Markov-Chain

Monte-Carlo (MCMC) methods, to get samples from the posterior (Neal, 1993; Mackay, 1999), or,

given an approximate analytical treatment, by computing the maximum a posteriori (MAP) estimator

of w after maximisation of the posterior (Mackay, 1997).

As we have seen, the GP ‘prior’ is imposed directly on the joint p(z1; z2), wherez1 now repre-

sents the new function outputy� andz2 the sety1; : : : ; yN (or equivalentlyt1; : : : ; tN ). Then, given

the independent noise assumption,p(z2) corresponds to the marginal probability distribution for the

data and the predictive distribution ofy�, p(z1jz2), is obtained using equation (2.18). We thought

recalling this point is important as it might be misleading calling the GP model Bayesian, as is some-

times done: The prior put on the space of functions comes fromthe very probabilistic nature of the
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model, not out of a use of Bayes’ formula. At least in its most ‘basic’ form (the one considered here,

that is without setting hyper-priors on the parameters of the covariance function), the GP machinery

relies on the definition of conditional probabilities, not on Bayes’ formula.

Finally, it might be helpful to interpretti = f(xi) + �i as follows:f(xi) is onerandom variable

(RV) ‘coming from’ a GP with zero-mean and covariance functionC(xi;xj). Therefore,f(xi) has

zero-mean and varianceC(xi;xi). Assuming� � N (0; vt) is independent off(xi), we haveE[tijxi℄ = 0Var[tijxi℄ = C(xi;xi) + vt :
Now, for two inputsxi andxj , the corresponding RVsf(xi),f(xj), ‘coming from’ the same GP, have

a joint normal distribution, implyingp(ti; tjjxi;xj) = N 0B�264 00 375 ;264 Var[tijxi℄ Cov[ti; tj jxi;xj ℄Cov[tj ; tijxj ;xi℄ Var[tj jxj ℄ 3751CA= N 0B�264 00 375 ;264 C(xi;xi) + vt C(xi;xj)C(xj ;xi) C(xj ;xj) + vt 3751CA :
The very point of the GP model is to explicitlymodelthe correlations between the observations.

Random functions are very complicated mathematical objects but the way we use them can be thought

of more as a ‘tool’ from which stems the feasibility of modelling covariances. Indeed, if we were to

assume thaty1; : : : ; yN corresponding tox1; : : : ; xN were jointly normal (with zero-mean for sim-

plicity), this would mean having to determineN(N + 1)=2 parameters (the entries of theN � N
covariance matrix), with onlyN observations! But if we enter the realm of stochastic processes and

view y1; : : : ; yN as an incomplete realisation of a Gaussian random function with zero-mean and

covariance functionC(xi;xj), the covariances between all pairs of points are simply obtained by

computingCov[yi; yjjxi;xj ℄ = C(xi;xj) whereC(:; :) typically depends on very few parameters

(D + 1 in the case of the covariance function given by (2.3)).
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Chapter 3

Dealing with noisy inputs

In the previous chapter, we saw that, with the GP model, the predictive distribution of the output

corresponding to a new noise-free input is Gaussian. We now address the problem of predicting

the system output when the input is noisy (uncertain). In this case, the integration over the input

distribution leads to a non-Gaussian predictive distribution. We present an analytical approach that

consists of computing only the mean and variance of this distribution (Gaussian approximation).

We show how, depending on the form of the covariance functionof the process, we can evaluate

these moments exactly or approximately (within a Taylor approximation of the covariance function).

On a simple static numerical example, we compare ourGaussian approximationto the numerical

approximation of the true predictive distribution by simple Monte-Carlo.

In Section 3.6, we indicate how a similar approximation can be taken to deal with the challenging

problem of training a GP model with noisy inputs. Assuming a Gaussian covariance function, we

show how the mean and covariance function of the noisy (non-Gaussian) process can be derived,

accounting for the input noise.

3.1 Introduction

So far, we have only considered the inference task with noise-free inputs, but in many situations

the inputs can be noisy, uncertain or ultimately missing (complete noise). Noisy inputs can arise in

different situations, depending on the nature of a particular application.

29



30 CHAPTER 3. DEALING WITH NOISY INPUTS

3.1.1 Background

In statistics, models dealing with uncertain inputs are known aserrors-in-variablesmodels (Kendall

and Stuart, 1958). Two principal error-in-variables models are the ‘classical model’ and Berkson’s

model. For the classical model, the observed input is seen asvarying around a true value, a situation

arising when the system senses the inputs imperfectly, so that we observe a noise corrupted version of

the true inputs. With Berkson’s model, the observed input isfixed and the true one is subject to random

errors with zero mean. This model is useful for situations when the observed input is set to some value

but the unobserved true input varies about this setting. Estimating the unknowns (model parameters

and true inputs) is a difficult task for nonlinear models and many techniques consist of substituting a

single value for the unseen input (as done in regression calibration, moment reconstruction (Freedman

et al., 2004)). In (Snoussi et al., 2002), the problem is addressed using a stochastic version of the

EM algorithm, treating the true inputs as hidden variables.In (Dellaportas and Stephens, 1995), a

Bayesian approach is taken to infer the unknown parameters using MCMC techniques, showing that,

in this framework, the formulation for a Berkson-type modelis the same as that for a classical model

(the distinction being made otherwise).

In the machine learning community, the emphasis is not so much on recovering the true value of

the missing or noisy data but on the estimation of the parameters of the model when data is missing.

In (Ahmad and Tresp, 1993), they show that closed form solutions exist when using Gaussian basis

function networks and, in the case of noisy features, the solution depends on the form of the noise.

Also, mixture models were proved to deal naturally with missing features, by a dual use of the EM

algorithm (Ghahramani and Jordan, 1994a). For a feed-forward neural network, the missing features

have to be integrated out in order to compute the likelihood of the data, thus requiring a model of the

input density. In (Tresp et al., 1994), they estimate the unknown input distribution directly from the

data using a Gaussian mixture model. In this chapter, the newinput is assumed to be corrupted by a

white noise and we assume that is has a Gaussian probability distribution.

3.1.2 Motivation

As we will see in greater detail in the next chapter, our interest in the prediction at a noisy input is mo-

tivated by the iterative multiple-step-ahead prediction of time-series. Lety1; : : : ; yt be the observed
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time-series. Assuming the simple modelyt+1 = f(yt), we wish to predict the value of the time-series

at, say, timet + k. Having formed the input/output pairs (where the input now corresponds to a de-

layed value of the time-series), we can train a GP to learn themappingf(:). With this one-step ahead

model, the prediction ofyt+k is done by iterating the model up tok, i.e. by predictingyt+1, yt+2, and

so on, up toyt+k. Since the time-series is known up to timet, with the GP model, the predictive dis-

tribution of yt+1 is readily obtained: We havep(yt+1jD; yt) = N (�(yt); �2(yt)), as given by (2.14)

evaluated atx� = yt. For the next time-step, a naive approach would simply use�(yt) as an estimate

for yt+1 and evaluatep(yt+2jD; ŷt+1) = N (�(ŷt+1); �2(ŷt+1)), whereŷt+1 = �(yt). As we will

see, this approach is not advisable for two reasons: it is over-confident about the estimate (leading

to predictions with unrealistically small uncertainties)and it is throwing away valuable information,

namely, the variance associated with the estimate ofyt+1. If we wish to account for the uncertainty

onyt+1, we need to be able to evaluatep(yt+2jD; yt+1), whereyt+1 � N (�(yt); �2(yt)). This means

being able to derive the predictive distribution ofyt+2 corresponding to the normally distributed ran-

dom inputyt+1.
The necessity of being able to make a prediction at an uncertain or noisy input is also obviously

relevant for static problems. In real experiments and applications, we use sensors and detectors that

can be corrupted by many different sources of disturbances.We might then only observe a noise-

corrupted version of the true input and/or the system sensesthe input imperfectly. Again, if the model

does not account for this ‘extra’ uncertainty (as opposed tothe uncertainty usually acknowledged

on the observed outputs), the model is too confident, which ismisleading and could potentially be

dangerous if, say, the model’s output were to be used in a decision-making process of a critical appli-

cation. Note that, in the static case, the approach we suggest assumes prior knowledge of the input

noise variance.

In the following section, we present the problem of making a prediction at a noisy input for the

Gaussian Process model, and then highlight the analytical approximation that we take, leading to the

computation of only the predictive mean and variance of the new predictive distribution.
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3.2 Prediction at an uncertain input

We assume that, based on dataD = fxi; tigNi=1 (where thexi’s are noise-free), a zero-mean GP with

covariance functionC(xi;xj) has been used to model the input/output relationship,ti = yi + �i,
whereyi = f(xi) and�i has zero-mean and variancevt.

As we saw in Chapter 2, with this model, given a new ‘test’ input x, and based on the observed

dataD, the predictive distribution of the corresponding outputy = f(x) is readily obtained.1 This

distribution is Gaussian,2 p(yjD;x) = Ny(�(x); �2(x)), with mean and variance respectively given

by 8>>>>><>>>>>:�(x) = NXi=1 �iC(x;xi)�2(x) = C(x;x) � NXi;j=1K�1ij C(x;xi)C(x;xj) (3.1)

with ��� = K�1t. Figure 3.1 shows the predictive means (dashed line) and their 2� error-bars (dotted

lines) computed for81 test inputs in[1; 10℄. A Gaussian Process with zero-mean and Gaussian covari-

ance function (given by equation (2.3)) was trained using only N = 10 input/output pairs (crosses),

where the outputs correspond to noise corrupted versions off(x) = sin(x)=x (the noise level isvt = 0:001). Near the data points, the predictive variance (model uncertainty) is small, and increasing

as the test inputs are moved far away from the training ones.

Now, let the new input be corrupted by some noise���x � N (0;���x), such thatx = u + ���x. That

is, we wish to make a prediction atx � N (u;���x) and to do so, we need to integrate the predictive

distributionp(yjD;x) over the input distribution3p(yjD;u;���x) = Z p(yjD;x)p(xju;���x)dx ; (3.2)

wherep(yjD;x) = 1p2��2(x) exp h�12 (y��(x))2�2(x) i
. Sincep(yjD;x) is a nonlinear function ofx, the

1Note that in the previous chapter we denoted the new input byx� and the corresponding function output byf(x�) but
we change here our notation for simplicity.

2The notationy � N (�(x); �2(x)) indicates thaty is ‘distributed as’, that is,p(y) = Ny(�(x); �2(x)), for y 2℄�1;+1[, whereNy is the normalised probability density.
3When the bounds are not indicated, it is assumed that the integrals are evaluated from�1 to +1.
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Figure 3.1: Predictive means (dashed line) and2� error-bars (dotted lines) corresponding to81 noise-
free test inputs. A zero-mean GP was trained on10 training points (crosses) to learn the underlying
function (continuous line).

new predictive distributionp(yjD;u;���x) is not Gaussian and this integral cannot be solved without

resorting to approximations.

3.2.1 Possible approximations

Many techniques are available to approximate intractable integrals of this kind. Approximation meth-

ods are divided into deterministic approximations and Monte-Carlo numerical methods. The most

popular deterministic approaches are variational methods,4 Laplace’s method and Gaussian quadra-

ture that consist of analytical approximations of the integral. We refer to (Mackay, 2003) for a review

of these methods.

Numerical methods relying on Markov-Chain Monte-Carlo sampling techniques evaluate the in-

tegral numerically, thus approximating the true distribution (see e.g. (Neal, 1993)). In our case, the

numerical approximation by simple Monte-Carlo is straightforward since we simply need to sample

from a Gaussian distributionNx(u;���x). For each samplext from this distribution,p(yjD;xt) is

4See http://www.gatsby.ucl.ac.uk/vbayes/ for references.
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normal, with mean and variance given by equations (3.1):p(yjD;u;���x) ' 1T TXt=1 p(yjD;xt) = 1T TXt=1 Ny(�(xt); �2(xt)) : (3.3)

The numerical approximation ofp(yjD;u;���x) is then a mixture ofT Gaussians with identical mixing

proportions, and as the number of samplesT grows, the approximate distribution will tend to the true

distribution. We refer to (Titterington et al., 1985) for a review of finite mixture models.

In Figure 3.2, the ‘true’ test inputs areu = 2 (left) and andu = 6 (right) but we observex
(asterisks). For100 samplesxt from p(x), centred at the noisyx with variancevx = 1, we compute

the corresponding predictive means�(xt) (crosses) and their error-bars�2�(xt) (dots).

−2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

Prediction at x= 2.4

x

N(u=2,v
x
=1) 

x observed 

f(u) 

−2 0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Prediction at x= 6.9

x

N(u=6,v
x
=1) 

x observed 

f(u) 

Figure 3.2: Monte-Carlo approximation for the prediction at a noisy inputx (asterisk). The true input
distribution isx � Nx(u; vx), for u = 2 (left), u = 6 (right) andvx = 1 (circles indicate the outputf(u) corresponding to the noise-freeu). For100 samplesxt from p(x), with meanx and variancevx,
we compute�(xt) (crosses) and the associated error-bars�2�(xt) (dots).

The histograms of the samples at which predictions are made are shown in Figure 3.3. The cir-

cle and asterisk indicate the noise-freeu and noisy inputsx respectively. After having computed the

losses (squared error and negative log-predictive density) of the predictions associated with eachxt,
we find the input value for which the loss is minimum (indicated by a triangle). Note how closer to

the true input thisxt is, compared to the observed input.

We now focus on an analytical approximation which consists of computing only the first two
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Figure 3.3: Histogram of the samplesxt from p(x) at which predictions were made, when the true
input (circle) isu = 2 (left) andu = 6 (right). Also plotted, the observed noisy input (asterisk), taken
as the mean ofp(x), and the samplext that leads to the minimum loss (triangle).

moments, the mean and variance, ofp(yjD;u;���x).
3.2.2 Analytical approximation

To distinguish from�(u) and�2(u), the mean and variance of the Gaussian predictive distributionp(yjD;u) in the noise-free case, we denote bym(u;���x) the mean and byv(u;���x) the variance of

the non-Gaussian predictive distributionp(yjD;u;���x), corresponding tox � Nx(u;���x). This can

be interpreted as aGaussian approximation, such thatp(yjD;u;���x) � N (m(u;���x); v(u;���x)) :
From (3.2), the mean and variance are respectively given bym(u;���x) = Z y�Z p(yjD;x)p(xju;���x)dx� dyv(u;���x) = Z y2�Z p(yjD;x)p(xju;���x)dx� dy �m(u;���x)2 ;

where we have Z yp(yjD;x)dy = �(x)Z y2p(yjD;x)dy = �2(x) + �(x)2 :
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We can then writem(u;���x) = Z �(x)p(xju;���x)dxv(u;���x) = Z �2(x)p(xju;���x)dx+ Z �(x)2p(xju;���x)dx�m(u;���x)2
or, for short,5 m(u;���x) = Ex[�(x)℄ (3.4)v(u;���x) = Ex[�2(x)℄ +Ex[�(x)2℄�m(u;���x)2 : (3.5)

Replacing�(x) and�2(x) by their expressions, we haveEx[�(x)℄ = NXi=1 �iEx[C(x;xi)℄ (3.6)Ex[�2(x)℄ = Ex[C(x;x)℄ � NXi;j=1K�1ij Ex[C(x;xi)C(x;xj)℄ (3.7)Ex[�(x)2℄ = NXi;j=1�i�jEx[C(x;xi)C(x;xj)℄ : (3.8)

The new predictive mean and variance are then given bym(u;���x) = NXi=1 �iEx[C(x;xi)℄v(u;���x) = Ex[C(x;x)℄� NXi;j=1(K�1ij � �i�j)Ex[C(x;xi)C(x;xj)℄�m(u;���x)2 (3.9)

Let l = Ex[C(x;x)℄ = Z C(x;x)p(x)dx (3.10)li = Ex[C(x;xi)℄ = Z C(x;xi)p(x)dx (3.11)lij = Ex[C(x;xi)C(x;xj)℄ = Z C(x;xi)C(x;xj)p(x)dx ; (3.12)

wherep(x) is the input noise distribution.

How solvable integrals (3.10)-(3.12) are basically depends on the form of the covariance function.

5Note these equations could have been readily obtained usingthe law of iterated expectations and conditional variances
(see appendix A).
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1. If the covariance function is e.g. linear, Gaussian, polynomial (or a mixture of those), we can

compute these integrals exactly and obtain theexactmean and variance. In Section 3.4, we

derive the exact moments for the linear and Gaussian covariance functions.

2. Otherwise, we can again approximate (3.10)-(3.12) in a number of ways. Since we are mostly

interested in closed form approximate solutions, we evaluate the integrals within a Taylor ap-

proximation of the covariance function around the meanu of x and obtain theapproximate

mean and variance.

Note that this second case, that requires approximations, might be required, if the form of the co-

variance function is definitely one for which one cannot solve the integrals exactly, or simply prefer-

able, if the integrals are tractable but at the cost of long and tedious calculations. Also, assuming one

has access to software like Mathematica or Matlab’s symbolic toolbox to compute the derivatives, the

solutions obtained using the proposed approximation provide a suitable performance/implementation

trade-off.

Figure 3.4 schematises the situation and highlights the analytical approximation we take. We now

turn to the evaluation of the mean and variance in the case where the covariance function is such that

approximations are needed to evaluate integrals (3.10)-(3.12) analytically.

3.3 Gaussian approximation: Approximate moments

We are going to approximate these integrals analytically toobtain approximate moments, based on a

Taylor approximation of the covariance function.

3.3.1 Delta method

We use the Delta method (also called Moment Approximation),which consists of approximating the

integrand by a Taylor polynomial. In the one-dimensional case, the Delta method is stated as follows

(Lindley, 1969; Papoulis, 1991): Letx be a random variable with meanEx[x℄ = u and variance
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Figure 3.4: Dealing with a noisy test input: With the GP model, given the dataD and a new inputx, the predictive distribution of the corresponding outputy = f(x) is readily obtained. Whenx
is noisy, orx � N (u; vx), the corresponding predictive distribution is obtained byintegration overx. Sincep(yjD;x) is nonlinear inx, the integral is analytically intractable. Although a numerical
approximation of the integral is possible, we concentrate on an analytical approximation. We suggest
computing the mean and the variance of the new predictive distribution, which is done exactly or
approximately, depending on the parametric form of the covariance functionC(:; :).Varx[x℄ = vx, andy = �(x). For sufficiently small�x = pvx and well-behaved� we can writeEx[y℄ ' �(u) + 12vx�00(u) (3.13)Varx[y℄ ' �0(u)2vx (3.14)

where�0 and�00 are the first and second derivatives of� evaluated atu.

These results are simply obtained by considering the expansion of �(x) as Taylor series aboutu,

up to the second order:y = �(x) = �(u) + (x� u)�0(u) + 12(x� u)2�00(u) +O([(x� u)3℄) : (3.15)

By taking the expectation on both sides, we directly find the approximation (3.13). For the variance,
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Neglecting the term inv2x for bothE[y2℄ andE[y℄2, we haveE[y2℄ � �(u)2 + vx�0(u)2 + �(u)�00(u)vxE[y℄2 � �(u)2 + �(u)�00(u)vx
leading to (3.14). This approximation is motivated by the fact that the Taylor approximation is useful

for small standard deviations (if�x is small, by Chebychev’s inequalityP (jx � uj > k�x) < 1k2 ),

such thatx will depart only a little fromu except on rare occasions and therefore(x�u) will be small

(Lindley, 1969).

There are obviously conditions which�(x) should fulfil to make the Taylor series possible (in the

neighbourhood ofu) and to avoid anomalies of behaviour away fromu. As in (Lindley, 1969), we do

not state such conditions and assume the covariance function to be such that the expressions are valid.

3.3.2 Approximate mean and variance

Letmap(u;���x) be the approximate mean, such thatmap(u;���x) = NXi=1 �ilapi
with lapi = Ex[Cap(x;xi)℄, and whereCap(x;xi) corresponds to the second-order Taylor polynomial

approximation ofC(x;xi) around the meanu of x,Cap(x;xi) = C(u;xi) + (x� u)TC0(u;xi) + 12(x� u)TC00(u;xi)(x� u) :
We directly have lapi = C(u;xi) + 12Tr[C00(u;xi)���x℄
so that the approximate mean ismap(u;���x) = �(u) + 12PNi=1 �iTr[C00(u;xi)���x℄ (3.16)

6Note that (3.14) can also be seen as a first-order estimate: Ifwe considery � �(u) + (x� u)�0(u), we haveE[y℄2 '�(u)2 and y2 = �(u)2 + 2�(u)(x� u)�0(u) + (x� u)2�0(u)2
leading toE[y2℄ = �(u)2 + vx�0(u)2 and therefore (3.14).
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where�(u) =PNi=1 �iC(u;xi) is the noise-free predictive mean computed atu (see Appendix B for

a note on this approximation).

Similarly, the approximate variance isvap(u;���x) = lap � NXi;j=1(K�1ij � �i�j)lapij �map(u;���x)2
with lap = Ex[Cap(x;x)℄ andlapij = Ex[Cap(x;xi)Cap(x;xj)℄, whereCap(:; :) is again the second

order Taylor approximation ofC(:; :). We havelap = C(u;u) + 12Tr[C00(u;u)���x℄
and lapij � C(u;xi)C(u;xj) + Tr[C0(u;xi)C0(u;xj)T���x℄ + 12C(u;xi)Tr[C00(u;xj)���x℄+12C(u;xj)Tr[C00(u;xi)���x℄ ;
where the approximation comes from discarding terms of higher order than���x inCap(x;xi)Cap(x;xj),
as discussed in the previous section. Similarly, approximating map(u;���x)2 bymap(u;���x)2 � NXi;j=1�i�j �C(u;xi)C(u;xj) + 12C(u;xi)Tr[C00(u;xj)���x℄+12C(u;xj)Tr[C00(u;xi)���x℄� ;
we find, after simplification,vap(u;���x) =�2(u) + 12Tr[C00(u;u)���x℄� NXi;j=1(K�1ij � �i�j)Tr[C0(u;xi)C0(u;xj)T���x℄� 12 NXi;j=1K�1ij (C(u;xi)Tr[C00(u;xj)���x℄ + C(u;xj)Tr[C00(u;xi)���x℄)

(3.17)

where�2(u) = C(u;u)�PNi;j=1K�1ij C(u;xi)C(u;xj) is the noise-free predictive variance.

Both approximate mean and variance are composed of the noise-free predictive moments plus cor-

rection terms. If���x is assumed diagonal, these correction terms consist of the sum of the derivatives
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of the covariance function in each input dimension, weighted by the variance of the new test input in

the same direction.

Figure 3.5 illustrates these results. The noise-free inputs areu = 2; 6 and9:5 but we observex = 2:4; 6:9 and9:2 (asterisks), sampled fromp(x) = Nx(u; vx) with vx = 1 (distributions plotted

at y = �0:8). The circles indicate the function outputf(u) corresponding to the noise-freeu’s. The

approximate meansmap(u; vx) and associated uncertainties�2pvap(u; vx) are plotted as triangles

and dotted lines. We can compare them to thenaive(noise-free) means,�(u), with error-bars�2�(u),
which do not account for the noise on the input. The right hand-side displays plots of the covariance

function (which is the squared exponential given by (2.3)) and its first and second derivatives, which

appear in the expressions for the approximate mean and variance (the continuous lines correspond to

the covariances atx = 2:4 and inputs in[1; 10℄ and the dashed lines to those atx = 6:9), the circles

indicating the covariances with the training points.
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Figure 3.5:Gaussian approximationto the prediction atx (asterisk), noisy version of the trueu =2; 6; 9:5, where the noise has variancevx = 1. Left: Approximate meanmap(x) and uncertainty�2pvap(x) (triangles). The noise-free moments (�(x) � 2�(x)) are indicated by crosses and the
circles show the function outputs corresponding to the noise-freeu’s. Right: From top to bottom,
covariance function and derivatives, betweenx 2 [1; 10℄ and the noisy test inputs (x = 2:4, continuous
line, andx = 6:9, dashed line), the circles indicating the covariances withthe training inputs.
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3.3.3 Approximating �(x) and �2(x) directly

In (Girard et al., 2003; Girard et al., 2002), we derived the approximate mean and variance by solving

equations (3.4) and (3.5) directly, that is replacing�(x) and�2(x) by their first and second order

Taylor approximations respectively. Applying (3.13) and (3.14) directly to�(x) and�2(x), we haveEx[�(x)℄ ' �(u) + 12Tr[���00(u)���x℄ (3.18)Varx[�(x)℄ ' Tr[���0(u)���0(u)T���x℄ (3.19)Ex[�2(x)℄ ' �2(u) + 12Tr[���200(u)���x℄ : (3.20)

Substituting intom(u;���x) = Ex[�(x)℄, we havem(u;���x) = �(u) + 12Tr[���00(u)���x℄
with �(u) =Pi �iC(u;xi) and���0(u) =Xi �iC0(u;xi) ; ���00(u) =Xi �iC00(u;xi) ;
so that we can write m(u;���x) =Xi �i�C(u;xi) + 12Tr[C00(u;xi)���x℄� : (3.21)

Similarly, we havev(u;���x) = Ex[�2(x)℄+Ex[�(x)2℄�m(u;���x)2 = Ex[�2(x)℄+Varx[�(x)℄,
that is v(u;���x) = �2(u) + Tr ��12���200(u) +���0(u)���0(u)T����x� ;
with �2(u) = C(u;u)�Pij K�1ij C(u;xi)C(u;xj) and���20(u) = C0(u;u) �Xij K�1ij [C0(u;xi)C(u;xj) + C(u;xi)C0(u;xj)℄���200(u) = C00(u;u) �Xij K�1ij [C00(u;xi)C(u;xj) + C(u;xi)C00(u;xj)+2C0(u;xi)C0(u;xj)T ℄ :
After simplification, we obtainv(u;���x) =C(u;u) + 12Tr[C00(u;u)���x℄�Xij K�1ij (C(u;xi)C(u;xj)+ 12Tr[(C00(u;xi)C(u;xj) +C(u;xi)C00(u;xj))���x℄)�Xij (K�1ij � �i�j)Tr[C0(u;xi)C0(u;xj)T���x℄ : (3.22)
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Obviously, the Taylor approximation of�(x) and�2(x) implies a second order Taylor approxima-

tion of the covariance function. Although these results arethe same as those obtained when working

with the covariance function, this approach lacks flexibility in that it does not highlight the depen-

dence on the form of the covariance function and it is therefore not clear that exact moments can be

computed in particular cases, as we will now illustrate.

3.4 Gaussian approximation: Exact moments

In the special cases of the linear and the Gaussian (squared exponential) covariance functions, we can

evaluate integrals (3.10)-(3.12) exactly.

3.4.1 Case of the linear covariance function

Let us write the linear covariance function asCL(xi;xj) = xTi Lxj whereL = diag[�1 : : : �D℄. In

the noise-free case, the prediction atu leads to a Gaussian distribution with mean and variance8>>>>><>>>>>:�L(u) = NXi=1 �iCL(u;xi)�2L(u) = CL(u;u) � NXi;j=1K�1ij CL(u;xi)CL(u;xj) : (3.23)

When we are predicting at a noisy input, the predictive mean and variance, now denoted bymexL
andvexL (the subscript indicating the exact linear case), are givenbymexL(u;���x) = NXi=1 �ilexLi (3.24)vexL(u;���x) = lexL � NXi;j=1(K�1ij � �i�j)lexLij �mexL(u;���x)2 (3.25)

where lexL = Ex[CL(x;x)℄ = Z xTLxNx(u;���x)dxlexLi = Ex[CL(x;xi)℄ = Z xTLxiNx(u;���x)dxlexLij = Ex[CL(x;xi)CL(x;xj)℄ = Z xTLxixTLxjNx(u;���x)dx :
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Using the formula giving the expectation of a quadratic formunder a Gaussian (see Appendix A),

we directly obtainlexL = uTLu+Tr[L���x℄ = CL(u;u) + Tr[L���x℄lexLi = uTLxi = CL(u;xi)lexLij = uT (LxixTj L)u+Tr[LxixTj L���x℄ = CL(u;xi)CL(xj ;u) + Tr[LxixTj L���x℄ :
In the linear case, the new predictive mean is then the same asthe noise-free one, as we havemexL(u;���x) =PNi=1 �iCL(u;xi) (3.26)

On the other hand, the variance becomesvexL(u;���x) = CL(u;u) + Tr[L���x℄� NXi;j=1(K�1ij � �i�j)Tr[LxixTj L���x℄)� NXi;j=1K�1ij CL(u;xi)CL(xj ;u) (3.27)

after simplification of the�i�j terms. Alternatively, in terms of the noise-free variance�2L(u),vexL(u;���x) = �2L(u) + Tr[L���x℄� NXi;j=1(K�1ij � �i�j)Tr[LxixTj L���x℄) : (3.28)

If we note thatC0L(u;xi) = �CL(u;xi)�u = Lxi andC00L(u;u) = �2CL(u;u)�u�uT = 2L, we can also write it

asvexL(u;���x) = �2L(u) + 12Tr[C00L(u;u)���x℄�PNi;j=1(K�1ij � �i�j)Tr[C0L(x;xi)C0L(x;xj)T���x℄)
(3.29)

As we would expect, in this case, the predictive mean and variance exactly correspond to the

approximate moments we would obtain within a first order approximation of the covariance function.

3.4.2 Case of the Gaussian covariance function

As noted in the previous chapter, the Gaussian covariance functionCG(xi;xj) = v exp ��12(xi � xj)TW�1(xi � xj)� (3.30)
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is of special importance as it has been shown that a GP with such a covariance function performed as

well as other popular nonlinear models like neural networks(Rasmussen, 1996a).

Let �G(u) and�2G(u) denote the noise-free predictive mean and variance,8>>>>><>>>>>:�G(u) = NXi=1 �iCG(u;xi)�2G(u) = CG(u;u) � NXi;j=1K�1ij CG(u;xi)CG(u;xj) (3.31)

where, according to (3.30),CG(u;u) = v. Now, for predicting atx � N (u;���x), we need to computemexG(u;���x) = NXi=1 �ilexGi (3.32)vexG(u;���x) = lexG � NXi;j=1(K�1ij � �i�j)lexGij �mexG(u;���x)2 ; (3.33)

where we directly havelexG = Ex[CG(x;x)℄ = v = CG(u;u), andlexGi = Ex[CG(x;xi)℄ ; lexGij = Ex[CG(x;xi)CG(x;xj)℄ :
For notational convenience, let us write the Gaussian covariance function as7 CG(xi;xj) = Nxi(xj ;W),
with  = (2�)D=2jWj1=2v. Using the product of Gaussians formula (see Appendix A), wedirectly

have lexGi = Z Nx(xi;W)Nx(u;���x)dx = Nu(xi;W +���x) : (3.34)

For the evaluation oflexGij , we need to use this product twice, leading tolexGij = 2 Z Nx(xi;W)Nx(xj ;W)Nx(u;���x)dx (3.35)= 2Nxi(xj ; 2W)Z Nx�xi + xj2 ;W2 �Nx(u;���x)dx (3.36)= 2Nxi(xj ; 2W)Nu �xi + xj2 ;���x + W2 � : (3.37)

7Although we writeCG(xi;xj) as a normalised probability density, we denote it byN since the variables involved are
not random.
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Exact predictive mean

ReplacinglexGi by its expression inmexG(u;���x), we havemexG(u;���x) = NXi=1 �iNu(xi;W +���x) ; (3.38)

and we can then directly check that, as we would expect,m(u;���x = 0) = �G(u). With W�1 =diag[w1; : : : ; wD℄, and assuming a diagonal���x, ���x = diag[vx1; : : : ; vxD℄, thedth element on the

diagonal of(W +���x)�1 is wd1+wdvxd . Recall that, in the noise-free case,wd relates to the variation

in directiond (linked to the correlation length). Now, this length-scaleis ‘widened’, proportionally to

the noise variance. Also, the vertical amplitude of variation, formally controlled byv, is now accord-

ingly weighted down byjI+W�1���xj�1=2. It is an overallflatteningphenomenon, with an increased

correlation length and decreased vertical amplitude.

It is useful to writemexG(u;���x) as acorrectedversion of�G(u). Using the matrix inversion

lemma, we have(W +���x)�1 =W�1 �W�1(W�1 +����1x )�1W�1, leading tomexG(u;���x) =PNi=1 �iCG(u;xi)Corr(u;xi) (3.39)

whereCG(u;xi) is the Gaussian covariance function betweenu andxi and withCorr(u;xi) = jI+W�1���xj�1=2 exp �12(u� xi)T��1(u� xi)� (3.40)

where��1 =W�1(W�1 +����1x )�1W�1, that simplifies into��1 =W�1 � (W +���x)�1, again

using the matrix inversion lemma.

Compared to the noise-free�G(u), the covariances between the new noisy input and the train-

ing inputs, formerly given byCG(u;xi), are now weighted byCorr(u;xi), thus accounting for the

uncertainty associated withu.
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Exact predictive variance

For the variance, replacinglexGij andlexG by their expression, we findvexG(u;���x) = CG(u;u) � 2 NXi;j=1(K�1ij � �i�j)Nxi(xj ; 2W)Nu �xi + xj2 ;���x + W2 ��mexG(u;���x)2 ;
with mexG(u;���x)2 = 2 NXi;j=1�i�jNu(xi;W +���x)Nu(xj ;W +���x)= 2 NXi;j=1�i�jNxi(xj ; 2(W +���x))Nu�xi + xj2 ;W+���x2 � :

For���x = 0, the new predictive variance becomesvexG(u;���x = 0) = CG(u;u)�2 NXi;j=1(K�1ij ��i�j)Nxi(xj ; 2W)Nu �xi + xj2 ;W2 ��mexG(u;���x = 0)2 ;
with mexG(u;���x = 0)2 = 2PNi;j=1 �i�jNxi(xj ; 2W)Nu �xi+xj2 ; W2 �. Recalling that the predic-

tive variance corresponding to a noise-freeu computed using the Gaussian covariance function is

given by �2G(u) = CG(u;u) � 2 NXi;j=1K�1ij Nu(xi;W)Nu(xj ;W)= CG(u;u) � 2 NXi;j=1K�1ij Nxi(xj ; 2W)Nu �xi + xj2 ;W2 �
we can again check thatvexG(u;���x = 0) = �2G(u).

As was done for the predictive mean, we can find another form for vexG(u;���x) where the Gaus-

sian covariance function appears weighted by a correction term. Using the matrix inversion lemma,

we have
����x + W2 ��1 = �W2 ��1 � �W2 ��1 ��W2 ��1 +����1x ��1 �W2 ��1

, and, with�x = xi+xj2 , we

can writelexGij = 2Nxi(xj ; 2W)Nu ��x;���x + W2 � = 2Nxi(xj ; 2W)Nu ��x;W2 �Corr2(u; �x) ;
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where Corr2(u; �x) = ������W2 ��1���x + I������1=2 exp �12(u� �x)T��1(u� �x)� (3.41)

with ��1 = �W2 ��1 ��W2 ��1 +����1x ��1 �W2 ��1 = 2W�1 � �12W +���x��1
. We can also show

that2Nxi(xj ; 2W)Nu ��x; W2 � = CG(u;xi)CG(u;xj), leading tolexGij = CG(u;xi)CG(u;xj)Corr2(u; �x) (3.42)

and thereforevexG(u;���x) = CG(u;u)�PNi;j=1(K�1ij � �i�j)CG(u;xi)CG(u;xj)Corr2(u; �x)�mexG(u;���x)2
(3.43)

In terms of�2G(u) plus correction terms, we can rewrite the variance asvexG(u;���x) = �2G(u) + NXi;j=1K�1ij CG(u;xi)CG(u;xj)(1� Corr2(u; �x))+ NXi;j=1�i�jCG(u;xi)CG(u;xj)(Corr2(u; �x)� Corr(u;xi)Corr(u;xj)) (3.44)

having replacedmexG(u;���x)2 by its expression, using (3.39).

It can be shown that the predictive mean and variance obtained in the Gaussian case tend to the

approximate mean and variance when���x tends to zero. As with Figure 3.5 for the approximate mo-

ments, Figure 3.6 shows the exact predictive mean and error-bars (triangles) obtained when predicting

at noisy inputs (asterisks).

3.5 Qualitative comparisons

Using the simple one-dimensional static example used throughout this chapter, we now compare the

predictive distributions given by the Monte-Carlo approximation and by theGaussian approximation,

with moments computed both exactly and approximately. We use the following notations:� MC, denotes the Monte-Carlo approximation to the true predictive distribution corresponding

to a noisy input, i.e.p(yjD;u;���x) � 1T Pt p(yjD;xt), whereT = 100;
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Figure 3.6: As in Figure 3.5, the triangles now indicate the exact predictive means with their error-
bars, within theGaussian approximationaccounting for the uncertainty on the noisy inputs (asterisks).� A, denotes theGaussian approximationthat computes only the mean and variance of this distri-

bution, and specificallyAap when these moments are computed using the Taylor approximation,

andAex when they are computed exactly (both using the Gaussian covariance function);� N , denotes thenaivepredictive mean and variances that do not account for the noise on the

input.

Figure 3.7 shows the predictive distribution given byMC (continuous),N (dashed),Aap (dots)

andAex (asterisks), when the true noise-free input is2 (left) and6 (right) and the input noise variancevx is 1. We can observe how the naive approach leads to a narrow distribution, peaked around its

mean value, since it does not account for the uncertainty on the input. In this example, the distribution

defined by the approximate moments is strongly similar to that defined by the exact ones, supporting

the idea that the approximation is a valid and useful one. TheMonte-Carlo approximation to the

true distribution highlights how the true distribution is non-Gaussian. Nevertheless, ourGaussian

approximationseems appropriate as it spreads about the area where most of the weight of the true

distribution seems to lie.

Figure 3.8 shows the histogram of the losses (squared errorE1 on the left and minus log predictive

densityE2 on the right) computed for each of the100 samples given by the Monte-Carlo approxima-

tion, when predicting atx = 2:4 (left) andx = 6:9 (right). For these two predictions, the average
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Figure 3.7: Predictive distributions (on the y-axis) obtained when predicting at a noisy input:MC
is the numerical approximation by simple Monte-Carlo,Aex andAap correspond to theGaussian
approximationwith moments computed exactly and approximately.N is thenaivepredictive distri-
bution that does not account for the noise on the input.

losses areE1 = 0:002 andE2 = �1:46, computed using the sample means and sample variances.

With Aex, we obtainE1 = 0:06 andE2 = �0:14, andE1 = 0:07 andE2 = 0:09 with Aap. The

naive approach leads toE1 = 0:02 andE2 = �1:29.
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Figure 3.8: Squared error (E1) and minus log-likelihood (E2) computed for100 samples of the Monte-
Carlo approximation (for the observed noisyx = 2:4, left andx = 6:9, right).
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3.6 Extension to the learning task

A similar approximation to that taken in this chapter can be used to solve the more challenging prob-

lem of training a model in the presence of noisy or uncertain inputs. Again, we make the assumption

that the inputs are independent and normally distributed.

3.6.1 Defining anoisyprocess

For yi = f(xi), wherexi is noise-free, recall that the GP prior onf , with zero-mean and covariance

functionC(xi;xj), implies that E[yijxi℄ = Z yip(yi)dyi = 0 (3.45)Cov[yi; yjjxi;xj ℄ = C(xi;xj) : (3.46)

If we now consider the situation where noisy inputs are sensed by the system, we haveyi = f(xi)
with xi = ui + ���xi , where���xi � N (0;���xi). Givenxi � N (ui;���xi), although the process is not

Gaussian anymore, we can still determine the mean and covariance function of what we shall call the

noisyprocess (as noted in (Seeger, 2003) page48).

According to the law of iterated expectations, we can writeE[yijui℄ = Ex[E[yijxi℄℄ = 0 (3.47)

sinceE[yijxi℄ = 0. Also, the law of conditional variances tells us thatVar[yijui℄ = Ex[Var[yijxi℄℄ +Varx[Ex[yijxi℄℄ = Ex[Var[yijxi℄℄. Extending this result to the covariances leads toCov[yi; yjjui;uj ℄ = Z Z C(xi;xj)p(xi;xj)dxidxj ; (3.48)

where we allow the noise to vary for each input, i.e.p(xi) = Nxi(ui;���xi) andp(xj) = Nxj (uj ;���xj).
Let Cn(ui;uj) denote this ‘noisy’ covariance function giving the covariance betweenyi andyj. As-

suming the inputs are independent given their characteristics, we can defineCn(ui;uj) = Z Z C(xi;xj)p(xi)p(xj)dxidxj ; (3.49)

and, as before, how solvable the integral is depends on the form of the covariance function.
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Approximation via Taylor expansion

We first consider the case where the covariance functionC(xi;xj) is such that integral (3.49) is

analytically intractable. Assuming we can perform a Taylorexpansion ofC around(ui;uj), we can

approximate the function by the following second order polynomialCapp(xi;xj) = C(ui;uj) + (xi � ui)TC0ui(ui;uj) + (xj � uj)TC0uj (ui;uj)+12(xi � ui)TC00ui;ui(ui;uj)(xi � ui) + 12(xj � uj)TC00uj ;uj (ui;uj)(xj � uj)+(xi � ui)TC00ui;uj (ui;uj)(xj � uj) ;
whereC0ui(ui;uj) = �C(xi;xj)�xi , C00ui;ui(ui;uj) = �2C(xi;xj)�xi�xiT andC00ui;uj (ui;uj) = �2C(xi;xj)�xi�xj , all

evaluated atxi = ui;xj = uj . Replacing this approximation in (3.49), we haveCappn (ui;uj) = Z Z Capp(xi;xj)p(xi)p(xj)dxidxj :
Integrating the integral with respect toxi first, and then with respect toxj , we obtainCappn (ui;uj) = C(ui;uj) + 12 �Tr[C00ui;ui(ui;uj)���xi℄ + Tr[C00uj ;uj (ui;uj)���xj℄� : (3.50)

If we further assume the inputs are corrupted by the same typeof noise (that is, with the same

variance,���xi = ���xj = ���x), this expression simplifies intoCappn (ui;uj) = C(ui;uj) + 12Tr[(C00ui;ui(ui;uj) +C00uj ;uj (ui;uj))���x℄ : (3.51)

Note that, for a given covariance functionC(ui;uj), one should verify thatCappn (ui;uj) is a valid

covariance function, i.e. leading to a positive semi-definite covariance matrix.8

Exact Gaussian case

When the covariance function is Gaussian, we can evaluateCn(ui;uj) exactly. As before, using

the notationNxi(xj ;W) for the Gaussian covariance function, where = (2�)D=2jWj1=2v and

8In the case of the Gaussian kernel, this implies a condition on the input noise variance. In one-dimension, we haveC(ui; uj) = v exp �� 12w(x2i � x2j )�, andC00ui;ui(ui; uj) = C00uj ;uj (ui; uj) = [�w + w2(ui � uj)2℄C(ui; uj), so thatCappn (ui; uj) = C(ui; uj) + 12vx[C00ui;ui(ui; uj) + C00uj ;uj (ui; uj)℄ = C(ui; uj) + vxC00ui;ui(ui; uj) ;
which should be positive. In particular, we haveCappn (ui; ui) = C(ui; ui) + vxC00ui;ui(ui; ui) = v(1 � vxw), sinceC(ui; ui) = v andC00ui;ui(ui; ui) = �wC(ui; ui). Therefore, forCappn (ui; ui) to be positive, we need1� vxw > 0, that
is vx < 1=w.
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Using the product of Gaussians and integrating overxi leads toZ Nxi(xj ;W)p(xi)dxi = Nxj (ui;W +���xi)
and, integrating this result with respect toxj, we haveZ Nxj (ui;W +���xi)p(xj)dxj = Nui(uj ;W +���xi +���xj) :

Thenoisycovariance function can then be writtenCexGn (ui;uj) = Nui(uj ;W +���xi +���xj),
that isCexGn (ui;uj) = vjI+W�1(���xi+���xj)j�1=2 exp ��12(ui � uj)T (W +���xi +���xj)�1(ui � uj)� :

(3.53)

Assuming that���xi = ���xj = ���x, we obtainCexGn (ui;uj) = vjI+ 2W�1���xj�1=2 exp ��12(ui � uj)T (W + 2���x)�1(ui � uj)� : (3.54)

For a diagonal���x, we haveW +���x = diag h 1w1 + vx1; : : : ; 1wD + vxDi, so that eachw parameter

is weighted by the corresponding uncertainty in the given input dimension. We can then writeCexGn (ui;uj) = vjI+ 2W�1���xj�1=2 exp"�12 DXd=1 wd1 + 2wdvxd (udi � udj )2# : (3.55)

Note that, unless one has prior knowledge of the input noise variance, and use (3.55) for fixed val-

ues ofvx1 : : : vxD, it might be preferable to learn a single parameterv0 in place ofvjI+2W�1���xj�1=2.

3.6.2 Inference and prediction

Given the covariance functionCexGn (ui;uj) = v0 exp"�12 DXd=1 wd1 + 2wdvxd (udi � udj )2# ; (3.56)

with parameters��� = fw1; : : : ; wD; v0; vx1; : : : ; vxD; vtg, the learning and prediction tasks are no

more difficult than in the ‘noise-free’ case presented in Section 2.3.1 of the previous chapter. Sim-

ply now, the minimisation of the likelihoodL(���) is with respect toD more parameters, namelyvx1; : : : ; vxD.
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Similarly, the prediction at a new (noise-free) inputx is simply obtained by conditioning on the

training data andx. The predictive distribution of the corresponding output is Gaussian with mean

and variance �(x) = NXi=1 �iCexGn (x;ui)�2(x) = CexGn (x;x) � NXi;j=1K�1ij CexGn (x;ui)CexGn (x;uj) ; (3.57)

where��� = K�1t, Kij = CexGn (xi;xj) + vtÆij andt is the vector of observed targets. The vector of

covariances between the noise-free input and the noisy training inputs,CexGn (x;ui), is found directly

by considering (3.53) and letting���xj go to zero. Since we consider the case where the noise variance

is the same for all inputs, we simply haveCexGn (x;ui) = v0 exp ��12(x� ui)T (W +���x)�1(x� ui)� ; (3.58)

and similarly forCexGn (x;uj). Also, the variance between the new input and itself is givenbyCexGn (x;x) = v0.
It can be noted that, with the new kernelCexGn (ui;uj), the length-scales are bounded below,

meaning that the corresponding process does not allow for functions with very high resolution, an

effect that could certainly be obtained by setting a suitable prior onW. A last remark is that the noise

on the inputs needs not be white, as the extension to colourednoise, as suggested in (Murray-Smith

and Girard, 2001), should be straightforward.

3.7 Summary

Central to this chapter is the prediction at a noisy input. Wehave presented an analytical approxi-

mation allowing the GP model to compute the mean and varianceof the predictive distribution of the

output corresponding to an input corrupted by some noise with zero mean and variance���x.

Recall that in the noise-free case, the predictive distribution p(yjD;x) of the outputy correspond-

ing to a newx is Gaussian, with mean�(x) and variance�2(x). When the new input is noisy, such
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thatx � N (u;���x), one has to integratep(yjD;x) over the input distribution, leading to an intractable

integral. In this case, the analytical approximation we propose consists of computing only the mean

and variance of the corresponding new predictive distribution (Gaussian approximation). These mo-

ments are respectively given bym(u;���x) = NXi=1 �iEx[C(x;xi)℄v(u;���x) = Ex[C(x;x)℄ � NXi;j=1(K�1ij � �i�j)Ex[C(x;xi)C(x;xj)℄�m(u;���x)2 ;
and can be computed exactly or approximately, depending on the form of the covariance function of

the process.

We have shown how, for a Gaussian and a linear covariance functions, thesenoisymean and vari-

ance could be computed exactly (given by (3.26) and (3.29) inthe linear case, and by (3.39) and (3.43)

in the case of the Gaussian kernel). For general covariance functions, we have suggested using a Tay-

lor approximation, leading to approximate moments (given by (3.16) and (3.17)). A simple numerical

comparison of ourGaussian approximationto the numerical approximation of the intractable integral

by simple Monte-Carlo (equation (3.3)) has shown the validity of our approach.

In Section 3.6, we have introduced a similar approximation,to deal with the more difficult task

of learning a model that accounts for the noise on the inputs.In the case of the Gaussian covariance

function, we have shown that a model accounting for this extra noise (as opposed to the output noise)

had a Gaussian kernel with its length-scales bounded below,proportionally to the input noise variance.

We now proceed to the modelling of nonlinear dynamic systems, and the application of the pre-

diction at a noisy input to the iterative multi-step-ahead prediction task, with propagation of the un-

certainty.
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Chapter 4

Modelling nonlinear dynamic systems

One of the main objectives in time series analysis is forecasting. Whereas good one-step-ahead models

can be relatively easily obtained, multiple-step-ahead ones constitute a far more challenging problem.

We now focus on the modelling of nonlinear dynamic systems and propose to apply the methodology

presented in the previous chapters to the iterative multiple-step ahead prediction of time-series with

propagation of the uncertainty. Assuming a GP was trained tominimise one-step-ahead predictions,

we show how we can formally incorporate the uncertainty about intermediate regressor values induced

by each successive prediction as we predict ahead in time, thus updating the uncertainty on the current

prediction. We illustrate the approach on the simulated Mackey-Glass chaotic time-series and compare

the propagation of uncertainty algorithm within theGaussian approximationand the Monte-Carlo

alternative.

4.1 Introduction

When it comes to dynamic systems modelling, system identification is that branch dealing with the

general process of extracting information about a system from measured input and output data. Once

a model is identified, it can be used for simulation, prediction, controller design or analysis. We refer

to (Ljung, 1999; Söderström and Stoica, 1989) as general textbooks on system identification. Typ-

ically, we can distinguish between ‘fundamental models’, derived from first principles, or empirical

models. The reason why empirical models might be preferred is that no detailed understanding of

57
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the process is required to develop the model. Within the empirical model class, we find state-space

(e.g. Kalman filters (Welch and Bishop, 1995; Julier and Uhlmann, 2000)) or input-output models.

Although distinct theories have been developed for these two representations, it is always possible to

convert an identified input-output model into a state-spacemodel (see e.g. (Phan et al., 1998)). In

the following, we consider the input-output class, represented as a Nonlinear Auto-Regressive (NAR)

model. In discrete time, we haveyt+1 = f(yt; yt�1; : : : ; yt�L) + �t+1; (4.1)

whereyt+1 is the system output at timet + 1 andxt+1 = [yt; yt�1; : : : ; yt�L℄T is the corresponding

state. Here, the additive noise term�t+1 reflects the fact that the next output will not be an exact

function of past data.

This representation is motivated by viewing the observed one-dimensional time-seriesy1; : : : ; yt
as a projection of the underlying dynamics, which lie in a higher dimensional space (Takens, 1981).

The order of the NAR model,L, which corresponds to the number of delayed outputs (sometimes

referred to aslag or embedding dimension), gives the dimension of the reconstructed space (Casdagli,

1989; Farmer and Sidorowich, 1988). It is important to note that this representation implicitly as-

sumes that the statistical properties of the data are time independent, so that the task is finally reduced

to the learning of a static mapping (as pointed out in (Bishop, 1995), pages302�303 for feed-forward

neural networks). Roughly speaking, nonlinear system identification then involves model and struc-

ture selection (choice of a model for the mappingf(:), selection ofL), noise modelling, parameter

estimation and model validation. Most commonly, neural networks have been used for the nonlin-

ear mappingf(:) (Principe et al., 1992a; Kuo and Principe, 1994; Principe and Kuo, 1995; Bakker

et al., 1998). Support vector regressors have also been developed for prediction purposes (Mukherjee

et al., 1997; Müller et al., 1997) and, recently, an extension of linear dynamical systems (see (Roweis

and Ghahramani, 1997) for a review) using kernels has been suggested (Ralaivola and d’Alché Buc,

2003). The use of Gaussian Processes is still in its infancy for the modelling of dynamic systems

(Murray-Smith et al., 1999; Murray-Smith and Girard, 2001;Kocijan et al., 2003b; Kocijan et al.,

2003a).
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We are particularly interested in multi-step-ahead time-series prediction, which is a much more

challenging problem than the one-step-ahead prediction task. The problem is as follows: Given a

time-series known, say, up to timet, we wish to predict (or get the predictive distribution of) the

output at timet + k, wherek is the predictive horizon. This corresponds to a missing or noisy data

modelling problem,1 whereyt+k�1 down toyt are missing. Currently, predicting ahead in time can

be achieved directly or iteratively. With the direct method, a model is explicitly trained to learn to

predictk steps ahead, e.g. assumingyt+k = f(yt; yt�1; : : : ; yt�L); the model being therefore tailored

for a fixed horizonk (which might actually be difficult to fix in advance). Ifk is large and the system

very nonlinear, the drawback of the direct method is that it will in general require a large amount of

data to get a good model, because of the larger amount of missing data between targets and inputs.

In the following, we focus on the iterative approach, that consists of the iteration of a one-step-

ahead model such as (4.1), up to the desired horizon. In this case, there are different ways of dealing

with the missing data. Numerical solutions consist of integrating over the unknown (or missing)

variables, weighted by their conditional probability density (which is done, albeit in a classification

context, in (Tresp and Hofmann, 1995; Tresp and Hofmann, 1998)). A naive way of iterating a one-

step-ahead model is simply to substitute a single value for the missing value. This approach has been

shown not to be optimal (Ahmad and Tresp, 1993; Tresp and Hofmann, 1995), as we will illustrate in

our numerical examples. In (Tresp and Hofmann, 1998), stochastic sampling is shown to be superior

to both simply iterating the system and using the extended Kalman filter.

Two obvious reasons for favouring the iterative method overthe direct one are that accurate one-

step-ahead models are usually easy to get and, also, anyk-step-ahead forecast is available, up to the

prediction horizon. However, the well known drawback of theiterative approach is the accumulation

of errors as we predict ahead in time, as each subsequent iterated prediction uses no more information

than was used in the first one-step prediction. In (Small and Judd, 1999; Judd and Small, 2000),

they aim at improving long-term predictions by eliminatingthe systematic errors induced by each

successive short term prediction. Here, we suggest not to eliminate the error but on the contrary to

1The missing variables can be seen as noisy variables for complete noise.
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propagate it through the model as we predict ahead in time.2

4.2 Iterative multi-step ahead forecasting

We are now going to show how we can propagate in the model the uncertainty induced by each suc-

cessive prediction. That is, at each time-step, we not only feed back the predictive mean (i.e. a single

point estimate) but also the predictive variance, that represents the associated uncertainty.

We consider the NAR model (4.1), that isyt = f(xt) + �t; (4.2)

wherext = [yt�1; : : : ; yt�1�L℄ and the functionalf(:) is modelled by a zero-mean GP with covari-

ance functionC(xi;xj). Although richer noise models, such as ARMA models could be considered

(Murray-Smith and Girard, 2001), we simply assume that�t is a white noise.

With this one-step ahead model, in order to getyt+k = f(yt+k�1; : : : ; yt+k�L), we needyt+k�1 =f(yt+k�2; : : : ; yt+k�2�L), down toyt+1 = f(yt; : : : ; yt�L). Since the time-series is assumed to

be known up to timet, the predictive distribution ofyt+1 is readily obtained. We haveyt+1 �N (�(xt+1); �2(xt+1)), as given by equations (3.1). Foryt+2, a naive approach is to use only the point

estimate ofyt+1, and consideryt+2 = f(ŷt+1; yt; : : : ; yt+2�L), whereŷt+1 = �(xt+1). Here, we

suggest to feed-back the whole predictive distribution ofyt+1 to account for the model’s uncertainty�2(xt+1) on the estimate�(xt+1). We then haveyt+2 = f(yt+1; yt; : : : ; yt+2�L), where the statext+2 is now a random vector with mean[�(xt+1); yt; : : : ; yt+2�L℄ and zero covariance matrix, apart

from the first entry which is�2(xt+1). This takes us back to Chapter 3 and the task of making a

prediction given a random input.

2Our approach can be linked to the extended Kalman filter that summarises past data by an estimate of the mean and
covariance of the variables.
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4.2.1 Propagation of uncertainty algorithm within the Gaussian approximation

Within the approximation presented in Chapter 3, we can compute the mean and variance ofyt+2.
Interpreting this approximation as Gaussian, we can writeyt+2 � N (m(ut+2;���t+2); v(ut+2;���t+2)) ;
whereut+2 and���t+2 are the mean and covariance matrix ofxt+2. As we saw then, the predictive

mean and variance can be computed exactly or approximately,depending on the form of the covari-

ance function. Then, for the next time-step, we can feed bothm(ut+2;���t+2) andv(ut+2;���t+2) back

into xt+3, and repeat the process up to the desired horizon.

Here is a sketch of how we proceed:� t+ 1, xt+1 = [yt; : : : ; yt�L℄T . Computeyt+1 � N (�(xt+1); �2(xt+1)).� t+ 2, xt+2 = [yt+1; yt; : : : ; yt+1�L℄T � N (ut+2;���t+2) with

ut+2 = 266666664 �(xt+1)yt
...yt+1�L

377777775 and ���t+2 = 266666664 �2(xt+1) 0 : : : 00 0 : : : 0
...

...
...

...0 0 : : : 0
377777775 :

Computeyt+2 � N (m(ut+2;���t+2); v(ut+2;���t+2)).� t+ 3, xt+3 = [yt+2; yt+1; : : : ; yt+2�L℄T . We now have

xt+3 � N 0BBBBBBBBBB�
266666666664
m(ut+2;���t+2)�(xt+1)yt

...yt+2�L
377777777775 ;
266666666664

v(ut+2;���t+2) Cov[yt+2; yt+1℄ 0 : : : 0Cov[yt+1; yt+2℄ �2(xt+1) 0 : : : 00 0 0 : : : 0
...

...
...

...
...0 0 : : : : : : 0
377777777775
1CCCCCCCCCCA :

Computeyt+3 � N (m(ut+3;���t+3); v(ut+3;���t+3)).
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Repeating this procedure up tok, we finally haveyt+k � N (m(ut+k;���t+k); v(ut+k;���t+k)). At

time t+ k, with k > L, the random input isxt+k = [yt+k�1; yt+k�2; : : : ; yt+k�L℄T , with meanut+k,

formed of theL delayed previously predicted means,

ut+k = 266666664 m(ut+k�1;���t+k�1)m(ut+k�2;���t+k�2): : :m(ut+k�L;���t+k�L)
377777775

andL� L covariance matrix���t+k with the delayed predictive variances on its diagonal:

���t+k = 266666664 v(ut+k�1;���t+k�1) Cov[yt+k�1; yt+k�2℄ : : : Cov[yt+k�1; yt+k�L℄Cov[yt+k�2; yt+k�1℄ v(ut+k�2;���t+k�2) : : : Cov[yt+k�2; yt+k�L℄: : : : : : : : : : : :Cov[yt+k�L; yt+k�1℄ Cov[yt+k�L; yt+k�2℄ : : : v(ut+k�L;���t+k�L)
377777775 :

We now need to compute the cross-covariance terms of the input covariance matrix. They corre-

spond to the covariances between the delayed outputs, that isCov[yt+k�i; yt+k�j℄, for i = 1 : : : L�1
andj = i + 1 : : : L. Since we fill in the input covariance matrix as we progress ahead in time, this

is equivalent to computing the cross-covariances between the output and the input the time-step be-

fore, that isCov[yt+k�1;xt+k�1℄, discarding the last (oldest) element ofxt+k�1. For simplicity in the

notation, let us writel = k � 1. We need to computeCov[yt+l;xt+l℄ = E[yt+lxt+l℄�E[yt+l℄E[xt+l℄ ; (4.3)

whereE[xt+l℄ = ut+l andE[yt+l℄ = m(ut+l;���t+l). For the expectation of the product, we haveE[yt+lxt+l℄ = Z Z yt+lxt+lp(yt+l;xt+l)dyt+ldxt+l= Z Z yt+lxt+lp(yt+ljxt+l)p(xt+l)dyt+ldxt+l= Z xt+l�(xt+l)p(xt+l)dxt+l :
Replacing�(xt+l) by its expression,�(xt+l) =Pi �iC(xt+l;xi), we haveE[yt+lxt+l℄ =Xi �i Z xt+lC(xt+l;xi)p(xt+l)dxt+l : (4.4)
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As in Chapter 3, we can evaluate this integral exactly or approximately, depending on the form ofC(:; :). Denotingxt+l by x for notational convenience, letIi = R xC(x;xi)p(x)dx be the integral

we wish to evaluate.

Case of the Gaussian covariance function

We first derive the expressions of the cross-covariances exactly, in the case of the Gaussian covariance

function. As in Section 3.4.2 of the previous chapter, we write the Gaussian covariance functionCG(x;xi) asNx(xi;W), with  = (2�)D=2jWj1=2v. So we wish to solveIexGi = Z xNx(xi;W)p(x)dx (4.5)

wherep(x) = Nx(u;���x).
Using the product of Gaussians, we haveNx(xi;W)Nx(u;���x) = Nu(xi;W +���x)Nx(di;D)

with D = (W�1 +����1x )�1 anddi = D(W�1xi +����1x u). Substituting inIexi givesIexGi = Nu(xi;W +���x)Z xNx(di;D)dx = Nu(xi;W +���x)di ;
that is IexGi = Nu(xi;W +���x)(W�1 +����1x )�1(W�1xi +����1x u) : (4.6)

Using the matrix inversion lemma, we can write(W�1 +����1x )�1W�1 = [I�W(W +���x)�1℄(W�1 +����1x )�1����1x = [I����x(W +���x)�1℄ ;
leading toIexGi = Nu(xi;W +���x)([I�W(W +���x)�1℄xi + [I����x(W +���x)�1℄u) : (4.7)

In this short notation, the cross-covariance terms are thengiven byCov[y;x℄ =Xi �iIexGi �mexG(u;���x)u
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wheremexG(u;���) is the predictive mean obtained in the Gaussian case. Recalling that we can write

it as
Pi �iNu(xi;W +���x), we haveCov[y;x℄ =Xi �iNu(xi;W +���x)([I�W(W +���x)�1℄xi ����x(W +���x)�1u)

and we can check that, as should be the case,Cov[y;x℄ = 0 if ���x is zero. UsingNu(xi;W+���x) =C(u;xi)Corr(u;xi), with Corr given by (3.40), we can finally writeCov[yt+l;xt+l℄ =Xi �iC(ut+l;xi)Corr(ut+l;xi)([I�W(W+���t+l)�1℄xi����t+l(W+���t+l)�1ut+l) :
(4.8)

General case

If we cannot evaluateIi exactly, as in the previous chapter, we use a Taylor approximation of the

covariance function.

In the one-dimensional case, we need to computeIi = R xC(x; xi)p(x)dxwith p(x) = Nx(u; vx).
Within a second-order approximation of the covariance function aroundu, we can writeIapi � Z x�C(u; xi) + (x� u)C 0(u; xi) + 12(x� u)2C 00(u; xi)� p(x)dx� uC(u; xi) + vxC 0(u; xi) + 12uvxC 00(u; xi) ;
where we have used

R x2p(x)dx = vx + u2 and
R x3p(x)dx = 3uvx + u3.

Extending this result toL-dimensional inputs, we haveIapi � uTC(u;xi) +C0(u;xi)T���x + 12uTTr[C00(u;xi)���x℄ ; (4.9)

and the cross-covariance terms are given byCov[y;x℄ =Xi �iIapi �map(u;���x)u ;
wheremap(u;���) =PNi=1 �i �C(u;xi) + 12Tr[C00(u;xi)���x℄�, thus simplifyingCov[y;x℄ intoCov[y;x℄ =Xi �iC0(u;xi)T���x :
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Therefore, the cross-covariance terms of the input covariance matrix at timet+ k are given byCov[yt+l;xt+l℄ =Xi �iC0(ut+l;xi)T���t+l ; (4.10)

wherel = k � 1. Note that we would have obtained the same result if we had simply considered a

first-order Taylor approximation of the covariance function.

We can then compute the full input covariance matrix at each time-step. The advantage of this

approach is that we account not only for the uncertainty induced by each successive prediction but

also for the cross-covariances between the delayed predicted variables, enabling us access to the full

joint distribution of theL delayed outputs.

We now turn to the numerical solution of the propagation of uncertainty when using the iterative

method.

4.2.2 Monte-Carlo alternative

As already seen, if the time-series is assumed to be known up to time t, at t + 1, we havext+1 =[yt; yt�1; : : : ; yt�L℄ so that we can simply computeyt+1 � N (�(xt+1); �2(xt+1)), using equations

(3.1). For the next time-step, propagating the uncertaintyinduced byyt+1 implies the evaluation ofp(yt+2jD;ut+2;���t+2) = Z p(yt+2jD;xt+2)p(xt+2)dxt+2 ;
whereD is the set of training data andxt+2 = [yt+1; yt; : : : ; yt+1�L℄, so thatp(xt+2) = Nxt+2(ut+2;���t+2),
with ut+2 = [�(xt+1); yt; : : : ; yt+1�L℄ and�11t+2 = �2(xt+1) and zero elsewhere.

Instead of computing only the mean and variance ofp(yt+2jD;ut+2;���t+2), as done in theGaus-

sian approximation, we can approximate the integral numerically, by simple Monte-Carlo:p(yt+2jD;ut+2;���t+2) � 1S SXs=1 p(yt+2jD;xst+2) ;
whereS is the number of samples andxst+2 is a sample ofp(xt+2).3 Now, for givenxst+2, we know

3Note that at this point, sampling fromp(xt+2) is equivalent to samplingyst+1 from p(yt+1) and lettingxst+2 =[yst+1; yt; : : : ; yt+1�L℄.
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that the corresponding output is normally distributed. We can then writep(yt+2jD;ut+2;���t+2) = 1S SXs=1Nyt+2(�(xst+2); �2(xst+2)) ;
such that the distribution ofyt+2 can be seen as a mixture ofS Gaussians with same mixing weight1S .

At t + 3, things start complicating as we now havext+3 = [yt+2; yt+1; : : : ; yt+2�L℄, whereyt+1
is normal butyt+2 is a mixture ofS Gaussians. . .

Instead of working out the whole distribution ofyt+2, a first approximation consists of considering

one Gaussian from the mixture at a time. We can then write� t+ 2: Computep(yt+2jD;ut+2;���t+2) = 1S PSs=1Nyt+2(�(xst+2); �2(xst+2))� t+ 3: Loop overs
– xt+3 = [yt+2; yt+1; : : : ; yt+2�L℄, where we consideryt+2 � N (�(xst+2); �2(xst+2)).

We then havep(xt+3) = Nxt+3(ut+3;���t+3) with

ut+3 = 266666666664
�(xst+2)�(xt+1)yt

...yt+2�L
377777777775 and 266666666664

�2(xst+2) Cov[yt+2; yt+1℄ 0 : : : 0Cov[yt+1; yt+2℄ �2(xt+1) 0 : : : 00 0 0 : : : 0
...

...
...

...
...0 0 : : : : : : 0
377777777775

– Evaluatep(yt+3jD;ut+3;���t+3) � 1S SXs=1 p(yt+3jD;xst+3) = 1S SXs=1Nyt+3(�(xst+3); �2(xst+3))
wherexst+3 is a sample fromp(xt+3).� End Loop

Each single Gaussians therefore leads to a mixture of Gaussians forp(yt+3jD;ut+3;���t+3), implyingS mixtures of Gaussians for time-stept+3 (behaving like a branching process), which is not compu-
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tationally tractable.

This leads us to the following second approximation, where we consider one sample at a time, up

to the desired horizon:� Loop overs
– t+ 2: xt+2 = [yt+1; yt; : : : ; yt+1�L℄ � N (ut+2;���t+2)

Samplexst+2 from p(xt+2)
Computep(yt+2jD;ut+2;���t+2) = Nyt+2(�(xst+2); �2(xst+2))

– t+ 3: xt+3 = [yt+2; yt+1; : : : ; yt+2�L℄ � N (ut+3;���t+3)
Samplexst+3 from p(xt+3)
Computep(yt+3jD;ut+3;���t+3) = Nyt+3(�(xst+3); �2(xst+3))

...

– Up to t+ k.� End Loop

This way, we effectively obtainS Gaussians for the output distribution at each time-step, thus approx-

imating the ‘true’ mixture of Gaussians distributions.

In our experiments, we consider the following simplified version of the above algorithm:� Loop overs
– t+ 1, xt+1 = [yt; yt�1; : : : ; yt�L℄. Computeyt+1 � N (�(xt+1); �2(xt+1))
– For� = 2 : : : k� Draw a sampleyst+��1 from p(yt+��1jD;xt+��1)� Shift the time-window and formxt+� = [yst+��1; : : : ; yst+��L℄� Computeyt+� � N (�(xt+�); �2(xt+�))
– End For
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The notable difference we would expect between this algorithm and the previous one would be in

terms of ‘smoothness’ of the state sample at each time-step:In this last algorithm, the state is com-

posed of delayed sampled outputs, each one of them sampled from its corresponding one dimensional

Gaussian distribution (thus treating each of them independently). On the other hand, in the previous

algorithm, the state sample comes from anL-dimensional distribution, with a full covariance matrix,

thereby introducing some ‘smoothness’. Nevertheless, sampling from anL-dimensional distribution

will become cumbersome for largeL. Although we have not investigated this point any further, we

speculate that our approximation should not have a great impact on the overall numerical approxima-

tion to the true distribution.

4.3 k-step-ahead prediction of the Mackey-Glass chaotic time-series

This first numerical example is intended to illustrate the propagation of uncertainty algorithm. On the100-step ahead prediction of the Mackey-Glass time-series, weare going to� Compare the predictions given by theGaussian approximationand in particular

– When propagating the uncertainty: Assess the quality of thepredictions computed ap-

proximately (Aap), by comparing them to those computed exactly (Aex), in the case of the

Gaussian covariance function;4

– Compare these predictions to those given by thenaiveapproach (N ), that does not ac-

count for the uncertainty induced by the successive predictions as it feeds back only the

predictive means when predicting ahead in time.� Compare the exactGaussian approximationAex to the numerical approximation of the propa-

gation of uncertainty algorithm by Monte-Carlo (MC).

Recall that, when predicting atx � Nx(u;���x), the naive approach simply computes�(u) and�2(u)
(given by equations (3.1)), whereas within theGaussian approximation, the predictive mean and vari-

ance are given by (3.39) and (3.44), in the case of the Gaussian covariance function, and by (3.16) and
4To do so, the approximate moments are computed using a second-order Taylor approximation of the Gaussian covari-

ance function.
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(3.17) within the Taylor approximation.

The Mackey-Glass chaotic system constitutes a well-known challenging benchmark for the multiple-

step-ahead prediction task, due to its strong non-linearity (Mackey and Glass, 1977). We considerdy(t)dt = �by(t) + a y(t��)1+y(t��)10 , with a = 0:2, b = 0:1 and� = 17. This continuous-time model is

discretised and the series is re-sampled with period1 and normalised. We then assume the following

one-step-ahead NAR modelyt+1 = f(yt; yt�1; : : : ; yt�L), whereL = 16, and form a vector ofN
outputs, whereN = 500 (taken at random from the series), that we corrupt by a white noise with vari-

ance0:001, and the corresponding matrix ofN � L inputs. We train a zero-mean Gaussian Process

with Gaussian covariance functionC(xi;xj) = v exp ��12(xi � xj)TW�1(xi � xj)� ; (4.11)

whereW�1 = diag[w1 : : : wD℄ and withv set to1. On the one-step-ahead prediction of the train-

ing data, we obtain an average squared errorE1 of 8:4870 � 10�4 and an average negative log-

predictive density5 E2 of �2:1145. For the validation (test) set, we haveE1 = 6:4734 � 10�4 andE2 = �2:5297.

We now proceed to make100-step-ahead predictions of the test series and compare the different

methods.

4.3.1 Gaussian approximation

We first compare the predictions obtained with and without propagation of the uncertainty, that isAex
andAap, to the naive approachN .

Figures 4.1, 4.2, 4.3 show predictions from1 to 100 steps ahead, for different starting points in

the test series. The left plots show the mean predictions, with triangles and circles indicating those

obtained when propagating the uncertainty and computing the means exactly (Aex) and approximately

(Aap) respectively. The dots correspond to the mean predictionsgiven by the naive approachN . For

clarity, the corresponding error-bars (�2� standard deviation) are shown on the right plots.
5See Chapter 2, Section 2.3.3 where these measures of predictive performance are introduced.
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Figure 4.1: Iterative method in action, fromT = 45: Predictions from1 to 100 steps ahead of the
Mackey-Glass time-series (continuous line). Left: Predictive means given byAex (triangles) andAap
(circles), corresponding to propagation of the uncertainty, and those given by the naive approachN
(dots). Right: Confidence intervals (error-bars of�2� standard deviation) given by the different
methods.
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Figure 4.2: Predictions from1 to 100 steps ahead starting fromT = 124. Same legend as for Figure
4.1. Note how the predictive mean given byAap atk = 100 is the closest to the true value.
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Figure 4.3: Predictions from1 to 100 steps ahead starting fromT = 130. Same legend as for Figure
4.1. Now, atk = 100, it is Aex which leads to the best prediction.

Common to these three figures is the fact that, even though thenaive method might lead, in some

cases, to better mean predictions than the methods propagating the uncertainty (as is the case in

Figure 4.1), the associated uncertainties are always very tight and not representative of how good the

estimates are. In particular, atk = 100 in Figure 4.1, the mean prediction given byN is closer to the

true value than eitherAap or Aex. Nevertheless, the associated error-bars are very small and do not

include the true value. Although the mean predictions givenby the naive approach may significantly

differ from the true time-series, this model is too confidentabout its estimates.

In terms of mean predictions, the three methods give similarestimates, up to around70 steps

ahead, and start diverging after that. Figure 4.2 illustrates the case whenAap leads to a better predic-

tion thanAex atk = 100. Compared to the naive approach, the error-bars obtained when propagating

the uncertainty are more informative. Although difficult tointerpret, it is interesting to note how the

error-bars given by bothAex andAap vary, as they do not simply increase withk (we could expect the

model to become more and more uncertain, as predictions at large k are based on the same amount

of information as those at smallk). Although, in general, the model’s uncertainty starts increasing

quite rapidly, it does not prevent the model from rectifyingitself, leading to smaller error-bars as it

has more confidence into its estimates, at least for this particular simulation.
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Figure 4.4 shows the50-step (left) and100-step (right) ahead predictive means with their con-

fidence intervals (note that in these plots each pointis a k-step ahead prediction). The upper plots

correspond to the predictive means given by the naive approach, with their2� error-bars (which are

so tight that one cannot distinguish them from the means). The middle and bottom plots correspond

toAap andAex respectively, where the shaded area represents the uncertainty region.
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Figure 4.4:50-step (left) and100-step (right) ahead predictions of the test time-series (continuous
thin line). From top to bottom, moments given by the naive approach and by the propagation of
uncertainty approach with moments computed approximatelyand exactly. The crosses indicate the
predictive means and the shaded regions correspond to the confidence/uncertainty intervals. (Note
that each point is ak-step ahead prediction).)

Again, the inadequacy of the naive approach is evident, witherror-bars that are not anymore rep-

resentative of the model’s uncertainty. Given that the approximate moments were computed using

the Gaussian covariance function, these plots provide direct qualitative comparison betweenAap andAex. For the50-step-ahead predictions, the predictions look very similar. For k = 100, we can see

thatAap is generally more ‘cautious’, with larger error-bars thanAex. What we are interested in is

having variances that actually reflect the quality of the estimates (i.e. inaccurate mean predictions

should have large error-bars). This requirement being fulfilled for almost allk-step ahead predictions

(apart from around50 and150 of the100-step ahead predictions), we feel confident the approximate

moments lead to ‘sensible’ results.

For each100th point predicted, Figure 4.5 shows the corresponding squared errorE1 (left) and
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minus log-predictive densityE2 (right). (For clarity, we omitE2 given by the naive approach as it is

very large compared to that obtained forAex andAap.)
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Figure 4.5: Left: Squared error for each100th predicted point, for all three approaches. Right: Minus
log-predictive density, forAex andAap.

This figure provides us with quantitative evidence for the above conclusions. In terms ofE1,
which measures the quality of predictions by only comparingthe estimate (predictive mean) to the

true value, there are points for which the naive approach is going to be better. However, in terms

of E2, which accounts for the model uncertainty, the results are far worse for the naive method than

when propagating the uncertainty. Also, this plot demonstrates thatAap is effectively comparable toAex.

4.3.2 ExactGaussian approximationv Monte-Carlo

We now turn to comparingAex, based on the exact moments obtained within theGaussian approxi-

mation, toMC, the Monte-Carlo approximation to the propagation of uncertainty algorithm.

For the Monte-Carlo approximation, we computeS = 500 samples at each time step, resulting in

aNt � S � k matrix of predictive means (and similarly for the variances), whereNt is the number of

starting points (202). From t + 1 to t + 100, Figure 4.6 shows the predictive means given byMC,

their average (used to compute the losses, thick line), and the means given byAex (crosses). The right



74 CHAPTER 4. MODELLING NONLINEAR DYNAMIC SYSTEMS

plot shows the corresponding uncertainties (error-bars).
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Figure 4.6: Fromt + 1 to t + 100: Predictive means (left) and error-bars (right) given byMC (500
samples and average, thick line) and byAex (crosses).

Until about60 steps ahead, the error-bars ofAex are similar to those of the Monte-Carlo approxi-

mation (as they include most of the samples). The plot of the predictive distributions att+10, t+60
andt + 100 on Figure 4.7 shows that up to60 steps ahead, the Gaussian approximation is close to

the true distribution. But as the number of steps increases,the true distribution approximated byMC
departs more and more from the Gaussian distribution assumed byAex.

Finally, Figure 4.8 shows the evolution of the average losses with increasingk for all methods.

The losses forMC correspond to those computed using the average sample mean and variance. These

results for the Monte-Carlo approximation might look surprising, but one should keep in mind that es-

timating the quality of this approximation with these losses is not representative (since the distribution

is not normal).

4.4 Summary

Assuming a one-step-ahead NAR model of the formyt+1 = f(yt; yt�1; : : : ; yt�L) + �t+1;
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Figure 4.7: Predictive distribution given byMC (continuous line) and as approximated by theGaus-
sian approximation(crosses), atk = 10; 60; 100.
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Figure 4.8: Evolution of the average squared error (left) and minus log-predictive density (on a log-
scale, right) as the number of steps ahead increases from1 to 100.)
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wheref(:) is modelled by a GP with zero-mean and covariance functionC(:; :), we have shown how

one could derive the (approximate) predictive distribution of yt+k, where the uncertainty induced

by each successive prediction (yt+1 to yt+k�1) is being accounted for. At timet + k, using the re-

sults of the previous chapter, we can writeyt+k � N (m(ut+k;���t+k); v(ut+k ;���t+k)), whereut+k
and���t+k are the vector of expectations and covariance matrix of the corresponding random inputxt+k = [yt+k�1; yt+k�2; : : : ; yt+k�L℄T . In this setting, the mean vectorut+k is formed of theL
delayed previously predicted means (output estimates) and���t+k is theL� L covariance matrix with

the delayed predictive variances on its diagonal (associated uncertainties) and the cross-covariances

between the delayed outputs (see Section 4.2.1).

On the Mackey-Glass chaotic system, we compare the iterative 100-step-ahead prediction of the

time-series obtained using the propagation of uncertaintyalgorithm within theGaussian approxima-

tion (as discussed above) and within the Monte-Carlo numerical approximation (see Section 4.2.2).

This experiment shows that, as the number of steps increases, the true distribution (approximated

by Monte-Carlo) departs from the Gaussian assumption. Nonetheless, theGaussian approximation

proves to be valid up to around60 steps ahead.

When compared to a naive approach that predicts ahead in timeby only considering the output

estimate at each time-step (treating it as if it were the trueobserved value), our approximate propaga-

tion of uncertainty algorithm shows indeed to improve the predictive performance of the model. The

naive method is consistently over-confident about its estimates, with associated uncertainties which

are no longer representative (very tight error-bars not encompassing the true values). On the other

hand, a model propagating the uncertainty as it proceeds ahead in time leads to informative error-bars

on its estimates. Importantly, such a model does not only seeits predictive variance increasing with

the predictive horizon.



Chapter 5

Real-life applications

We now illustrate the modelling and forecasting of two real-life processes with the Gaussian Process

model and the methodology presented in Chapter 4, focusing on the iterativek-step ahead predictions

within the Gaussian approximation. For the gas-liquid separator process, the identification of the

NARX structure is performed using a subset-selection approach, based on the Automatic Relevance

Determination tool and Occam’s razor principle. A test pressure signal is then simulated by the

model, with and without propagation of the uncertainty. Thesecond application is a pH neutralisation

process. After fitting a linear model, a GP is used to model theresiduals and with this ‘mixed model’,

we perform the iterativek-step-ahead prediction of a test pH signal, with and withoutpropagation of

the uncertainty. The modified propagation of uncertainty algorithm, accounting for the linear part, is

presented. Also, the iterative approach is compared to the direct multi-step-ahead prediction method

where the model is tailored for predictingk steps ahead.

5.1 Modelling the gas-liquid separator process

The gas-liquid separator process is part of a plant (Figure 5.1) situated at the Jozef Stefan Institute

(Slovenia), which serves as a test bed for various control engineering problems. In our case, the gas is

simply oxygen and the liquid is water. A pump feeds the gas-water mixture into a separator where the

gas is separated from the water. The internal pressure in theseparator then increases and a pressure

valve is opened to blow out the gas from the separator to the next unit.

77
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Figure 5.1: The gas-liquid separator part of the process plant at the Jozef Stefan Institute (Slovenia).
A pump feeds the gas-water mixture into a reservoir where thegas is separated from the water.

Figure 5.2 shows a schematic diagram of the identification structure. The separator has two valves,

one at the top controlling the pressurep, and one at the bottom, for controlling the water levelh inside

the separator. The openness of the pressure and level valvesare indicated byup anduh respectively.rh corresponds to the desired set-point for the water level. Although the separator is a multivariate

process, with two inputs and two outputs, it is controlled astwo distinct univariate processes, for

simplicity. The pressure is controlled by a predictive controller and the water level by a PI controller.

Since the pressure dynamics depend on the water level, the identification of these dynamics is achieved

by controlling the pressure valve and varying the water level.

Gas-liquid
separator

p

uh
PI controller

+ -

up

hrh

up

Figure 5.2: Schematic representation of the identificationof the pressure dynamics (provided by Bojan
Likar).
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In this application, we can distinguish between the quantisation noise, due to the transformation

from continuous to digital signals, and the noise on the measurement devices (sensor noise). The

valve openness signal (a pseudo-random sequence with discrete levels) is noise-free, but the noise

on the water level signal is coloured (due to the controller), as therefore is that on the gas pressure

measurement. Typically, the overall noise is broadband, with continuous spectrum, but, in the range

of the process dynamics, the behaviour is similar to that of awhite noise.

5.1.1 Model selection

In the following, we denote byp the measured gas pressure, that we wish to model, byl the measured

(controlled) water level and byo the pressure valve openness. Figure 5.3 shows the signals used for

the identification and validation of the GP model.
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Figure 5.3: Identification (left) and validation (right) signals for the modelling of the gas-liquid sepa-
rator. From top to bottom: pressure, water level and openness of the pressure valve, as a function of
time.

For modelling the pressure in the separator, we assume the following NARX (nonlinear auto-

regressive with exogeneous inputs) structure:p(t) = f(p(t� 1); : : : ; p(t� L1); l(t� 1); : : : ; l(t� L2); o(t� 1); : : : ; o(t� L3)) + �t ; (5.1)

wherep(t) is the gas pressure1 at time t, l(t � 1) ando(t � 1) are the one-sample-delayed water

level and openness of the pressure valve, both used as control inputs, and�t is a white noise with
1In experiments, we subtract the sample mean from the pressure signals.
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unknown variancevt. Using the identification signals, we then form theN � D matrix of inputsx = [p(t�1); : : : ; p(t�L1); l(t�1); : : : ; l(t�L2); o(t�1); : : : ; o(t�L3)℄T , whereD = L1+L2+L3,
and theN � 1 vector of corresponding targets.

Although interactions are likely to exist between the delayed water level and the gas pressure in

the separator, we use a GP with Gaussian covariance functionand diagonalW:C(xi;xj) = v exp"�12 DXd=1wd(xdi � xdj )2# :
This means that there is one parameterwd for each delayed variable. As in the Automatic Relevance

Determination tool, developed by Neal and MacKay for the Bayesian treatment of neural networks

(Neal, 1995; MacKay, 1994), these parameters give an indication of the relative importance of one

delayed variable over an other. A largewd implies a large contribution of the input in directiond to

the covariance, which can then be interpreted as an ‘important’ input for prediction. Also, we have

seen thatwd is inversely proportional to the horizontal scale of variation in directiond. Therefore, a

largewd corresponds to rapid variations in the same direction, in contrast with a smallwd, associated

with a large correlation length and slow variation in that direction, implying that a change in the state

will have little effect on the corresponding outputs.

Note that unless all inputs are normalised so as to vary in thesame range, one should not compare

the weights between different variables: Thew of one variable may be ‘small’, if compared to that

of another variable, but still be ‘large’ for the one variable considered. In that respect, we will only

compare thew’s relative to one variable only and denote bywki the weight corresponding to theith
delayed variablek, reflecting the relevance of the corresponding delayed variable.

Since we do not know a priori the optimal number of delayed variables, we perform a method

of subset selection and train GPs with different structures(that is with varying number of delayed

variables in the statex). We first consider straightforward models, for whichL1 = L2 = L3 = L, for

decreasing values ofL:� M1, x = [p(t� 1); p(t� 2); p(t� 3); l(t� 1); l(t� 2); l(t� 3); o(t� 1); o(t� 2); o(t� 3)℄T ;� M2, x = [p(t� 1); p(t� 2); l(t � 1); l(t� 2); o(t � 1); o(t� 2)℄T ;
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We also test� M4, x = [p(t� 1); l(t � 1); l(t � 3); o(t � 1)℄T , and� M5, x = [p(t� 1); l(t � 3); o(t � 1)℄T ,

the rationale behind the choice ofM4 andM5 being to keep only those relevantwki , as found by

previous models (treating one variable at a time). Table 5.1indicates the Maximum Likelihood (ML)

estimates of thew parameters corresponding to the delayed pressure variables appearing in the differ-

ent models. Similarly, Tables 5.2 and 5.3 report the ML estimates of the parameters associated with

the delayed water level and valve openness respectively.

Table 5.1: ML estimate of thew parameters for the delayed pressure values for the different models
(for clarity, we indicate the corresponding delayed variable within brackets).

Model wp3 wp2 wp1[p(t� 3)℄ [p(t� 2)℄ [p(t� 1)℄M1 0:0669 0:003 1:4702M2 0:2379 1:5962M3 2:4249M4 0:8621M5 2:4194
Table 5.2: ML estimate of thew parameters corresponding to delayed values of the water level.

Model wh3 wh2 wh1[l(t� 3)℄ [l(t� 2)℄ [l(t� 1)℄M1 0:0165 0:0022 0:0124M2 0:0029 0:0009M3 0:1392M4 0:1897 0:1773M5 0:1337
Starting with the modelM1, we see from Table 5.1 that most weight is assigned withwp1 corre-

sponding top(t� 1), which is three orders of magnitude larger thanwp2 and two orders of magnitude
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Table 5.3: ML estimate of thew parameters corresponding to delayed values of the valve openness.

Model wv3 wv2 wv1[o(t� 3)℄ [o(t� 2)℄ [o(t� 1)℄M1 0:0764 2:0372 14:1725M2 1:3142 11:1741M3 45:9108M4 29:2038M5 48:2743
larger thanwp3. Similarly, Table 5.2 shows that the weights associated with l(t � 1) andl(t � 3) are

of the same order, both one order of magnitude larger than theweight associated withl(t� 2). As for

the pressure,o(t � 1) is by far the most relevant delayed value of the valve openness. Keeping those

delayed variables whose associatedwk is of the same order, we have the state structure ofM4, that isx = [p(t� 1); l(t � 1); l(t � 3); o(t � 1)℄T . After training a GP using this structure, we find that the

most relevant delayed variable for the pressure isp(t� 1), that of the water level isl(t� 3), and that

for the openness of the valve iso(t� 1). These delayed variables then form the state forM5.
We compare the models and rate them according to their predictive performance. For each model,

we compute the one-step-ahead prediction of the identification data and the corresponding average

squared errorE1 and average negative log-predictive densityE2. Table 5.4 indicates the results ob-

tained, as well as the minus log-likelihoodL(���) of each model after learning.

Table 5.4: Negative log-likelihood and losses achieved by each model on the one-step ahead prediction
of the identification data. M1 M2 M3 M4 M5L(���) (�103) �1:3565 �1:3558 �1:3423 �1:3469 �1:3389E1 (�10�4) 4:6419 4:7662 4:9696 4:6757 4:9668E2 �2:4187 �2:4062 �2:3862 �2:4169 �2:3866

The model which has the highest probability (smallest minuslog-likelihood) isM1 and the one

with lowest isM5. However, in terms of losses, from best to worst, we haveM1;M4;M2;M5;M3.

The fact thatM4, which considersx = [p(t � 1); l(t � 1); l(t � 3); o(t � 1)℄T , does better thanM5 is an indication of the importance of the delayedl(t � 1), asM5 ignores that delayed variable.
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Also, the poorer result ofM2, compared toM1, can be explained by the fact that the model, withx = [p(t� 1); p(t� 2); l(t� 1); l(t� 2); o(t� 1); o(t� 2)℄T , is ‘forced’ to find a weighting betweenl(t� 1); l(t � 2) andp(t� 1); p(t � 2) althoughM1 highlighted the greater significance ofl(t� 3)
andp(t� 3) overl(t� 2) andp(t� 2) respectively.

If we compute the ratiosEM11 =EM31 andEM12 =EM32 (corresponding to the ratios of the train-

ing errors of the best model over that of the worst model), we find 0:9341 and1:0136 respectively,

meaning that modelsM1 andM3 are actually quite similar. It can then be argued that the increase

of model complexity inM1 might not be worth the computational effort, in terms of predictive per-

formance of the model, when compared to a much simpler one like M3 (following the Occam’s

razor principle, (Rasmussen and Ghahramani, 2001), favouring simple models in the face of the com-

plexity/performance trade-off). Note if we artificially set to zero the parameters corresponding top(t � 3); p(t � 2); l(t � 3); l(t � 2); o(t � 3); o(t � 2), the minus log-likelihood ofM1 increases to�1:3326� 103, making it less likely thanM3. This highlights the fact that simply ignoring the inputs

thought not to be relevant is not enough: The model has to be re-trained, to allow a re-weighting of

the remaining parameters.

In the light of these results, we choose to model the pressuresignal using the structure of modelM3, that is p(t) = f(p(t� 1); l(t � 1); o(t� 1)) + �t : (5.2)

Recall that, for this model, after training a GP with Gaussian covariance function, we havew1 =2:4249, corresponding top(t � 1), w2 = 0:1392 andw3 = 45:9108, corresponding tol(t � 1) ando(t� 1) respectively. Also,v = 0:0748 and the estimated noise level isvt = 0:0005.

5.1.2 Validation

One-step-ahead prediction

We first test the model on the one-step-ahead prediction of the ‘validation’ pressure signal, which is

composed of336 points. Figure 5.4 (left) shows the mean predictions with their 2� error-bars (to

which we have added the model’s estimate of the output noise variancevt, since we predict the noisy
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time-series). The corresponding average losses obtained areE1 = 0:0010 andE2 = �1:9106.
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Figure 5.4: One-step ahead prediction of the test series, starting att = 63 ms (thin line). Left: Mean
predictions (thick continuous line) with their2� error-bars (dotted lines). Right: Plot of the predictive
variances only.

The plot of the log of the predictive variances (right) clearly indicates that there are regions where

the model becomes less accurate and confident about its predictions, which correspond to regions

where the pressure varies slowly. This can be explained by the fact that the model was trained on

rapidly varying signals (see the identification signals Figure 5.3) and therefore does not deal very

well with slowly varying signals (explaining the greater uncertainty and the constant over- or under-

shooting of the mean predictions in those regions). Also note the peak around3000, due to the rapid

changes of the pressure signal between two slowly varying regions.

Simulation

Since we do not know a priori the maximum prediction horizon (that is, the horizon up to which pre-

dictions are still ‘reasonably good’), we run a simulation of the test set. In practice, the simulation, or

‘infinite-step’-ahead prediction, corresponds to anNt-steps ahead prediction, whereNt is the length

of the test series.

For this simple model, the propagation of uncertainty within the Gaussian approximationis
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straightforward, as the water levell and the openness of the valveo signals are assumed to be known

up toNt, and there is only one delayed value of the pressure in the state (and therefore no cross-

covariances to be computed as we predict ahead in time). Assuming we know the pressurep up to

time t, we simply have� t+ 1, xt+1 = [p(t); l(t); o(t)℄T : Computep(t+ 1) � N (�(xt+1); �2(xt+1) + vt).� t+ 2, xt+2 = [p(t+ 1); l(t+ 1); o(t + 1)℄T � N (ut+2;���t+2) withut+2 = [�(xt+1; l(t+ 1); o(t + 1)℄T
and ���t+2 = 266664 �2(xt+1) + vt 0 00 0 00 0 0 377775 ;
provided we pass on the exactl(t+ 1) ando(t+ 1) to the model.

Computep(t+ 2) � N (m(ut+2;���t+2); v(ut+2;���t+2) + vt).� t+3,xt+3 = [p(t+2); l(t+2); o(t+2)℄T � N (ut+3;���t+3), whereut+3 = [m(ut+2;���t+2); l(t+2); o(t + 2)℄T and ���t+3 = 266664 v(ut+2;���t+2) + vt 0 00 0 00 0 0 377775 :
Computep(t+ 3) � N (m(ut+3;���t+3); v(ut+3;���t+3) + vt).� . . . Up to the end of the test set.

In this experiment, the mean and variance at each time-step are computed using the exact equations

corresponding to the Gaussian covariance function (Aex).

The simulation (or336-step-ahead prediction) of the test signal is shown in Figure 5.5. We com-

pare the simulation with propagation of uncertainty (Aex, as explained above) to the naive simulation
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Figure 5.5: Simulation of the test pressure signal (thin line) from t = 63 ms. Mean predictions(thick
continuous line) with their associated error-bars (dottedlines), given by the naive approach (left) and
by with propagation of the uncertainty (right).

(N ) that does not account for the uncertainty induced by each successive prediction. The left plot

shows the predictions given byN and the right one those given byAex.

The mean predictions given byN andAex are extremely similar (the difference between the two

is of the order10�4). Again, we can notice the under- and over-shooting of the model’s estimates

in slowly varying areas, most probably due to the fact that the model was trained using much more

rapidly varying signals. Although not quite clear from these plots, the predictive variances (standard

deviations squared) obtained withAex show more variability than those obtained withN , although

both are in the same range. For this simulation, we haveEex1 = En1 = 0:0014, En2 = �1:5289
andEex2 = �1:6463, where the upper-scriptex refers toAex andn to N . So, in terms of negative

log-predictive density, the propagation of uncertainty does better than the naive approach.

The simulation was started from the first point of the test set, for which the one-step ahead pre-

diction errors areEt01 = 6:2501 � 10�4 andEt02 = �2:2555 (wheret0 indicates the first point, that

is att = 63). We would expect a link between the point at which we start the simulation, the average

performance of the model and the variation between naive andpropagation of uncertainty approaches.

That is, starting from a ‘good’ point (a point for which the one-step ahead predictive losses are good),

we would expect the average losses (over the simulation) to be better than those obtained when start-

ing from a ‘bad’ point, and the two methods to differ only slightly, the difference increasing if the
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starting point is one at which the model is already unsure about its prediction.

In order to validate our hypothesis, we ran the following experiments:� S1: Start the simulation att1 = 5087, corresponding to the point at which the one-step-ahead

losses are the worst (that isEt11 = 0:0473 andEt12 = 40:3721);� S2: Start the simulation att2 = 2847, corresponding to the best one-step-ahead squared error,

that isEt21 = 7:6528 � 10�11 (for this point, we haveEt22 = �2:8686);� S3: Start the simulation att3 = 767, the point corresponding to the best one-step-ahead negative

log-predictive density, that isEt32 = �2:8709 (Et31 = 2:0305 � 10�7 for this point).

The fact that the best one-step-ahead squared error and negative log-predictive density do not coincide

with the same point highlights the difference between thesetwo measures of ‘goodness’ of predictions.

Recall that, whereas the squared error loss is only a function of the estimate (the predictive mean), the

negative log-predictive density trades off the estimate and the uncertainty attached to it (an accurate

estimate with large variance will have a largerE2 than a rougher estimate with small variance).

In terms of average2 squared error, we obtainEn1 = Eex1 = 0:002 for S1 andEn1 = Eex1 = 0:0019
for S2. ForS3, we haveEn1 = 0:0013 andEex1 = 0:0012. Table 5.5 reports the value of the average

negative log-predictive density, computed forAex andN , for each simulation. To assess further the

difference between the two methods, we compute the ratio of the corresponding losses: The closer

this ratio is to one, the more similar are the two methods.

From this table, we conclude thatAex does consistently better than the naive approach, and, as

expected, the performance of the simulation is indeed affected by the starting point, if only slightly

(better losses forS2 andS3 than forS1). Also, the difference between the two methods is greater when

starting at a ‘bad’ point than at a ‘good’ one (forS1, the ratioEex2 =En2 is further from one than that

2Note thatS1 corresponds to the shortest simulation (with179 points), whereasS2 andS3 imply the prediction of249
and314 points respectively. In order to compare fairly the losses between the simulations and average over the same number
of points, we stopped theS2 andS3 simulations after179 steps.
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Table 5.5: Average negative log-predictive density for thedifferent simulations.

Simulation En2 Eex2 Eex2 =En2S1 �0:9917 �1:1515 1:1611S2 �1:1226 �1:2886 1:1479S3 �1:6931 �1:8 1:0631
for S2 andS3), showing that the propagation of uncertainty copes betterwith the model’s uncertainty

than does the naive method, which simply ignores it.

The above reasoning can in fact be generalised to any point (not necessarily the starting point of

a simulation): In general, once the model has passed througha ‘bad’ point, we expect the following

predictions to be less accurate, as the model becomes less reliable from then on, with the two methods

possibly diverging (although for some systems the model can‘catch’ the state again).

For this application in particular, the propagation of uncertainty algorithm does not greatly im-

prove the predictions: Although the system is dynamic and nonlinear, the GP, using the simple NARX

structure with three delayed variables, could capture the dynamics of the model well enough to make

good predictions over the whole length of the test signal.

5.2 The pH neutralisation process

We now turn to the more challenging problem of modelling a nonlinear pH neutralisation process, as

depicted in Figure 5.6.

The process consists of an acid stream (Q1), a buffer stream (Q2) and a base stream (Q3) that are

mixed in a tank (T1). The effluent pH is the measured variable and, in this study,it is controlled by

manipulating the base flow rate with a flow control valve. Thisreal dynamic system is well-known

for its complexity as it contains various nonlinear elements. We refer to (Henson and Seborg, 1994)

for more details.

After investigation into the identification of the process (Kocijan et al., 2002), it was found that
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Figure 5.6: Schematic diagram of the pH neutralisation process.

the following NARX structure was suitable3 to model the pH signaly, given the control inputu:y(t) = f(y(t� 1); : : : ; y(t� L); u(t� 1); : : : ; u(t� L)) ; (5.3)

withL = 8. Figure 5.7 shows portions of the signals used for identification (left) and validation (right)

of the model.
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Figure 5.7: Portions of the real signals used for identification (left) and validation (right) of the model.
The upper plots correspond to the measured pH as a function oftime and the lower ones to the control
input.

3That is in terms of trade-off between model complexity and average error on the training set.
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5.2.1 ‘Mixed-model’ identification

Since the signals are very long (15952 points), and the GP, as we use it,4 cannot handle such a large

data-set, we sub-sample the identification signals, resulting in aN � D matrix of training inputs,

whereN = 1226 andD = 16, and the correspondingN � 1 vector of target pH values.

Although the process is nonlinear, a great deal of variationof the pH signal can be explained by a

linear model and we decide to first fit a linear model to the dataand then model the residuals with a

GP (again with Gaussian covariance function). The classical linear model isyl(t) = 2L+1Xd=1 xd(t)wdl ; (5.4)

wherewdl , for d = 1 : : : 2L + 1, are the parameters of the linear model (w2L+1l corresponding to

the bias) andx+(t) = [y(t � 1); : : : ; y(t � L); u(t � 1); : : : ; u(t � L); 1℄ is the augmented input

(the unit entry taking care of the bias). The Least Squares (LS) linear parameters are then given bywLSl = A�1b, whereAd;e = PNi=1 xdi xej andbd = PNi=1 yixdi , for d; e = 1 : : : 2L + 1. For this

linear model, the average squared error on the training set is0:0011. Figure 5.8 shows a portion of the

residualsy(t)� yl(t) whereyl(t) = wLSl Tx+(t).
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Figure 5.8: Plot of a subset of the residuals, after fitting a linear model.

4Refer to Chapter 2, Section 2.3.2.
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Assuming ygp(t) = f(y(t� 1); : : : ; y(t� L); u(t� 1); : : : ; u(t� L)) ; (5.5)

whereygp(t) = y(t)� yl(t), we model these residuals with a GP with Gaussian covariancefunction.

For a givenx(t), the GP then provides us with the predictive distributionygp(t) � N (�(x(t)); �2(x(t))),
where�(x(t)) corresponds to the estimate of the residual at timet.

Blending the linear and the GP models together, the estimateof the system’s outputy(t) is given

by �(x(t)) + yl(t), with uncertainty�2�(x(t)). For this ‘mixed model’, the training errors (i.e.

average errors on the one-step-ahead predictions of the training set) areE1 = 1:1838 � 10�7 andE2 = �5:6479 (if we had fitted a GP directly onto the original data, we wouldhave obtainedE1 =3:3420 � 10�6 andE2 = �4:6854). The training errors of the linear-GP model are then one order

of magnitude better than those obtained for the GP alone. Figure 5.9 shows a portion of the one-

step-ahead prediction of the validation pH signal (which contains15952 points). The test errors areE1 = 3:9396 � 10�4 andE2 = �3:3816 (compared toE1 = 0:0022 andE2 = �2:9150 for the GP

alone).
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Figure 5.9: One-step-ahead prediction of the validation pHsignal (continuous line) fromt = 2 to t =2:4� 104 ms with the model’s mean predictions (dotted line). The right plot shows the corresponding
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5.2.2 k-step ahead predictions with the linear model

If we now wish to make multiple-step-ahead predictions and propagate the uncertainty, we need to

update the algorithm presented in Section 4.2.1 of the previous chapter, to account for the linear part

at each time-step.

Modified algorithm

For simplicity, we denote byxk the input at timet+k. At each time-step, ‘1:’ refers to the contribution

of the linear model and ‘2:’ to that of the GP. The algorithm is now as follows:� t+ 1, x1 = [y(t); : : : ; y(t� L); u(t); : : : ; u(t� L)℄T
1. yl(t+ 1) = wLSl Tx+1 (wherex+1 is the augmented input vector)

2. ygp(t+ 1) � N (�gp(x1); �2gp(x1))! y(t+ 1) = yl(t+ 1) + ygp(t+ 1) � N (m(x1); v(x1)) withm(x1) = �gp(x1) + yl(t+ 1); v(x1) = �2gp(x1)� t+2, x2 = [y(t+1); y(t); : : : ; y(t+ 1�L); u(t+ 1); : : : ; u(t+ 1�L)℄T � N (u2;���2) withu2 = [m(x1); y(t); : : : ; y(t+ 1� L); u(t+ 1); : : : ; u(t+ 1� L)℄T ;
and�112 = v(x1) and zero elsewhere,

1. yl(t+ 2) � N (ml(u2;���2); vl(u2;���2))
2. ygp(t+ 2) � N (mgp(u2;���2); vgp(u2;���2))! y(t+ 2) = yl(t+ 2) + ygp(t+ 2) � N (m(u2;���2); v(u2;���2)) withm(u2;���2) = ml(u2;���2) +mgp(u2;���2)v(u2;���2) = vl(u2;���2) + vgp(u2;���2) + 2Cov[yl(t+ 2); ygp(t+ 2)℄� t+3, x3 = [y(t+2); y(t+1); y(t); : : : ; y(t+2�L); u(t+2); : : : ; u(t+2�L)℄T � N (u3;���3)u3 = [m(u2;���2);m(x1); y(t); : : : ; y(t+ 2� L); u(t+ 2); : : : ; u(t+ 2� L)℄T
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���3 = 266666666664
v(u2;���2) Cov[y(t+ 2); y(t+ 1)℄ 0 : : : 0Cov[y(t+ 1); y(t + 2)℄ v(x1) 0 : : : 00 0 0 : : : 0

...
...

...
...

...0 0 0 : : : 0
377777777775 ;

1. yl(t+ 3) � N (ml(u3;���3); vl(u3;���3))
2. ygp(t+ 3) � N (mgp(u3;���3); vgp(u3;���3))! y(t+ 3) � N (m(u3;���3); v(u3;���3)).� . . . Up to the desired horizon.

At each time-step, the predictive meanmgp(:) and variancevgp(:) given by the GP are computed ex-

actly (for the Gaussian kernel) using equations (3.39) and (3.44).

We now need to computeml(:) andvl(:), the predictive mean and variance given by the linear

model, the cross-covariance between the linear and the GP models, arising in the predictive variance

of the output at each time-step, and the cross-covariance terms of the input covariance matrix.

Linear part In general, at time-stepk, given the inputxk � N (uk;���k), it is straightforward that

the linear contributionyl(t+ k) has mean and varianceml(uk;���k) = wLSl Tu+kvl(uk;���k) = wLS�l T���kwLS�l
wherewLS�l is the vector of parameters without the bias term andu+k is the augmented input vector.

Output distribution At t + k, the ‘mixed model’ output isy(t + k) = ygp(t + k) + yl(t + k) �N (m(uk;���k); v(uk;���k)) with meanm(uk;���k) = mgp(uk;���k) +ml(uk;���k)
and variance v(uk;���k) = vgp(uk;���k) + vl(uk;���k) + 2Cov[ygp(t+ k); yl(t+ k)℄ :
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We haveCov[ygp(t + k); yl(t + k)℄ = E[ygp(t + k)yl(t + k)℄ � E[ygp(t + k)℄E[yl(t + k)℄, whereE[ygp(t+ k)℄ = mgp(uk;���k) andE[yl(t+ k)℄ = ml(uk;���k). We therefore need to computeE[ygp(t+ k)yl(t+ k)℄ =Xi �iwLS�l T Z xkC(xk;xi)p(xk)dxk ;
wherexi denotes theith training case. As already seen in Chapter 4, Section 4.2.1, this integral can

be evaluated exactly or approximately, depending on the form of the covariance function. In the case

of the Gaussian kernel used in this experiment, we can directly writeCov[ygp(t+ k); yl(t+ k)℄ =Xi �iC(uk;xi)Corr(uk;xi) �(I�W(W +���k)�1)xi����k(W +���k)�1uk�wLS�l :
Input distribution Therefore, at timet+ k, the inputxk = [y(t+ k� 1); : : : ; y(t+ k�L); u(t+k � 1); : : : ; u(t+ k � L)℄ is a2L� 1 random vector, normally distributed, with meanuk = [m(uk�1;���k�1); : : : ;m(uk�L;���k�L); u(t + k � 1); : : : ; u(t+ k � L)℄
and covariance matrix���k with the delayed variancesv(uk�i;���k�i) on the firstL diagonal elements

(the remaining elementsL + 1; : : : ; 2L corresponding to the delayed control input being zero). As

seen in Section 4.2.1, computing the cross-covariances between the delayed outputs at each time-step

corresponds to computingCov[y(t+ k � l);xk�l℄, discarding the last element ofxk�l. That is, withy(t+ k � l) = ygp(t+ k � l) + yl(t+ k � l),Cov[y(t+ k � l);xk�l℄ = Cov[ygp(t+ k � l);xk�l℄ + Cov[yl(t+ k � l);xk�l℄ ;
where we already knowCov[ygp(t+k�l);xk�l℄ (given by equation (4.8) for the Gaussian covariance

function). For the linear part, we simply haveCov[yl(t+ k � l);xk�l℄ = E[yl(t+ k � l)xk�l℄�E[yl(t+ k � l)℄E[xk�l℄= wML�l T [uk�1uTk�1 +���k�1℄�wML�l Tuk�1uTk�1= wML�l T���k�1 :
We are now going to apply these results to the20-step ahead prediction of the test pH signal.

Furthermore, we compare the predictive performance of the iterative method to that of the direct

model, trained to predictk-steps ahead (where again we consider a linear model first andthen a GP).



5.2. THE PH NEUTRALISATION PROCESS 95

Results

We performk-step-ahead predictions, wherek = 20, starting at226 points, taken at random from

the test set. Figure 5.10 shows the iterativek-step-ahead predictive means and Figure 5.11 shows the

predictive variances, fork = 5; 10; 15; 20, obtained for the naive approachN (using the ‘certainty

principle’ on the estimates at each time-step) and the propagation of uncertaintyAex (using the exact

moments). Note that no time index is given because each pointis ak-step ahead prediction.
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Figure 5.10: True pH values (continuous line) and predictive means (dotted lines) atk steps ahead
(note that each point is ak step ahead prediction, so that the x-axis simply indicates the sample
number, not time). In each figure, the top plots indicate the means given by the naive approach and
the bottom ones those obtained when propagating the uncertainty.

From Figure 5.10, we see that the5-step-ahead predictive means given byN andAex are similar

but start differing fromk = 10. Around the40th 10-step-ahead prediction (indicated by an arrow), the
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Figure 5.11:k-step-ahead predictive variances, for different values ofk. Same legend as for Figure
5.10.
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naive approach overshoots more thanAex, and undershoots around the170th prediction (see arrow).

The same behaviour occurs fork = 15 andk = 20, around the220th point. In terms of variances, we

can note that, whatever the prediction horizon is, the predictive variances given by the naive approach

are always very small. Also, the variances given byAex are one order of magnitude different betweenk = 5 andk = 10, but stay in the same range fork > 10 (there is no ‘blowing up effect’ for largek). Regardless of the amplitude of the variances, we see that the models do not necessarily agree on

which points are ‘certain’ and which ones are not (e.g. fork = 5, the10th prediction is very uncertain

according toN but not forAex, similarly for the140th 15-step ahead prediction).

Let us now look more closely at the predictions from one to20-steps ahead for different starting

points. LetM be the point at which the variance given by the exact method at20 steps ahead is

maximum andm the point at which it is minimum. Figure 5.12 shows the prediction from one tok = 20 steps ahead, starting atM andm (the crosses indicating the moments given byAex and the

dots those given byAn). From these plots, we see that, starting fromm, the mean predictions given

by the two methods are really good. Interestingly, the variances given byAex start decreasing after6
steps ahead. When starting fromM , as the mean predictions get worse, the uncertainty of the modelAex also increases, which is not the case for the naive model.

The values of the average errors given by Table 5.6 confirm ourremarks concerning the iterative

predictions, with and without propagation of the uncertainty.

Table 5.6: Average squared errorE1 and negative log-predictive densityE2 for different values ofk.k = 5 k = 10 k = 15 k = 20E1 E2 E1 E2 E1 E2 E1 E2N 0:0275 105 0:1187 725 0:1880 2096 0:2243 13652Aex 0:0263 �1:1315 0:0899 �0:3946 0:1005 0:0028 0:1233 0:2053D 0:0562 �0:0194 0:0481 0:1431 0:0456 �0:0523 0:0554 0:0184
Ask increases,Aex becomes one order of magnitude better thanN , in terms ofE1. The very large

values forE2 obtained for the naive approach can be explained by the fact that, ask increases, the

model’s uncertainty stays small, even though the estimatesare not accurate. We also report the losses
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Figure 5.12: Top plots: pH signal (continuous line) from1 to 20 steps ahead, starting at pointM ,
for which the variance at20 steps ahead is maximum. The crosses correspond to the means (left)
and variances (right) obtained when propagating the uncertainty and the dots to the naive approach.
Bottom plots: Same as above, starting atm, the point at which the variance at20 steps ahead is
minimum.
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obtained when training a model to directly predictk-steps-ahead (D). We can see that for relatively

short prediction horizons, the iterative method with propagation of uncertainty performs better than

the direct method, which is due to the accuracy of the one-step ahead model. But as the predictive

horizon grows larger, the direct model shows a better predictive performance. Although the number

of missing data increases withk, for this particular example, the direct model does not facedifficulties

to learn the mapping as the number of data points is very large(1228 training cases are available to

learn the20-step-ahead model, for which the input dimension is35).

5.3 Concluding remarks

In this chapter, we have highlighted how the GP model could beeffectively used to model and forecast

real dynamic systems. In particular, for the gas-liquid process, we have seen how the parameters of

the covariance function could be used to identify the structure of the NARX model. We simply

would like to recall that the ARD tool should be used with caution. Only those parameters associated

with the same (delayed) variables should be compared, not all parameters between them, as different

variables are likely to vary in different ranges. Also, simply setting to zero the parameters of less

relevant variables is not enough: A model with the corresponding simpler structure (i.e. ignoring

those variables) should be re-trained, as we saw that the likelihood ofM1 is less than that ofM3,
when setting to zero those parameters inM1 corresponding to the variables not accounted for inM3.

Another important remark is that, the intuitive idea that a model trained on a ‘rich’ rapidly varying

signal should automatically generalise well on ‘simpler’ signals is not true, as we could see for the

gas-liquid system. The model trained on rapidly varying signals has mean predictions over- or under-

shooting in those regions where the test signal varies slowly. Fortunately, this is reflected in the larger

predictive variances, indicating that the model is less confident in its estimates.

The comparison of the predictions obtained with and withoutpropagation of the uncertainty indi-

cate that, in general, propagating the uncertainty does improve the multiple-step-ahead predictions, if

only with respect to the predictive variances. Also, if the model passes through a ‘new’ region, induc-

ing a larger predictive variance for the corresponding outputs, a model propagating the uncertainty is

more likely to be able to ‘catch’ the state again and ‘rectify’ its predictions afterwards.
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At last, we have shown how a linear model could be elegantly added and accounted for in thek-step-ahead iterative prediction with propagation of the uncertainty.

Likewise, we are now going to show how derivative observations can be easily accounted for in

the model, and then extend the propagation of uncertainty algorithm in this case.



Chapter 6

Including derivative observations and

allowing cautious control

In this chapter, we present the methodology for using Gaussian Processes, and the approach we have

developed to account for the uncertainty, in two important applications. In Section 6.1, we first show

how derivative observations can be incorporated into a GP model where function observations are

already available, which is of particular importance in engineering applications, for the identification

of nonlinear dynamic systems from experimental data. For this mixedtraining set, we then derive the

expressions of the predictive mean and variance of a function output corresponding to a noisy input,

within theGaussian approximation. The second part of this chapter is devoted to the use of Gaussian

Processes in a control context. Of particular interest are the Model Predictive Control framework and

adaptive controllers, where the controllers present a ‘cautious’ feature, arising in an objective function

that does not disregard the model’s uncertainty.

6.1 Incorporating derivative observations in a GP model

Accounting for derivative observations, either directly measured or obtained from linearisations, in

the GP framework has been addressed in (Solak et al., 2003). In the following, we first explicitly

write down the expressions of the predictive mean and variance of a function output, accounting for

themixednature of the training set. We then use these results to derive the mean and variance of the

101
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output corresponding to a noisy test input.

6.1.1 Derivative process

Let us first consider the Gaussian Processy = f(x) with a one-dimensional argumentx, with mean

functionmy(x) and covariance functionCy(xi; xj).
It can be shown (Pugachev, 1967) that the derivative processf 0(x) = �f(x)�x , that we denote byy1,

is also a Gaussian Process with mean and covariance functionrespectively given bymy1(x) = �my(x)�x ; Cy1(xi; xj) = �2Cy(xi; xj)�xixj : (6.1)

Also, the cross-covariance function between the two processes isCyy1(xi; xj) = �Cy(xi; xj)�xj : (6.2)

In the general case where the argumentx is D-dimensional, we will consider one derivative at a

time, denoting byyd the first derivative ofy in directiond, i.e. yd = �f(x)�xd . In this case, the covariance

function ofyd is Cyd(xi;xj) = �2Cy(xi;xj)�xdi xdj ; (6.3)

the cross-covariance betweenyd andy isCyyd(xi;xj) = �Cy(xi;xj)�xdj ; (6.4)

and that betweenyd and, say,ye isCydye(xi;xj) = �2Cy(xi;xj)�xdi �xej : (6.5)

We refer to Appendix A for operations on random functions.

6.1.2 Output predictive distribution for a new input

Consider the case where we haveN observations of the function output,y1; : : : ; yN , andNd observa-

tions of the first derivative1 in directiond, yd1 ; : : : ; ydNd so that we allow the number of points to differ

1The derivative observations need not be taken at the same inputs as the function observations.
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from one derivative2 to another. Note that, in the following, we make the simplification of considering

noise-free function and derivative observations.

We refer to such a data set as amixedtraining set. The complete vector of observations is thent = [y1 : : : yN ; y11 ; : : : ; y1N1 ; : : : ; yd1 ; : : : ; ydNd ; : : : ; yD1 ; : : : ; yDND ℄T ;
and we can partition the data covariance matrixK accordingly, into blocks corresponding to the

function observations only, the derivative observations and the cross-covariances between them:

K = 266666666664
Kyy : : : Kyyd : : : KyyD

...
...

...Kydy : : : Kydyd : : : KydyD
...

...
...KyDy : : : KyDyd : : : KyDyD

377777777775 ;
whereKyy denotes theN�N matrix of covariances between function observations (Kijyy = Cov[yi; yj ℄,
for i; j = 1 : : : N ),Kyyd theN�Nd matrix of covariances between function observations and deriva-

tives in directiond (Kijyyd = Cov[yi; ydj ℄, for i = 1 : : : N , j = 1 : : : Nd),Kydyd theNd�Nd matrix of

covariances between derivative observations in directiond (Kijydyd = Cov[ydi ; ydj ℄, for i; j = 1 : : : Nd)
and, in general,Kydye theNd � Ne matrix of covariances between derivative observations in direc-

tion d and directione (Kijydye = Cov[ydi ; yej ℄, for i = 1 : : : Nd, j = 1 : : : Ne andd; e = 1 : : : D). All

these covariances can be readily computed for a given covariance function, using the formulae given

in 6.1.1.

Given the full vector of observations and the covariance matrix K, the learning can be achieved

as in Section 2.3.2 of Chapter 2, by minimisingL(���) = � log[p(tjX)℄, whereX is the matrix of

the inputs at which function and derivative observations are made and��� are the parameters of the

covariance function (see (Solak et al., 2003)). Note that the model need not be trained on the full data

set, as the training of the model can be achieved using the function observations only. Providing the

derivative observations would not affect the model (in terms of carrying more information likely to

2By which we understand the first derivative in a given dimension.
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change the value of the parameters learnt), they could then be added to the model, or possibly be used

in place of some function observations for making predictions, the latter enabling a speed-up in the

computations.

Given a new inputx, as in the ‘usual’ GP case (Chapter 2, Section 2.3.3), the predictive distribu-

tion of the corresponding function pointy = f(x) is Gaussian, with mean and variance respectively

given by �(x) = Xi �iC(x;xi) (6.6)�2(x) = C(x;x)�Xi;j K�1ij C(x;xi)C(x;xj) ; (6.7)

where��� = K�1t andi; j = 1 : : : (N +N1 + � � � +ND).
When computing the covariances between the function outputat the newx and the observations

at the training points, we can distinguish between functionand derivative observations and write�(x) = NXi=1 �iCov[y; yi℄ + DXd=1 NdXi=1 �iCov[y; ydi ℄ ; (6.8)

that is �(x) = NXi=1 �iCy(x;xi) + DXd=1 NdXi=1 �iCyyd(x;xi) (6.9)

for the mean, and similarly�2(x) =Cov[y; y℄� 24 NXi;j=1K�1ij Cov[y; yi℄Cov[y; yj ℄ + DXd;e=1 NdXi=1 NeXj=1K�1ij Cov[y; ydi ℄Cov[y; yej ℄+2 DXd=1 NXi=1 NdXj=1K�1ij Cov[y; yi℄Cov[y; ydj ℄35 ;
(6.10)

or�2(x) =Cy(x;x) � 24 NXi;j=1K�1ij Cy(x;xi)Cy(x;xj) + DXd;e=1 NdXi=1 NeXj=1K�1ij Cyyd(x;xi)Cyye(x;xj)+2 DXd=1 NXi=1 NdXj=1K�1ij Cy(x;xi)Cyyd(x;xj)35
(6.11)
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for the variance.

Let �y(x) = NXi=1 �iCy(x;xi) (6.12)�2y(x) = Cy(x;x)� NXi;j=1K�1ij Cy(x;xi)Cy(x;xj) (6.13)

be the mean and variance relative to the function observations only,�yd(x) = NdXi=1 �iCyyd(x;xi) (6.14)�2ydye(x) = � NdXi=1 NeXj=1K�1ij Cyyd(x;xi)Cyye(x;xj) (6.15)

the moments relative to the derivative observations, and�2yyd(x) = � NXi=1 NdXj=1K�1ij Cy(x;xi)Cyyd(x;xj) ; (6.16)

the part accounting for the cross-covariance between function and derivative observations. The pre-

dictive mean and variance can then be written�(x) = �y(x) + DXd=1 �yd(x) (6.17)�2(x) = �2y(x) + DXd;e=1�2ydye(x) + 2 DXd=1 �2yyd(x) ; (6.18)

reflecting the ‘mixed’ nature of the data set.

6.1.3 Prediction at a noisy input

We now turn to the problem of making a prediction given a noisyor randomx � Nx(u;���x). We do

so in theGaussian approximationpresented in Chapter 3, Section 3.2.2. That is, we only compute the

mean and variance of the (non-Gaussian) predictive distribution. As seen then, these two moments

are given by m(u;���x) = Ex[�(x)℄ (6.19)v(u;���x) = Ex[�2(x)℄ +Ex[�(x)2℄�m(u;���x)2 ; (6.20)
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where�(x) and�2(x) are now given by equations (6.17) and (6.18) respectively.

Replacing�(x) by its expression, we havem(u;���x) = Ex "�y(x) + DXd=1 �yd(x)# = Ex[�y(x)℄ + DXd=1Ex[�yd(x)℄ :
Let my(u;���x) = Ex[�y(x)℄ andmyd(u;���x) = Ex[�yd(x)℄. The predictive mean corresponding to

the noisyx can be written m(u;���x) = my(u;���x) + DXd=1myd(u;���x) ; (6.21)

which corresponds to the sum of the ‘noisy’ predictive mean when only function observations are

available (which is the case derived in Chapter 3), and that corresponding to the derivative observa-

tions in each dimension.

We can work out a similar expression for the variance. Replacing �2(x) by its expression, we first

have Ex[�2(x)℄ = Ex 24�2y(x) + DXd;e=1�2ydye(x) + 2 DXd=1 �2yyd(x)35= Ex[�2y(x)℄ +Ex 24 DXd;e=1�2ydye(x)35+ 2 DXd=1Ex[�2yyd(x)℄ :
Also, Ex[�(x)2℄ = Ex 24�y(x)2 + 2�y(x) DXd=1 �yd(x) + DXd=1 �yd(x)!235= Ex[�y(x)2℄ + 2 DXd=1Ex[�y(x)�yd(x)℄ +Ex 24 DXd=1 �yd(x)!235
with Ex ��PDd=1 �yd(x)�2� =PDd;e=1Ex[�yd(x)�ye(x)℄.
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Putting the different terms together, we havev(u;���x) = Ex[�2y(x)℄ + DXd;e=1Ex[�2ydye(x)℄ + 2 DXd=1Ex[�2yyd(x)℄ +Ex[�y(x)2℄+ DXd;e=1Ex[�yd(x)�ye(x)℄ + 2 DXd=1Ex[�y(x)�yd(x)℄ �m(u;���x)2 ;
where m(u;���x)2 = Ex[�y(x)℄2 +Ex " DXd=1 �yd(x)#2 + 2 DXd=1Ex[�y(x)℄Ex[�yd(x)℄
andEx hPDd=1 �yd(x)i2 =PDd;e=1Ex[�yd(x)℄Ex[�ye(x)℄. Lettingvy(u;���x) = Ex[�2y(x)℄ +Ex[�y(x)2℄�Ex[�y(x)℄2 (6.22)vydye(u;���x) = Ex[�2ydye(x)℄ +Ex[�yd(x)�ye(x)℄ �Ex[�yd(x)℄Ex[�ye(x)℄ (6.23)vyyd(u;���x) = Ex[�2yyd(x)℄ +Ex[�y(x)�yd(x)℄ �Ex[�y(x)℄Ex[�yd(x)℄ ; (6.24)

we can finally writev(u;���x) = vy(u;���x) + DXd;e=1 vydye(u;���x) + 2 DXd=1 vyyd(u;���x) : (6.25)

Due to the mixed nature of the training set, the new predictive variance is not only the sum of the new

variances but also accounts for cross-terms.

Case of the Gaussian kernel

As in Chapter 3, Section 3.4.2, we can compute thenoisypredictive mean and variance exactly. We

find (see Appendix C, Section C.1 for the detailed calculations)m(u;���x) =Xi �iCG(u;xi)Corr(u;xi) 1 + DXd=1wd(di � xdi )! (6.26)
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wheredi is thedth component of(W�1 +����1x )�1(W�1xi +����1x u), andv(u;���x) = CG(u;u) +Xi;j (�i�j �K�1ij )241 + DXd;e=1wdwe(Cde + dijeij � xejdij � xdi eij + xdi xej)+2 DXd=1wd(dij � xdj )#CG(u;xi)CG(u;xj)Corr2(u; �x)�my(u;���x)2� DXd;e=1myd(u;���x)mye(u;���x)� 2my(u;���x) DXd=1myd(u;���x)
(6.27)

whereCde is the(d; e) entry ofC = ��W2 ��1 +����1x ��1
anddij thedth element ofC��W2 ��1 xi+xj2 +����1x u�.

If we now wish to use this model for the modelling of a nonlinear dynamic system and perform

an iterativek-step ahead prediction with propagation of the uncertainty, we can simply apply the

algorithm presented in Chapter 4, Section 4.2.1. Only in this case is the input covariance matrix

slightly changed as we need to account for the derivative observations when computing the cross-

covariance terms. The new expressions of these terms can be found in Appendix C, Subsection C.1.3.

We refer to (Kocijan et al., 2004b) for numerical results.

6.2 GPsin control

We now turn to the use of Gaussian Processes for the control ofnonlinear dynamic systems. In the

control community, nonlinear control has mostly been basedon nonlinear parametric models (e.g.

neural networks), and it is only recently that GPs have appeared on the control scene (Murray-Smith

et al., 1999; Leith et al., 2000).

Nonlinear Model Predictive Control (NMPC) is a methodologythat refers to a class of control

algorithms in which a nonlinear dynamic model of the plant isused to predict and optimise the future

behaviour of the process (Henson, 1998; Qin and Badgwell, 2000). It can be formulated as follows

(Henson, 1998): A sequence of control moves is computed to minimise an objective function (also

referred to as loss or cost function) which includes predicted future values of the controlled outputs,

obtained from the nonlinear model. Then, only the control inputu computed for the present time-step
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is implemented, and the prediction horizon is moved one stepforward, and the procedure repeated

again, using new process measurements. The ability of thesecontrollers to deal with constraints and

multi-variable systems has made them very popular in industry. However, the approach relies heavily

on the quality of the nonlinear model of the process. It is common that most of the available data lie

around equilibrium points, and only sparse data are available in transient regions, thus jeopardising the

identification and performance of a parametric model. In this respect, Gaussian Processes appear to

be better suited for the task, as the data are used directly inprediction. This way, the uncertainty of the

model’s predictions can be made dependent on local data density, and the model complexity directly

relates to the amount of available data. GPs have recently been successfully tested for NMPC (Ko-

cijan et al., 2004c), with constraints on the variance, using the propagation of uncertainty algorithm

proposed in Chapter 4 to compute the future outputs.

When deriving the control moves, most researchers have considered cost functions where the

model’s predictions are used as if they were the true system’s outputs (̊Aström, 1995). These adaptive

controllers, based on thecertainty equivalence principle, therefore do not account for the uncertainty

on the model’s predictions, and the control actions taken donot influence the uncertainty either. Con-

trollers achievingcaution, by accounting for the model’s uncertainty, andprobing (exploration), by

going into yet unexplored regions, have been the scope of much interest in the control community

(Wittenmark, 1995). Assuming a quadratic cost function, this kind of dual controller aims at finding

a control inputut which minimises aK-stage criterion, as

J = E " KXk=1(ydt+k � yt+k)2# ; (6.28)

whereyd is the reference signal andy is the controlled output. The numerical cost associated with

this optimisation has usually led to sub-optimal or ad-hoc solutions to regularise the control behaviour

when following the reference signal, depending on the modelaccuracy (Fabri and Kadirkamanathan,

1998). In the following, we present a controller with a ‘cautious’ feature as it is used in the multi-

step-ahead optimisation of the control moves, with propagation of the uncertainty.
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6.2.1 One-step-ahead cautious control

Consider a nonlinear a multi-input single-output (MISO) system,yt+1 = f(yt; : : : ; yt�n; ut; ut�1; : : : ; ut�m) + et+1 ; (6.29)

whereyt+1 is the controlled output,ut is the current ‘manipulated’ input, andet+1 is assumed to be a

white noise with unknown variancevt. We denote by[xt; ut℄ the state att+ 1, wherext is composed

of the delayed outputs and inputs. We wish to control this system using the following cost function,

which includes a penalty term on the control effort:Jt+1 = E[(ydt+1 � yt+1)2℄ + �u2t+1 : (6.30)

Expanding the termE[(ydt+1 � yt+1)2℄, we haveE[(ydt+1 � yt+1)2℄ = E[ydt+12 � 2ydt+1yk + y2t+1℄= ydt+12 � 2ydt+1E[yt+1℄ +E[y2t+1℄ :
UsingE[y2t+1℄ = Var[yt+1℄ +E[yt+1℄2, the cost at timet+ 1 can be writtenJt+1 = (ydt+1 �E[yt+1℄)2 +Var[yt+1℄ + �u2t+1 : (6.31)

This cost function accounts naturally for the uncertainty associated withE[yt+1℄, which arises by

doing simple manipulations, as noted by (Murray-Smith and Sbarbaro, 2002). That most researchers

have ignored the variance term is likely to be related to the model used in the first place, as it might

be difficult to obtain this uncertainty, and to compute the derivatives of the cost function with respect

to it. Indeed, the optimal control input is now found by solving �Jt+1�ut = 0, that is�Jt+1�ut = �2�ydt+1 �E[yt+1℄� �E[yt+1℄�ut + �Var[yt+1℄�ut + 2�ut = 0 : (6.32)

For a GP with zero-mean and covariance functionC(:; :), E[yt+1℄ is simply the predictive mean att+ 1, �([xt; ut℄) =Xi �iC([xt; ut℄; [xi; ui℄) ; (6.33)

andVar[yt+1℄ its associated variance,�2([xt; ut℄) = C([xt; ut℄; [xt; ut℄)�Xi;j K�1ij C([xt; ut℄; [xi; ui℄)C([xt; ut℄; [xj ; uj ℄) ; (6.34)
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where��� = K�1t andK is the data covariance matrix computed using the pairsxi; ui used for

training. In this case, it is straightforward that��([xt; ut℄)�ut = Xi �i �C([xt; ut℄; [xi; ui℄)�ut��2([xt; ut℄)�ut = �C([xt; ut℄; [xt; ut℄)�ut �Xi;j K�1ij ��C([xt; ut℄; [xi; ui℄)�ut C([xt; ut℄; [xj ; uj ℄)+C([xt; ut℄; [xi; ui℄)�C([xt; ut℄; [xj ; uj ℄)�ut � :
We refer to (Murray-Smith and Sbarbaro, 2002; Sbarbaro and Murray-Smith, 2003) for various

examples, illustrating how a controller which does not disregard the variance information leads to a

robust control action during adaptation.

6.2.2 Exploration and multi-step-ahead control

The total cost of controlling a system fromt+ 1 to, say, timet+K, whereK is our control horizon,

is given by J = 1K KXk=1 Jk ;
where, for simplicity in the notation, we now denote byJk the cost at timet+ k given byJk = (ydk �E[yk℄)2 +Var[yk℄ + �u2k�1 : (6.35)

If we want to propagate the uncertainty as we are making predictions ahead in time, and assuming

the covariance function of the process is the Gaussian one,E[yk℄ andVar[yk℄ are given by (3.39) and

(3.43) of Chapter 3 (only fork = 1 do we use (6.33) and (6.34)). Let denote bym([uk�1;���k�1; uk�1℄)
the predictive mean ofyk, and its variance byv([uk�1;���k�1; uk�1℄), or, for short,mk andvk, corre-

sponding to xk�1 = [yk�1; : : : ; yk�1�n; uk�2; : : : ; uk�2�m℄T � N (uk�1;���k�1) ;
with uk�1 = [mk�1; : : : ;mk�1�n; uk�2; : : : ; uk�2�m℄T ;
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wheremk�i = E[yk�i+1℄, and

���k�1 =
2666666666666664

vk�1 : : : Cov[yk�1; yk�1�n℄ 0 : : : 0
...

...
... 0 : : : 0vk�1�n : : : Cov[yk�1�n; yk�1℄ 0 : : : 00 0 0 0 0 0

...
...

...
...

...
...0 0 0 0 0 0
3777777777777775 ;

wherevk�i = Var[yk�i+1℄.
Now, the multi-step-ahead control of the system consists offinding the control signal such that

the total cost is minimum over the whole horizon. That is, we wish to findu0; : : : ; uK�1 such thatJ
is minimum, which is achieved by solving�J�(u0; : : : ; uK�1) = ��(u0; : : : ; uK�1) KXk=1 Jk = 0 : (6.36)

A ‘local approximation’ then consists of computing the optimal control input for each time-step,

i.e. to findui�1 such thatJi is minimum. However, it is likely that the resulting controlsignaluopt0 ; : : : ; uoptK�1, composed of all the local optimal contributions, is far from the overall optimal one(u0; : : : ; uK�1)opt. Following (Murray-Smith et al., 2003), the minimisation of the total cost requires

the computation of thesensitivity equations, which tell us how a change in the control signal at timei
affects the total cost. We need to compute�J�ui / KXk=i+1 �Jk�ui ; (6.37)

since the cost at timek � i is independent ofui (Jk only depends onuk�1).
Sensitivity equations

We therefore need to solve �Jk�ui = �2(ydk �mk)�mk�ui + �vk�ui ; (6.38)
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wheremk = m([uk�1;���k�1; uk�1℄) and andvk = v([uk�1;���k�1; uk�1℄). In the case of the Gaus-

sian covariance function, we can writemk =Xi �iC([uk�1; uk�1℄; si)Corr([uk�1; uk�1℄; si) ; (6.39)

wheresi = [xi; ui℄ denotes the training states and control inputs, andCorr(:; :) is given by (3.40),

andvk = C([uk�1; uk�1℄; [uk�1; uk�1℄)� NXi;j=1(K�1ij � �i�j)C([uk�1; uk�1℄; si)C([uk�1; uk�1℄; sj)Corr2([uk�1; uk�1℄�s)� NXi;j=1�i�jC([uk�1; uk�1℄; si)C([uk�1; uk�1℄; sj)Corr([uk�1; uk�1℄; si)Corr([uk�1; uk�1℄; sj) ;
(6.40)

where�s = si+sj2 andCorr2(:; :) is given by (3.41).

For k = i + 1, the differentiation with respect toui can then be done term-wise, in a rather

straightforward manner. On the other hand, fork > i + 1, we need to account for the interactions

between the delayed outputs. The derivatives ofmk andvk with respect toui are then obtained using

the chain rule: �mk�ui = �mk�uk�1 �uk�1�ui + �mk����k�1 ����k�1�ui (6.41)�vk�ui = �vk�uk�1 �uk�1�ui + �vk����k�1 ����k�1�ui : (6.42)

Given the derivative�J=�ut, we can then find the optimal control sequence. We refer to (Murray-

Smith et al., 2003) for preliminary results. In Appendix C, Section C.2, we simply provide the ex-

pressions for the predictive mean and variance corresponding to a MISO system affine inu. Note that

these equations can be used directly in the case of amixedtraining set, formed of derivative as well

as function observations, provided the above partial derivatives are computed numerically (we leave

it to the reader to compute the analytical derivatives).

6.2.3 A probabilistic view?

So far, the cost of controlling a system has been expressed asthe expected squared differenceE[(ydk�yk)2℄ (ignoring the control term). It would seem a natural thing tocompute the variance, therefore
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viewing Jk as a random quantity. We can then defineJk = (ydk � yk)2, with expectationE[Jk℄ =E[(ydk � yk)2℄ and varianceVar[Jk℄ = Var[(ydk � yk)2℄. As we have already shown, we haveE[Jk℄ = E[(ydk � yk)2℄ = (ydk �E[yk℄)2 +Var[yk℄ ;
or simply E[Jk℄ = (ydk �mk)2 + vk;
wheremk = E[yk℄ andvk = Var[yk℄. Expanding the square difference and taking the variance ofthe

corresponding products, the variance ofJk is given byVar[Jk℄ = Var[ydk2 � 2ydkyk + y2k℄ = 4ydk2Var[yk℄ + Var[y2k℄ :
We now need to expressVar[y2k℄. To do so, let us consider the standard normal variablezk = yk�mkpvk ,

so thatzk � N (0; 1). Therefore,z2k is chi-squared distributed, with mean1 and variance2. We then

haveyk = pvkzk +mk, andy2k = (pvkzk +mk)2 = vkz2k + 2pvkzkmk +m2k ;
leading toVar[y2k℄ = Var[vkz2k + 2pvkzkmk +m2k℄ = v2kVar[z2k℄ + 4vkm2kVar[zk℄ = 2v2k + 4vkm2k ;
obtained by taking the variance on both side and usingVar[z2k℄ = 2 andVar[zk℄ = 1.

We can then considerJk = (ydk � yk)2 withE[Jk℄ = (ydk �mk)2 + vk (6.43)Var[Jk℄ = 4ydk2vk + 2v2k + 4vkm2k : (6.44)

Therefore, rather than performing the minimisation ofE[Jk℄ only, one could constrain it on the

associated varianceVar[Jk℄, or even blend the knowledge of bothE[Jk℄ andVar[Jk℄ together in some

‘meta-cost’ function, thereby viewingJk as a ‘latent variable’. This ‘hierarchical’ view could enable

more rational decisions when selecting the final control policies. A somehow similar idea has been

recently suggested in a reinforcement learning control context, where a Gaussian Process represents
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the value function (Rasmussen and Kuss, 2004), although only the expectation is used in the paper.

We have not explored the potential interest of this approachand an investigation would be needed

to appreciate the validity and usefulness of such an approach.

6.3 Summary

In this last chapter, we have presented further extensions of the propagation of uncertainty framework.

We have first shown how the predictive distribution of a function output corresponding to a new noisy

input could be derived, when the training set was formed of function as well as derivative observations

of a system. Again, these results allow to perform the iterative multiple-step-ahead prediction of a sys-

tem of which derivative observations are available, which is often the case in engineering applications

(linearisations of measured data around equilibrium points). Also, a methodology to account for the

uncertainty in a control context has been presented. Using acost function that does not disregard the

output uncertainty (cautious controller), we have shown how we could again perform the multi-step-

ahead control of a system while propagating the uncertaintyahead in time.

This chapter only deals with the methodological aspect and we refer to (Kocijan et al., 2004b)

for preliminary numerical results concerning the use of derivative observations, and to (Murray-Smith

et al., 2003) for the cautious multi-step-ahead control of MISO systems.
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Chapter 7

Conclusions

In this thesis, we have explored a number of extensions that could be made to the Gaussian Process

model, most of them related to the informative use of the model’s uncertainty, in order to improve the

modelling, forecasting and control of nonlinear dynamic systems. We have suggested an approach

to account for the noise on the inputs, when making predictions. From this, we have derived an al-

gorithm to propagate the uncertainty ahead in time, for the iterative multiple-step-ahead prediction

of dynamic systems. We have also contributed to the development of tools that will hopefully make

the GP an attractive model in the eyes of the engineering community, as the model can now make

effective use of derivative observations, when these are available, and of its predictive uncertainty, in

a cost function, thus enabling the cautious control of systems.

As we have seen, although a Gaussian Process is a set of infinitely many random variables, it is

in practice reduced to the size of the sets we are interested in, resulting in a process finally modelled

by a joint multi-dimensional Gaussian distribution. Even though we have not taken a Bayesian ap-

proach, whereby priors are put on the parameters of the covariance function of the process and then

combined to the data to compute posterior distributions, the very probabilistic nature of the model is

enough to lead to a distribution as the solution to the prediction task. As a result of the neat properties

of the Gaussian assumption, this predictive distribution is also Gaussian, fully specified by its mean

and variance which can then be used respectively as an estimate and the associated uncertainty of the

model’s output.

117
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With this model, we have then addressed the problem of makinga prediction at a normally dis-

tributed random input. We solve it within an analytical approximation, whereby we only compute the

mean and variance of the corresponding predictive distribution (Gaussian approximation). Based on

the parametric form of the covariance function, we derive exact moments, for the linear and squared

exponential (Gaussian) covariance functions, or approximate ones, relying on a second-order Taylor

approximation. Also, using a similarGaussian approximation, we show how the challenging problem

of learning with noisy inputs can be tackled, resulting in a covariance function where the length-

scales are weighted down by the input uncertainty (in the case of the Gaussian covariance function).

Although the emphasis is on the application of these resultsto thek-step-ahead prediction of nonlinear

dynamic systems, predicting at a random input is of interestin the static case. If the system senses the

inputs imperfectly, due to faulty sensors or some other external disturbance, we can now account for

this extra uncertainty, although prior knowledge of the input noise variance is assumed in this case. In

the dynamic case, we show how the uncertainty induced by eachsuccessive prediction can be prop-

agated ahead in time, when making iterative multiple-step-ahead predictions of a nonlinear dynamic

system represented by a one-step-ahead nonlinear auto-regressive model. The derived algorithm for-

mally accounts for the predictive variance of each delayed output, as well as for the cross-covariances

among them, thereby providing the model with full knowledgeof the characteristics of the random

state (mean and covariance matrix), as it progresses ahead in time. At each time-step, the predictive

mean and variance and the cross-covariance elements can be computed exactly, in the case of the

Gaussian covariance function, or within the Taylor approximation.

Our experimental results on the simulated Mackey-Glass chaotic time-series suggest that our

Gaussian approximation, when compared to the numerical approximation of the true distribution

by simple Monte-Carlo, is well grounded. We are aware that more work should be done towards the

Monte-Carlo approximation and its evaluation (the measures of predictive performance that we used,

i.e. squared error loss and negative log-predictive density, not being ideal for non-Gaussian distribu-

tions). These experiments also validate the results obtained within the Taylor approximation of the

Gaussian approximation, as we compare them to the exact ones, using the Gaussian kernel. We know
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that the integrals required for the computation of the predictive mean and variance are solvable exactly

in the case of linear, Gaussian and polynomial (or a mixture of those) covariance functions. However,

we have not defined the family of valid covariance functions for which the Taylor approximation was

needed. Let us simply recall that, when using this approximation, one should not forget to check the

continuity properties of the function and positive-definiteness of the resulting approximation, as well

as the other requirements inherent in the Taylor approximation. Our main focus is nonetheless on

the Gaussian covariance function, which has been predominantly used when modelling with Gaussian

Processes, and which is shared by many other kernel models.

In general, we highlight the well-founded nature of the propagation of uncertainty approach by

comparing it to a naive method that only feeds back estimates, which are thereby viewed by the model

as if they were the true outputs. This naive approach can be misleading, as the error-bars on its pre-

dictions stay small, no matter how far ahead we predict in time and how good its estimates are. On

the other hand, propagating the uncertainty leads to more reliable predictions, suggesting that the full

matrix of covariances, accounting for all the uncertainties between the delayed outputs, has a real im-

pact on future predictions. Note that, as a first approximation, one could simply consider a diagonal

input covariance matrix, with only the delayed predictive variances on the diagonal, although we do

not see why one should do so, as the computational cost of computing the cross-covariance terms is

low.

After investigation whether the approach would generaliseto real systems, the results prove en-

couraging. We first show how the GP can effectively model the gas pressure in a gas-liquid separator

process. Based on the Automatic Relevance Determination tool (Neal, 1995; MacKay, 1994) and

on Occam’s razor principle (Rasmussen and Ghahramani, 2001), we identify the model with the

best complexity/performance trade-off. Although the signals used for identification are significantly

different from those used for the validation of the model (rapid/slowly varying signals), the model

successfully captures the dynamics of the system, as can be seen from its performance on the predic-

tion of the test signal over its whole length. For this process, further experiments could consider the

incorporation of a less crude model for the noise than the white one (i.e. a coloured noise model, as
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suggested in (Murray-Smith and Girard, 2001), or a full nonlinear model, such as in (Goldberg et al.,

1998)). Also, for the Gaussian covariance function, including a full covariance matrixW, allowing

for correlations between input dimensions (as done in (Vivarelli and Williams, 1999)), could improve

the modelling of the interactions between the variables.

The identification of a model for the pH of a chemical process showed to be improved when a lin-

ear model was first fitted onto the original data and a GP used tomodel the residuals. We then showed

how we could elegantly incorporate this linear model into our framework to perform multiple-step-

ahead predictions, therefore accounting for the linear part and its interaction with the GP model at

each time-step. When comparing the propagation of uncertainty to the naive approach, we again no-

tice how the latter leads to unreliable predictive distributions, peaked around the mean even though

it is not close (with respect to some given metric) to the trueresponse (such that the variance is no

longer an indicator of the reliability of the model). As for the Mackey-Glass system, we observe that

the predictive variances given by the exact moments, withintheGaussian approximation, do not sim-

ply increase with the predictive horizonk. Whether such a desired behaviour happens or not is likely

to depend on the properties of the system being modelled. On this system, the comparison of the

iterative approach to the direct method, where a model is trained to predictk steps ahead, leads us to

think that the iterative scheme can indeed be valuable. Although for this particular example the direct

model becomes better than the iterative one, as the predictive horizon increases, favouring a direct

model is arguable as one model is only valid for a given horizon, which can prove difficult or even

infeasible in practice (the training of the model can be time-consuming and the predictive horizon is

often not known in advance).

It is well known that the modelling of nonlinear dynamic systems can be very difficult, for rea-

sons ranging from the properties of the underlying of the system to our computational resources. A

frequent problem encountered in practice is the uneven spread of the data in the operating regime of

the system. Often, the available data is confined around the equilibrium points of the system, and few

or no data can be measured in transient regions. A common approach has been to build local linear

models and blend them to obtain a nonlinear model, covering the whole operating range (Murray-

Smith et al., 1999; Murray-Smith and Johansen, 1997). Nevertheless, this approach proves difficult
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when it comes to choosing the number of local models, the typeof learning (global/local), etc. In that

respect, GPs are likely to improve the modelling of such systems, thanks to their flexibility and the

way inference is performed, by conditioning on the current state and local data. So far, their major

burden has been the computational cost associated with them(the inversion of theN �N data covari-

ance matrix). Although many techniques are now available toreduce this cost (Williams and Seeger,

2001; Seeger et al., 2003; Murray-Smith and Pearlmutter, 2003; Shi et al., 2002), the methodology

we have presented (accounting for derivative observations) is original and possibly more appealing as

it enables us to not only potentially reduce the computational cost, but also to be in accord with engi-

neering practice, by summarising measured data in the vicinity of equilibrium points by a derivative

observation. In conjunction with the results presented on the application of GPs in a control context,

and the promising results of our experiments, we hope that the model will be more widely used in

the engineering community. Also, we believe that our results are general enough to be applicable

to other kernel models, as they do to Relevance Vector Machines (Quinonero-Candela et al., 2003;

Quinonero-Candela and Girard, 2002).

Ultimately, we want to invent and create mathematical toolsand concepts to explain the world

around us and mimic the way we understand our brain processesinformation and makes decisions.

In that respect, we would be inclined towards Bayesian approaches, as we believe they reflect our

own way of thinking. Paraphrasing E.T. Jaynes:‘When confronted with a new situation, our brain is

forming plausible conclusions, based on prior informationand evidence about the situation we are

reasoning on, in order to ‘compute’ an updated state of information, also called posterior, that re-

flects our new degree of belief’. Even though we have not considered the Gaussian Process model in

a Bayesian setup, the simple form used in this thesis has proved useful for the modelling of nonlinear

systems and has enabled the rather easy and elegant derivation of the ‘tools’ and extensions presented

here. Also, our preference for analytical approximations over numerical ones has been motivated by

the fact they can sometimes be less computationally demanding than numerical methods (although, in

our case, the numerical approximation is straightforward). More importantly, the analyticalGaussian

approximationis easier to interpret than the numerical solution. As we have seen, the Monte-Carlo

approximation leads to non-Gaussian distributions, whichare more difficult to summarise; an aspect
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which is likely to slow its uptake in engineering contexts.

We hope the results presented in this thesis will encourage and motivate further experiments and

research as we believe the potential of the GP model has not yet been fully explored. Future work

could include the incorporation of time in the model (eitherby allowing the parameters of the covari-

ance function to be time-dependent or the covariance function to be itself a function of time), and the

extension to multiple outputs, thus enabling the modellingof systems with time-varying dynamics

and correlated measured outputs.
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Mathematical formulae

In the following, we recall some useful formulae and resultsused throughout this thesis.

Law of iterated expectations and conditional variances

Let X be a random variable (RV). Fory given, p(XjY = y) has meanE[XjY = y℄ and varianceVar[XjY = y℄. Now if Y is a RV, both the expectation and variance are a function ofY , hence RVs

themselves. It can be shown thatE[X℄ = E[E[XjY ℄℄Var[X℄ = E[Var[XjY ℄℄ + Var[E[XjY ℄℄ :
Taylor series and approximation

Taylor’s formula

If f(x) has derivatives up to ordern at the pointx = x0, then the polynomialfn(x) = f(x0) + (x� x0)f 0(x0) + � � �+ f (n)(x0)n! (x� x0)n ;
wheref (n)(x0) denotes thenth derivative off(x) evaluated atx = x0, is called thenth-order Taylor

approximation tof atx0.
123
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Taylor’s formula is f(x) = fn(x) +Rn(x)
whereRn(x) is called the remainder term.

Let f (n+1)(x) exist and be continuous in an open intervalI and letx0 2 I. Then, givenx 2 I,

there is a point betweenx0 andx such thatRn(x) = (x� x0)n+1(n+ 1)! f (n+1)() :
This expression is called the Lagrange form of the remainder.

If the (n+ 1)st derivative off satisfiesm � f (n+1)(x) �M
for all x in some interval aboutx0, then, for allx in this interval, we havem(x� x0)n+1(n+ 1)! � Rn(x) �M (x� x0)n+1(n+ 1)!
if (x� x0)n+1 > 0 (otherwise the reverse inequalities hold).1

Product of Taylor series

Let f(x) =P1n=0 fn(x�a)n, wherefn = f(n)(a)n! andg(x) =P1n=0 gn(x�a)n, wheregn = g(n)(a)n! .

Then the Taylor series forf(x)g(x) is the product of the Taylor series forf(x) with that ofg(x):2f(x)g(x) = 1Xn=0hn(x� a)n where hn = nXk=0 fkgn�k :
For two second-order truncated seriesf(x) = f0 + f1(x � a) + f2(x � a)2 andg(x) = g0 +g1(x� a) + g2(x� a)2, we then havef(x)g(x) = h0 + h1(x� a) + h2(x� a)2= f0g0 + (f0g1 + f1g0)(x� a) + (f0g2 + f1g1 + f2g0)(x� a)2 :

1Although proof of these results could be found in any maths book, we recommend the Calculus with TheoryI, Lectureo, of the MIT open course http://ocw.mit.edu/OcwWeb/Mathematics/index.htm.
2From http://www.math.pitt.edu/vsparling/23014/23014convergence2/node8.html
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Operations on random functions

The following results are taken from (Pugachev, 1967).

Let X(t) be a random process of argumentt, with mean functionmx(t) and covariance functionCx(t; t0). Similarly, let Y (t) be another process, with mean and covariance functionsmy(t) andCy(t; t0).
Addition of random processes

LetZ(t) = X(t) + Y (t). It can be shown that the mean functionmz(t) of Z(t) ismz(t) = mx(t) +my(t) :
If X(t) andY (t) are correlated, the covariance functionCz(t; t0) of Z(t) isCz(t; t0) = Cx(t; t0) + Cy(t; t0) + Cxy(t; t0) + Cyx(t; t0)
whereCxy(t; t0) andCyx(t; t0) are the cross-covariance functions betweenX(t) andY (t).

In general, for an arbitrary number of random functions, ifZ(t) = NXn=1Xn(t) ;
then the mean and covariance functions ofZ(t) aremz(t) = NXn=1mn(t)Cz(t; t0) = NXn;n0=1Cnn0(t; t0) :
That is to say, the expected value ofZ(t) is equal to the sum of the expected values of the random

functionsXn(t), and the covariance function ofZ(t) is the sum of the covariance functions of the

differentXn(t) plus the sum of the cross-covariance functions of the terms in the sum.
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Differentiation of a random function

Let Y1(t) = X 0(t), the first derivative ofX(t). Y1(t) has meanmy1(t) = mx(t)0 (i.e. the derivative

of mx(t)) and covariance functionCy1(t; t0) = �2Cx(t;t0)�t�t0 (i.e. the second mixed partial derivative ofCx(t; t0)).
In general, the meanmyp(t) and covariance functionCyp(t; t0) of the derivative of orderp,Yp(t) =X(p)(t), for the random functionX(t), aremyp(t) = mx(t)(p)Cyp(t; t0) = �2pCx(t; t0)�tp�t0p :

The cross-covariance functions for the derivatives, of arbitrary order, ofX(t) are given byCypyq(t; t0) = �p+qCx(t; t0)�tp�t0q :
Matrix identities

Given the matricesA,B andC:

Basic formulaeA(B+C) = AB+AC (A+B)T = AT +BT (AB)T = BTAT(AB)�1 = B�1A�1 (A�1)T = (AT )�1jABj = jAjjBj jA�1j = 1jAj
provided the inverses exist (j:j denotes the determinant).

Matrix inversion lemma(A+XBXT )�1 = A�1 �A�1X(B�1 +XTA�1X)�1XTA�1
whereA andB are square and invertible matrices, not necessarily of the same dimension.
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Gaussian identities

LetNx(a;A) be aD-dimensional Gaussian density forx:Nx(a;A) = (2�)�D=2jAj�1=2 exp ��12(x� a)TA�1(x� a)� :
Marginal and conditional distributions

Let z � N (d;D). If we split z into two vectorsx (of sizeN1) andy (of sizeN2), we can write the

joint normal distribution as z = 264 xy 375 � N 0B�264 ab 375 ;264 A CCT B 3751CA
whereC is theN1 �N2 matrix of cross-covariances betweenx andy.

The marginal distributions are thenx � N (a;A) and y � N (b;B) ;
and the conditional distributionsxjy � N (a+CB�1(y � b);A�CB�1CT )yjx � N (b+CTA�1(x� a);B�CTA�1C) :
Product of Gaussians Nx(a;A)Nx(b;B) = zNx(;C)
where  = C(A�1a+B�1b); C = (A�1 +B�1)�1
and with the constantz usually found expressed asz = (2�)�D=2jCj1=2jAj�1=2jBj�1=2 exp ��12(aTA�1a+ bTB�1b� TC�1)� :

Using the above matrix identities, we can verify that this simplifies intoz = (2�)�D=2jA+Bj�1=2 exp ��12(a� b)T (A+B)�1(a� b)� :
That isz = Na(b;A+B) or z = Nb(a;A+B).
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Expectation of a quadratic form under a Gaussian

Let x � N (a;A). ThenZx(x� b)TB�1(x� b)Nx(a;A)dx = (b� a)TB�1(b� a) + Tr[B�1A℄ :
Gaussian covariance function and derivatives

LetCij = C(xi;xj) = v0 exp��12PDd=1 wd(xdi � xdj )2�, whereD is the input dimension.

First derivative

The first derivativeC0ij = �Cij�xi is aD � 1 vector whosedth component can be written�Cij�xdi = �wd(xdi � xdj )Cij = ��Cij�xdj :
Second derivatives

The(d; e) entry of the second derivative with respect toxi, �2Cij�xi�xiT , is given by�2Cij�xdi �xei = ��xei h�wd(xdi � xdj )Ciji = �wdCijÆde � wd(xdi � xdj )�Cij�xei
that is �2Cij�xdi �xei = [�wdÆde + wd(xdi � xdj )we(xei � xej)℄Cij = �2Cij�xdi �xei
for d; e = 1 : : : D, and whereÆde = 1 if d = e, Æde = 0 otherwise.

Also, the(d; e) entry ofC00ij = �2Cij�xi�xjT is given by�2Cij�xdi �xej = ��xej h�wd(xdi � xdj )Ciji= wdCijÆde � wd(xdi � xdj )�Cij�xej= [wdÆde � wd(xdi � xdj )we(xei � xej)℄Cij
for d; e = 1 : : : D. Ford = e we simply have �2Cij�xdi �xdj = [wd � wd2(xdi � xdj )2℄Cij .
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Note on the Taylor approximation

In Chapter 3 we have shown how, when predicting at a noisy input, we could compute the mean and

variance of thenoisynon-Gaussian predictive distribution (Gaussian approximation) exactly, in the

case of the Gaussian and the linear covariance function, or approximately, within a Taylor approxima-

tion of the covariance function. We are now going to look moreclosely at the Taylor approximation

and the associated error.

For the sake of simplicity, the following discussion is donein the case of one-dimensional inputs.

Let the new test input bex � N (u; vx). As seen in Chapter 3, the computation of the meanm(u; vx)
and the variancev(u; vx) of the corresponding outputy requires the evaluation ofl = Ex[C(x; x)℄,li = Ex[C(x; xi)℄ andlij = Ex[C(x; xi)C(x; xj)℄. For the time being, considerli, whereli = Z +1�1 C(x; xi)p(x)dx:

ProvidedC(:; :) is such that the integral is not analytically tractable, we resort to a second-order

Taylor approximation toC(x; xi). Forx in some intervalI aroundu, we can write (see Appendix A)C(x; xi) = Cap(x; xi) +R2(x; xi) ;
whereCap(x; xi) is the second-order polynomial around the meanu of x,Cap(x; xi) = C(u; xi) + (x� u)C 0(u; xi) + 12(x� u)2C 00(u; xi)

129



130 APPENDIX B. NOTE ON THE TAYLOR APPROXIMATION

andR2(x; xi) is the remainder, written in its Lagrange form asR2(x; xi) = 16(x� u)3C(3)(; xi) ;
for some betweenx andu.

Let I = [a; b℄. We then haveli = Z +1�1 C(x; xi)p(x)dx = Z +1�1 [Cap(x; xi) +R2(x; xi)℄p(x)dx :
Although the Taylor approximation is valid only inI, if that interval is chosen so as to be in the region

wherex lies most of the time (sayI = [u� 3pvx; u+ 3pvx℄), and providedC(:; :) is well behaved,

we can write li = lapi + Z +1�1 R2(x; xi)p(x)dx ;
wherelapi = C(u) + vx2 C 00(u).

The error induced by the approximation is thenjli � lapi j = ����Z +1�1 R2(x; xi)p(x)dx���� = ����Z +1�1 16(x� u)3C(3)(; xi)p(x)dx���� ;
where depends onx. Therefore, a lower bound on the error isjli � lapi j � 16 Z +1�1 jx� uj3jC(3)(; xi)jp(x)dx � M6 ;
whereM = maxxfjx� uj3jC(3)((x); xi)jg, emphasising the dependence of onx.

Similar bounds could be derived forl andlij. Nevertheless, we do not investigate this point any

further (refer to (Evans and Swartz, 1997) for the derivation of exact error-bounds when approximating

integrands by a Taylor polynomial). Note that the above assumes that the functionC is such that the

approximation holds. We have not defined the corresponding family of ‘valid’ covariance functions

but we speculate that covariance functions with compact support (i.e. vanishing when the distance

between the inputs is larger than a certain cut-off distance) would be good candidates.
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Appendix to Chapter 6

This appendix provides the detailed calculations of the results presented in Chapter 6. The first section

deals with the mixed GP, formed of function and derivative observations and Section C.2 with the

control of a MISO system.

C.1 Mixed training set: Prediction at a noisy input

In the case where the training data is formed of derivative aswell as function observations (presented

in Section 6.1), we now derive the expressions for the mean and variance (hereafter referred to asnoisy

mean andnoisyvariance), when predicting at a noisy inputx � Nx(u;���x), assuming the covariance

function is Gaussian.

The last subsection (C.1.3) also provides the details for the computation of the cross-covariance

terms of the input covariance matrix when thismixedset is used in an iterative multiple-step ahead

prediction framework with propagation of the uncertainty.

Recall that thenoisypredictive mean and variance we want to compute are given by (Chapter 6.1,

Section 6.1.3) m(u;���x) = my(u;���x) + DXd=1myd(u;���x)v(u;���x) = vy(u;���x) + DXd;e=1 vydye(u;���x) + 2 DXd=1 vyyd(u;���x)
131
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wheremy(u;���x) = Ex[�y(x)℄, myd(u;���x) = Ex[�yd(x)℄ andvy(u;���x) = Ex[�2y(x)℄ +Ex[�y(x)2℄�Ex[�y(x)℄2vydye(u;���x) = Ex[�2ydye(x)℄ +Ex[�yd(x)�ye(x)℄ �Ex[�yd(x)℄Ex[�ye(x)℄vyyd(u;���x) = Ex[�2yyd(x)℄ +Ex[�y(x)�yd(x)℄ �Ex[�y(x)℄Ex[�yd(x)℄ :
In the case of the Gaussian covariance function, we already have the expressions formy(u;���x)

andvy(u;���x), which were derived in Chapter 3, Section 3.4.2. We havemy(u;���x) = NXi=1 �iCG(u;xi)Corr(u;xi) ; (C.1)

whereCG(:; :) is the Gaussian kernel andCorr(u;xi) is as given by (3.40), andvy(u;���x) = CG(u;u)� NXi;j=1(K�1ij ��i�j)CG(u;xi)CG(u;xj)Corr2(u; �x)�my(u;���x)2 ; (C.2)

with Corr2(u; �x) given by (3.41) and where�x = xi+xj2 .

In the case of the Gaussian covariance function, the covariance function of the derivative process

in directiond is given by (see Appendix A)Cyd(xi;xj) = �2Cy(xi;xj)�xdi xdj = [wd � w2d(xdi � xdj )2℄Cy(xi;xj) ;
the cross-covariance betweenyd andy isCyyd(xi;xj) = �Cy(xi;xj)�xdj = wd(xdi � xdj )Cy(xi;xj) ;
and that between the derivatives in directiond ande isCydye(xi;xj) = �2Cy(xi;xj)�xdi �xej = [weÆde � wdwe(xdi � xdj )(xei � xej)℄Cy(xi;xj) ;
whereCy(xi;xj) = CG(xi;xj), which, as in Chapter 3 Section 3.4.2, we denote byNxi(xj ;W),
whereW�1 = diag[w1 : : : wD℄ and = (2�)D=2jWj1=2v0.

We can now turn to the computation ofmyd(u;���x), vydye(u;���x) andvyyd(u;���x).
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C.1.1 Noisymean

We first need to computemyd(u;���x) = Ex[�yd(x)℄ where, in the case of the Gaussian covariance

function, we have (see Section 6.1.2, omitting the limits ofthe summation)�yd(x) =Xi �iCyyd(x;xi) = wdXi �i(xd � xdi )Nx(xi;W) :
We then need to computemyd(u;���x) = wdXi �i Z (xd � xdi )Nx(xi;W)p(x)dx= wdXi �i�Z xdNx(xi;W)p(x)dx � xdi Z Nx(xi;W)p(x)dx�= wdXi �i hl2i � xdi l1i i :
Using the product of GaussiansNx(xi;W)Nx(u;���x) = ziNx(i;C), withi = C(W�1xi +����1x u) ; C = (W�1 +����1x )�1 ; zi = Nu(xi;W +���x) ; (C.3)

we have l1i = Z Nx(xi;W)Nx(u;���x)dx = zi Z Nx(i;C)dx = zi ; (C.4)

and l2i = Z xdNx(xi;W)p(x)dx = zi Z xdNx(i;C)dx = zidi ; (C.5)

wheredi is thedth component ofi. Replacingl1i , l2i andzi by their expressions, we finally havemyd(u;���x) = wdXi �iNu(xi;W +���x)[di � xdi ℄
or, usingNu(xi;W +���x) = CG(u;xi)Corr(u;xi) (as found in Chapter 3, Section 3.4.2),myd(u;���x) = wdXi �i(di � xdi )CG(u;xi)Corr(u;xi) ; (C.6)

wheredi is thedth component of(W�1 +����1x )�1(W�1xi +����1x u).
We can then computem(u;���x) = my(u;���x) +PDd=1myd(u;���x). Replacingmy(u;���x) andmyd(u;���x) by their expressions finally givesm(u;���x) =Pi �iCG(u;xi)Corr(u;xi)�1 +PDd=1 wd(di � xdi )� (C.7)
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C.1.2 Noisyvariance

To compute the variancev(u;���x), we needvydye(u;���x) andvyyd(u;���x).
Computing vydye(u;���x)
We havevydye(u;���x) = Ex[�2ydye(x)℄ +Ex[�yd(x)�ye(x)℄ �Ex[�yd(x)℄Ex[�ye(x)℄= Ex[�2ydye(x)℄ +Ex[�yd(x)�ye(x)℄ �myd(u;���x)mye(u;���x) ;
wheremyd(u;���x) andmye(u;���x) are given by (C.6).

For the Gaussian covariance function, we have�2ydye(x) = �Xi;j K�1ij Cyyd(x;xi)Cyye(x;xj)= �2wdweXi;j K�1ij (xd � xdi )Nx(xi;W)(xe � xej)Nx(xj ;W) ;
and also �yd(x)�ye(x) = 2wdweXi;j �i�j(xd � xdi )Nx(xi;W)(xe � xej)Nx(xj ;W) :

We can then writevydye(u;���x) = 2wdweXi;j (�i�j �K�1ij )Ex[(xd � xdi )Nx(xi;W)(xe � xej)Nx(xj ;W)℄�myd(u;���x)mye(u;���x) ;
orvydye(u;���x) = 2wdweXi;j (�i�j�K�1ij ) hL2ij � xejL3dij � xdiL3eij + xdi xejL1iji�myd(u;���x)mye(u;���x)
with L1ij = Ex[Nx(xi;W)Nx(xj ;W)℄L2ij = Ex[xdxeNx(xi;W)Nx(xj ;W)℄L3eij = Ex[xeNx(xi;W)Nx(xj ;W)℄ ;
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with L3dij same asL3eij , albeit ind. Using the product of Gaussians, we haveZ Nx(xi;W)Nx(xj ;W)p(x)dx = Nxi(xj ; 2W)Z Nx�xi + xj2 ;W2 � p(x)dx= Nxi(xj ; 2W)Nu �xi + xj2 ;W2 +���x�Z Nx(ij ;C)dx
with ij = C �W2 ��1 xi + xj2 +����1x u! ; C =  �W2 ��1 +����1x !�1 : (C.8)

We can then writeL1ij = Nxi(xj ; 2W)Nu �xi+xj2 ; W2 +���x�, and we have2L1ij = CG(u;xi)CG(u;xj)Corr2(u; �x)
(from Chapter 3, Section 3.4.2). This leads to2L2ij = CG(u;xi)CG(u;xj)Corr2(u; �x)Z xdxeNx(ij ;C)dx= CG(u;xi)CG(u;xj)Corr2(u; �x)(Cde + dijeij) (C.9)

and 2L3eij = CG(u;xi)CG(u;xj)Corr2(u; �x)Z xeNx(ij ;C)dx= CG(u;xi)CG(u;xj)Corr2(u; �x)eij (C.10)

and similarly forL3dij , wheredij is thedth component ofij andCde the (d; e) entry of theD � D
matrixC, as given by (C.8).

We can then writevydye(u;���x) = wdweXi;j (�i�j �K�1ij )CG(u;xi)CG(u;xj)Corr2(u; �x) hCde + dijeij�xejdij � xdi eij + xdi xeji�myd(u;���x)mye(u;���x) : (C.11)

Computing vyyd(u;���x)
The last element we need to compute thenoisyvariance isvyyd(u;���x) = Ex[�2yyd(x)℄ +Ex[�y(x)�yd(x)℄�Ex[�y(x)℄Ex[�yd(x)℄= Ex[�2yyd(x)℄ +Ex[�y(x)�yd(x)℄�my(u;���x)myd(u;���x) ;
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wheremy(u;���x) andmyd(u;���x) are given by (C.1) and (C.6) respectively, and with�2yyd(x) = �Xi;j K�1ij Cy(x;xi)Cyyd(x;xj) (C.12)= �2wdXi;j K�1ij Nx(xi;W)(xd � xdj )Nx(xj ;W) (C.13)

and �y(x)�yd(x) = 2wdXi;j �iNx(xi;W)�j(xd � xdj )Nx(xj ;W) : (C.14)

We then havevyyd(u;���x) = 2wdXi;j (�i�j �K�1ij )Ex[Nx(xi;W)(xd � xdj )Nx(xj ;W)℄ �my(u;���x)myd(u;���x)= 2wdXi;j (�i�j �K�1ij )[L3dij � xdjL1ij℄�my(u;���x)myd(u;���x) :
Using the previous results, we can directly writevyyd(u;���x) = wdXi;j (�i�j�K�1ij )CG(u;xi)CG(u;xj)Corr2(u; �x)[dij�xdj ℄�my(u;���x)myd(u;���x) ;

(C.15)

where againdij is thedth element ofC��W2 ��1 xi+xj2 +����1x u�, withC = ��W2 ��1 +����1x ��1
.

Finally. . .

We can now computev(u;���x) = vy(u;���x)+PDd;e=1 vydye(u;���x)+2PDd=1 vyyd(u;���x). Replacing

the different terms by their expressions, we finally havev(u;���x) = CG(u;u) +Xi;j (�i�j �K�1ij )241 + DXd;e=1wdwe(Cde + dijeij � xejdij � xdi eij + xdi xej)+2 DXd=1wd(dij � xdj )#CG(u;xi)CG(u;xj)Corr2(u; �x)�my(u;���x)2� DXd;e=1myd(u;���x)mye(u;���x)� 2my(u;���x) DXd=1myd(u;���x)
(C.16)

C.1.3 Cross-covariance terms for the iterative multi-step-ahead forecasting

Suppose we now wish to apply the multiple-step-ahead iterative forecasting algorithm presented in

Chapter 4, Section 4.2.1. With this model formed ofmixedobservations, nothing is changed apart
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from the input covariance matrix.

For t + k, atxt+k � N (ut+k;���t+k), we computeyt+k � N (m(ut+k;���t+k); v(ut+k;���t+k)),
wherem(:) andv(:) correspond to the abovenoisymean and variance. At that time-step, the mean of

the random state,ut+k, is composed of the delayed previously predicted means, andthe covariance

matrix���t+k has the corresponding variances on its diagonal. As in Section 4.2.1, the cross-covariance

terms of���t+k are given byCov[yt+l;xt+l℄ = E[yt+lxt+l℄�E[yt+l℄E[xt+l℄ (C.17)

with E[xt+l℄ = ut+l, E[yt+l℄ = m(ut+l;���t+l), andE[yt+lxt+l℄ = R xt+l�(xt+l)p(xt+l)dxt+l.
We now have�(xt+l) = �y(xt+l) +PDd=1 �yd(xt+l), so that we need to computeE[yt+lxt+l℄ = Z xt+l�y(xt+l)p(xt+l)dxt+l + DXd=1 Z xt+l�yd(xt+l)p(xt+l)dxt+l= Xi �i �Z xt+lNxt+l(xi;W)p(xt+l)dxt+l+ DXd=1wd Z xt+l(xd � xdi )Nxt+l(xi;W)p(xt+l)dxt+l# :
Denotingxt+l by x for notational convenience, we haveIi = R xNx(xi;W)p(x)dx andIdi =R x(xd � xdi )Nx(xi;W)p(x)dx. As before, usingNx(xi;W)p(x) = Nu(xi;W +���x)Nx(i;C),

with C = (W�1 +����1x )�1; i = C(W�1xi +����1x u) ; (C.18)

we have Ii = Nu(xi;W +���x)Z xNx(i;C) = Nu(xi;W +���x)i
and Idi = Nu(xi;W +���x)�Z xxdNx(i;C)dx� xdi Z xNx(i;C)dx�= Nu(xi;W +���x)�C[d℄ + idi � xdi i� ;
whereC[d℄ is thedth column of the matrixC anddi is thedth element ofi.
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We therefore haveE[yx℄ = Xi �iNu(xi;W +���x)"i + DXd=1wd �C[d℄ + idi � xdi i�# : (C.19)

Finally, we can write the cross-covariance terms asCov[yt+l;xt+l℄ = Xi �iCG(ut+l;xi)Corr(ut+l;xi)"i + DXd=1wd �C[d℄ + idi � xdi i�#�m(ut+l;���t+l)ut+l (C.20)

with i = C(W�1xi+����1t+lut+l),C = (W�1 +����1t+l)�1, whereC[d℄ is thedth column ofC anddi
is thedth element ofi.
C.2 GP modelling of an affine MISO system

Consider the affine nonlinear systemyt+1 = f(xt) + g(xt)ut + et+1 ; (C.21)

where the state vector at timet is xt = [yt; : : : ; yt�n; ut�1; : : : ; ut�m℄T , yt+1 is the one-step-ahead

system’s output,ut is the current control signal,et+1 is a white noise with variancevt andf(:) andg(:) are two smooth nonlinear functions.

Following (Sbarbaro and Murray-Smith, 2003), we can model this system using a Gaussian Pro-

cess with zero-mean and a covariance function reflecting the‘functional’ part,f(xt), and the ‘control’

part, as an affine function, just as in (C.21):C([xi ui℄; [xj uj℄) = Cx(xi;xj) + uiCu(xi;xj)uj : (C.22)

For simplicity, we use the same ‘Gaussian structure’ for bothCx andCu:Ca(xi;xj) = va exp ��12(xi � xj)TW�1a (xi � xj)� ; (C.23)

for a = x; u andW�1a = diag[wa1; : : : ;waD℄, therefore allowing different parameters for the two

covariance functions.
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C.2.1 Predictive distribution of yt+1
Assuming we have observedy1; : : : ; yt, the predictive distribution ofyt+1 is readily obtained. We can

write the predictive mean and variance in such a way to highlight the ‘control input’ and ‘state’ parts:�([xt; ut℄) = Xi �i[Cx(xt;xi) + utCu(xt;xi)ui℄�2([xt; ut℄) = vx + u2t vu �Xij K�1ij [Cx(xt;xi) + utCu(xt;xi)ui℄[Cx(xt;xj) + utCu(xt;xj)uj ℄ ;
usingC([xt; ut℄; [xi; ui℄) = Cx(xt;xi) + utCu(xt;xi)ui andC([xt; ut℄; [xt; ut℄) = Cx(xt;xt) +u2tCu(xt;xt), where, according to equation (C.23),Cx(xt;xt) = vx andCu(xt;xt) = vu. More

simply, we have �([xt; ut℄) = �x(xt) + ut�u(xt) (C.24)

with �x(xt) = Xi �iCx(xt;xi) (C.25)�u(xt) = Xi �iCu(xt;xi)ui ; (C.26)

and �2([xt; ut℄) = �2x(xt) + u2t�2u(xt)� 2ut�2x;u(xt) (C.27)

with �2x(xt) = vx �Xij K�1ij Cx(xt;xi)Cx(xt;xj) (C.28)�2u(xt) = vu �Xij K�1ij Cu(xt;xi)uiCu(xt;xj)uj (C.29)�2x;u(xt) = Xij K�1ij Cx(xt;xi)Cu(xt;xj)uj : (C.30)

C.2.2 Predictingyt+k
As in Chapter 3, we can compute the predictive mean and variance at timet + k, accounting for the

uncertainty on the previous points and the ‘mixed’ (functional and control) form of the covariance

function.
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Let x(t + k � 1) � N (u;���x) be the input corresponding toy(t + k). The meanm(u;���x) and

variancev(u;���x) of y(t+ k) are given bym(u;���x) = Ex[�(x(t+ k � 1))℄ (C.31)v(u;���x) = Ex[�2(x(t+ k � 1))℄ +Ex[�(x(t+ k � 1))2℄�m(u;���x)2 ; (C.32)

where�(x(t+k�1)) and�2(x(t+k�1)) are given by (C.24) and (C.27) computed atx(t+k�1).
We therefore need to evaluatem(u;���x) = Ex[�x(x(t+ k � 1)) + u(t+ k � 1)�u(x(t+ k � 1))℄= Ex[�x(x(t+ k � 1))℄ + u(t+ k � 1)Ex[�u(x(t+ k � 1))℄= Xi �iEx[Cx(x(t);xi)℄ + u(t+ k � 1)Xi �iuiEx[Cu(x(t);xi)℄ :

From Chapter 3, we can directly writelai = Ex[Ca(x(t);xi)℄ = jI +W�1a ���xj�1=2 exp ��12(xi � u)T (Wa +���x)�1(xi � u)� ;
wherea = fx; ug, leading tom(u;���x) =Xi �i(lxi + u(t+ k � 1)uilui ) : (C.33)

For the variance, replacing�2(x(t+ k � 1)) by its expression, we havev(u;���x) = Ex[�2x(x(t+ k � 1))℄ + u(t+ k � 1)2Ex[�2u(x(t+ k � 1))℄�2u(t+ k � 1)Ex[�2x;u(x(t+ k � 1))℄ +Ex[�(x(t+ k � 1))2℄�m(u;���x)2
which requiresEx[�2a(x(t+k�1))℄ = va�Pij K�1ij Laaij andEx[�2x;u(x(t+k�1))℄ =Pij K�1ij ujLxuij ,

where Laaij = Ex[Ca(x(t+ k � 1);xi)Ca(x(t+ k � 1);xj)℄Lxuij = Ex[Cx(x(t+ k � 1);xi)Cu(x(t+ k � 1);xj)℄ ;
for a = fx; ug. The computation ofLaaij andLxuij is very similar to what we have done before. We

arrive at Laaij = jI + 2W�1a ���xj�1=2 exp ��12(xi � xj)T (2Wa)�1(xi � xj)�exp ��12(�x� u)T (Wa=2 +���x)�1(�x� u)� ; (C.34)
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for a = fx; ug and with�x = xi+xj2 , andLxuij = jI + (W�1x +W�1u )���xj�1=2 exp ��12(xi � xj)T (Wx +Wu)�1(xi � xj)�exp ��12(xxu � u)T (Wxu +���x)�1(xxu � u)� ; (C.35)

whereWxu = (W�1x +W�1u )�1 andxxu =Wxu(W�1x xi +W�1u xj). Also, we haveEx[�(x(t+k � 1))2℄ = Ex[(�x(x(t + k � 1)) + u(t + k � 1)�u(x(t + k � 1)))2℄. Expanding the square and

replacing�x and�u by their expressions givesEx[�(x(t+ k � 1))2℄ = Ex[�x(x(t+ k � 1))2℄ + 2u(t+ k � 1)Ex[�x(x(t+ k � 1))�u(x(t+ k � 1))℄+u(t+ k � 1)2Ex[�u(x(t+ k � 1))2℄℄= Xij �i�j �Lxxij + 2u(t+ k � 1)ujLxuij + u(t+ k � 1)2uiujLuuij )� :
We can then writev(u;���x) = vx + u(t+ k � 1)2vu �Xij (K�1ij � �i�j) �Lxxij + u(t+ k � 1)2Luuij+2u(t+ k � 1)ujLxuij ��m(u;���x)2 ; (C.36)

with Or, replacingm(u;���x)2 by its expression and after simplification,v(u;���x) = �2(u) +Xi;j K�1ij (Cx(u;xi)Cx(u;xj)� Lxxij ) +Xi;j �i�j(Lxxij � lxi lxj )+2u(t+ k � 1)Xi;j uj [�i�j(Lxuij � lxi luj ) +K�1ij (Cx(u;xi)Cu(u;xj)� Lxuij )℄+u(t+ k � 1)2Xi;j uiuj[�i�j(Luuij � lui luj ) +K�1ij (Cu(u;xi)Cu(u;xj)� Luuij )℄ :
In these equations, the firstn elements ofu, mean ofx(t+ k� 1) = [y(t+ k� 1); : : : ; y(t+ k�1�n); u(t+k� 2); : : : ; u(t+k�m� 1)℄T , correspond to the delayed predictive means. As for���x,

its first n diagonal elements are the corresponding predictive variances, while the cross-covariance

terms are given byCov(y(t+ k);x(t+ k � 1)) = lxxT��� + u(t+ k � 1)(u:luu)T��� �m(u;���x)u (C.37)

wherem(u;���x) is given by (C.33) andai = Ca(W�1a xi +���xu)�1) whereCa = (W�1a +���x)�1,
for a = fx; ug.
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