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Abstract

This thesis presents extensions of the Gaussian Proce3sn@fel, based on approximate methods
allowing the model to deal with input uncertainty. Zero-mé&Ps with Gaussian covariance function
are of particular interest, as they allow to carry out manyvdéons exactly, as well as having been
shown to have modelling abilities and predictive perforoesanomparable to that of neural networks
(Rasmussen, 1996a). With this model, given observed ddta aew input, making a prediction cor-
responds to computing the (Gaussian) predictive distdhudf the associated output, whose mean can
be used as an estimate. This way, the predictive variansédeoerror-bars or confidence intervals
on this estimate: It quantifies the model’s degree of befidfsi ‘best guess’. Using the knowledge of
the predictive variance in an informative manner is at threreeof this thesis, as the problems of how
to propagate it in the model, how to account for it when deisreaobservations are available, and how
to derive a control law with a cautious behaviour are adewkss

The task of making a prediction when the new input presemtéoet model is noisy is introduced.
Assuming a normally distributed input, only the mean andéavere of the corresponding non-Gaussian
predictive distribution are compute@éussian approximatign Depending on the parametric form of
the covariance function of the process, exact or appro@maiments are derived. These results are
then used for the multiple-step-ahead iterative foremgsti nonlinear dynamic systems, with prop-
agation of the uncertainty. Within a nonlinear auto-regirgsrepresentation of the system, modelled
by a GP, a one-step-ahead model is iterated up to the degirembin. At each time-step, the uncer-
tainty induced by each successive prediction is propagétatlis, the whole predictive distribution
of the output just predicted is fed back into the state fornet time-step. Not only are the predictive
variances of each delayed output accounted for, but alsertiss-covariances between them. The
approach is illustrated on the simulated Mackey-Glasstahtime-series, as well as on two real-life
dynamic processes, a gas-liquid separator and a pH neatiali process.

The emphasis is on the use of Gaussian Processes for mgdediiminear dynamic systems.
GPs have not yet gained widespread popularity among thaesiging community. It is well known
that the modelling of such systems is in practice renderétult by the fact that most available
data lies around equilibrium regions, and very few pointgansient areas, and a common approach
has been to consider linearisations around those equitibpoints. Derivative observations can be
elegantly integrated in a GP model where function obseymatiare already available, as shown in
(Solak et al., 2003). As well as being in accord with engimggpractice, derivative observations can
potentially reduce the computational burden usually aatedt with GPs (typically, a linear region
can be summarised by one derivative observation, insteathafy function observations). For this
mixedtraining set, the explicit expressions of the predictiveamand variance of a function output
corresponding to a noise-free and to a noisy input are thevede the latter being tackled within the
Gaussian approximation

The other field where GPs can present an advantage other odetsis in the control of nonlinear
dynamic systems. Commonly, researchers have used nanfineametric models and have adopted
the certainty equivalence principlezhen deriving the control law, whereby the model’'s prediasi
are used as if they were the true system’s outputs. Derivamdrallers with ‘cautious’ and ‘probing’
features is difficult and has been the scope of much work icdimérol community. The propagation
of uncertainty method is applied for a cautious controlidrere the cautiousness is accounted for in
a cost function that does not disregard the variance asedaidth the model’s estimate.
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Chapter 1

Introduction

I present various extensions of the Gaussian Process noodald in engineering applications. Central
to this work is the prediction of a system output when presgmtith a new noisy (or random) input.
This problem is addressed using an analytical approximaltiat consists of computing only the mean
and variance of the corresponding predictive distribufldaussian approximatign These results are
then applied to the iterative multiple-step-ahead préaticvf nonlinear time-series, showing how the
uncertainty induced by each successive prediction candmagated ahead in time. Also presented is
a methodology for using the propagation of uncertainty ramrk in the control of nonlinear dynamic

systems, and in the case where derivative observationg af/dtem are available.

1.1 Motivation and background

Mathematical modelling seeks to describemmde] a given phenomenon (system) from observations
or measurements of it. It might be the weather we wish to Esg¢he dynamics of an aeroplane we
want to simulate, or getting more understanding about hawronds work. There are many possible

levels of description, but the choice will be in general dietl by our knowledge of the phenomenon,

our goals, tools and computational resources.

In this thesis, the emphasis is on systems whose respongpsit&) correspond to given causes

(inputs). In this supervised learning setting, modellingrt corresponds to finding the underlying data

1



2 CHAPTER 1. INTRODUCTION

generative mechanism, that is, the mapping from the inmatugal’) space to the output (‘observa-
tional’) space. To do so, empirical models are here consijesometimes called black-box models,
because they do not require a detailed understanding oftioess or system under study, as opposed
to first-principles models. These functional mappings camveniently be divided into two classes:
parametric and nonparametric. Whereas parametric mosislsree a given form of the mapping, no
parametric form is fixed in advance for the nonparametriss;lallowing a greater flexibility (we re-
fer to (Hastie et al., 2001; Bishop, 1995) as general teboand to (Gershenfeld, 1999) for a more

broad-audience introduction to mathematical modelling).

The GP alternative

Gaussian Processes (GPs) came to the attention of the radehiiming community in the nineties,
after Neal showed that, in their Bayesian treatment, newg&borks with one hidden layer converged
to a Gaussian Process as the number of hidden neurons teindisity, given suitable priors for the
weights (Neal, 1994; Neal, 1995). They became increasipgpular after Rasmussen carried out
a thorough empirical comparison of the GP with more widelgdumodels, showing that, in many
instances, the GP outperforms them (Rasmussen, 1996a)e Bian, a great deal of research has
been done, dealing with diverse aspects of the model. Thbrintroductions of the model and its
relation to Bayesian kernel models can be found in (Williag2®02; Mackay, 2003; Seeger, 2003).
The probabilistic nature of the GP model allows to direcibfie the space of admissible func-
tions relating inputs to outputs, by simply specifying theam and covariance functions of the process.
In this framework, the observations correspond to an (imeta) realisation of the process. Although
a parametric form is actually pre-supposed (albeit not erfdinctional itself but on the family from
which it can come from), the model is very powerful and flegjblvith the Gaussian assumption

keeping most derivations analytically tractable and sempl

Predictions and uncertainties

Most commonly, a model will be used to generalise from meamsents, that is, to make predictions
about new observations. But predicting the system’s resptma given new input, alone, is not satis-

factory. In general, we do not only wish to have an estimageapfantity, we also need to quantify our
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degree of belief in that estimate (how (un)certain are welirpoediction? how much can we trust it?).

With the GP model, the learning task (teaching through alagens) corresponds to tuning the
parameters of the covariance function of the process todteat hand, which, here, is simply done
in a Maximume-Likelihood-like manner. With this model, giva new input, and conditional on past
observations, we naturally obtain a prediction and the aairdy attached to it, respectively given
by the mean and variance of the predictive distribution @ filiture output. This distribution is
Gaussian, readily obtained using the definition of condélgrobabilities, as a consequence of the

GP assumption.

This is not a perfect world. ...

What if the inputs are ‘uncertain’? Noisy inputs can arisdifferent situations, for instance when
using faulty sensors, such that the system senses the inmpasfectly. Dealing with noisy inputs is
a well known difficult task which is the scope of much researchthe statistics literature, models
dealing with noisy regressors are known as errors-in-elggamodels (Kendall and Stuart, 1958), and
the problem has been tackled using deterministic (Freedeshah, 2004) and Bayesian (Dellapor-
tas and Stephens, 1995; Snoussi et al., 2002) approachesoier the unknowns. In the machine
learning community, it has been shown that closed-formt&wia exist for Gaussian basis function
networks (Ahmad and Tresp, 1993), and mixture models haea peoved to deal naturally with
missing features (Tresp et al., 1994; Ghahramani and Joi@®4a). In most cases, the major diffi-
culty stems from the unknown probability distribution oétimput, which has to be either assumed or
learnt from the data. In this thesis, the task of dealing wilsy inputs is handled within an analytical

approximation, assuming normally distributed inputs.

Accounting for time

Even though it has not yet been mentioned, dynamic systemmssevproperties and behaviour vary
with time, can be modelled in a similar way, provided a sué@alepresentation and a few hypothe-
ses (Takens, 1981). In time-series analysis (Box et al.4)19 common approach is to assume a

(possibly nonlinear) relationship between past and ptesdnes of an observed time-series. Within
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this nonlinear auto-regressive (NAR) representation @btfstent, once a one-step-ahead madehs
been identified, a challenging task is to forecast the vafubeotime-series at, sa¥, steps ahead in
time. This is known as multiple-step-ahead iterative fasting, where a one-step-ahead model is
iterated up to the desired horizon (Farmer and SidorowigB81Judd and Small, 2000). Although an
obvious naive way of performing iterative prediction is é&fl back only previous estimates (i.e. the
mean of the Gaussian predictive distribution in the GP ¢ashas been shown to be a sub-optimal

solution (Ahmad and Tresp, 1993; Tresp and Hofmann, 1995).

The modelling of nonlinear dynamic systems with GPs is stilts infancy (Murray-Smith et al.,
1999; Murray-Smith and Girard, 2001; Kocijan et al., 200Bbgijan et al., 2003a). The possible
reason for that simply being that the engineering commugityiore used to parametric models, and
the probabilistic GP model has not yet gained widespreadilpdgty among it. Nevertheless, GPs
appear to be well suited for modelling such systems. Indisedidentification of nonlinear dynamic
systems from experimental data is often rendered difficplthie fact that, usually, most of the data
lie around equilibrium points, and only sparse data arelalai in transient regions (i.e. far from
equilibrium). In such conditions, a GP proves to be effigiastthe model retains the available data,
and performs inference conditional on the current statd@eald data. Also, the uncertainty of model
predictions can be made dependent on local data densitthamdodel complexity directly relates to
the amount of available data (more complex models needirrg evidence to make them likely). This
work on the propagation of uncertainty when predicting dheaime, along with the incorporation
of derivative observations and of the variance for the camsticontrol of systems, will hopefully

contribute towards the wider use of Gaussian Processegiamtyg systems modelling.

1.2 Contribution and outline

Chapter 2 briefly introduces Gaussian random functions and the GP imaxghas the model is used in
regression tasks. In this thesis, since only zero-mearepses are considered, the covariance function

alone defines the process. It is a parametric function ofrthets that gives the covariances between

Or possibly a Nonlinear Auto-Regressive with eXogeneopstis (NARX) structure, if control inputs are present.
2When the observation at tintds a function of that at time — 1, and possibly other delayed values.
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the corresponding outputs. A popular covariance funcsaihé Gaussian (squared exponential) one,
conveying the belief that functions drawn from the procdssukl be smooth and continuous. It is
such that points close together in the input space lead mutsuthat are more correlated than points
further apart, with the covariance decaying exponentiaflg well as having proved to be a useful
covariance function in many applications (Rasmussen, dQ%6s also very convenient as it enables

many derivations to be analytically carried out exactly.

Assuming a GP model was identified using ‘clean’ (i.e. ndise) inputs, the task of making
a prediction at a noisy input is addressedCiapter 3. It involves the integration of the predictive
distribution over the input distribution, which cannot bené without approximations. This problem
is solved by taking an analytical approach that consistoofguting only the mean and variance of
the new (non-Gaussian) predictive distribution, an apgrdhat | refer to as th&aussian approxi-
mation Depending on the form of the covariance function of the pss¢cthese moments are derived
exactly (in the cases of the Gaussian and the linear kerr@lsglpproximately, within a Taylor ap-
proximation of the covariance function at hand. On a simtdécsexample, this analytical approach
is compared to the numerical approximation of the integrphroximating the true predictive distri-
bution by simple Monte-Carlo. In experiments, the Taylop@gimation is validated by computing
the approximate moments using the Gaussian covariancédopand comparing them to the exact
ones (this approximation is briefly discussed in Appendix B) the end of this chapter, | indicate
how the challenging task of training a model when the inprtegshaisy can be tackled, within a similar

Gaussian approximation

In Chapter 4, the results presented in the previous chapters are applibeé modelling and the
multiple-step-ahead iterative forecasting of nonlineamaimic systems. Based on the results derived
in Chapter 3, a methodology to propagate the uncertaintyced by each successive prediction is
suggested. After each iteration, the whole predictiveridistion of the output just predicted is fed
back into the state for the next time-step. Therefore, tatedgs now a random vector, with mean
composed of the delayed predictive means, and covariantrexwith the corresponding predictive

variances on its diagonal. Not only are the predictive vargs fed back, but the cross-covariances
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between the delayed outputs are also accounted for, regultia full input covariance matrix as
the model proceeds ahead in time. On the Mackey-Glass chaog-series, the iterative prediction
with propagation of the uncertainty, obtained within tBaussian approximatiqgris compared to the
Monte-Carlo solution. Also, the naive approach, using ¢héydelayed predictive means, is shown to
lead to poor predictions, highlighting the importance afamting for the uncertainty induced by the

successive predictions.

Chapter 5 illustrates the modelling with a Gaussian Process of twélifeaapplications. The
gas-liquid separator process is part of a plant situateldealdzef Stefan Institute in Slovenia. Based
on measurements of the gas pressure and the water level iastmroir, subject to the (controlled)
openness of a pressure valve, the aim is to model the gasigesssing a subset-selection approach
based on the Automatic Relevance Determination tool (N€&I5; MacKay, 1994), the identification
of a zero-mean GP with Gaussian covariance function is fgstidsed. Then, a number of simulations
(i.e. ‘infinite-step’-ahead prediction) of the test sigaaé performed, and the predictions obtained
with and without propagation of the uncertainty are examajriepending on the point at which the

simulations are started.

The other application is the challenging pH neutralisafioocess benchmark (Henson and Se-
borg, 1994), where the measured pH is subject to controksnilthough the process is well known
to be nonlinear, the identification of a linear model first dmeh that of a GP on the residuals leads
to a better one-step-ahead predictive performance than al@ie. Using this ‘mixed model’, the
iterative k-step-ahead prediction of a new signal, with and withouppgation of the uncertainty, is
performed. To do so, a modified version of the propagationnaiettainty algorithm is presented,
to account for the interaction between the GP and the linemateimat each time-step. Also, for this
experiment, the iterative scheme is compared to the diralit-step-ahead prediction method, where

a model is trained to directly prediktsteps ahead.

Finally, Chapter 6 presents further extensions of the model. First, the irmatpn of deriva-
tive observations in the GP model, which is of interest foeast two reasons. Local linear models

(linearisations) are commonly found in engineering agpions, and should therefore been taken into
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account in a model where function observations are availahblso, derivative observations can po-
tentially reduce the computational burden usually assediaith GPs, as few derivative points can
lead to a similar performance to a model with more functiosestations (Solak et al., 2003). Con-
veniently, the derivative process of a GP being a GP itsel§fdehev, 1967), derivative observations
can relatively easily and elegantly be incorporated intorttodel. For thisnixedtraining set, the re-
sulting predictive mean and variance of a function outputesponding to a new input are composed
of a ‘functional part’, a ‘derivatives part’ and mixed conm@mts (arising in the variance). Within the
Gaussian approximatiqgr then address the problem of predicting at a noisy inpw @#tails for the
computation of the predictive mean and variance, in thequaat case of the Gaussian covariance
function, can be found in Appendix C, Section C.1).

The importance of the uncertainty associated with a poidiption has already been outlined, as
it quantifies one’s degree of belief in an estimate. Theegfibseems natural that if this prediction is to
be used in a decision-making process, the uncertaintyhaithio it should be accounted for, in order
to make ‘cautious’ decisions. In this line of thought, in atol context, the knowledge of the predic-
tive variance can be used in an informative manner, to derigautious’ cost function (Murray-Smith
and Sbarbaro, 2002; Murray-Smith et al., 2003; Sbarbardvamday-Smith, 2003). The propagation
of uncertainty method is then applied to a cautious comrofbr the multi-step-ahead control of a

MISO (multi-input single-output) system.

Appendix A provides some useful mathematical formulae uksalighout the thesis. The multi-
disciplinary nature of this work, involving aspects of cantipg science, statistics and control engi-
neering, has led me to make the derivations as transpargatsatble, to a broad readership, in order
to ease the task of potentially interested researchersragidezrs accessing and implementing these

ideas.

1.3 Joint work and publications

The idea of propagating the uncertainties in Gaussian Bsesefollowed discussions between Rod-

erick Murray-Smith and Carl Edward Rasmussen. The deoratof the approximate moments when
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predicting at a noisy input were started together with Cdiv&rd Rasmussen (Girard et al., 2002). It
is with Joaquin Quifilonero Candela that the exact moments derived, in the case of the Gaussian
covariance function (Girard et al., 2003), and Joaquimn@ué&tro Candela outlined how these results
directly apply to the Relevance Vector Machine model (Quero-Candela et al., 2003; Quinonero-
Candela and Girard, 2002). In the present document, | havkedoon the derivation of simpler
expressions and how to link the different cases in a comsistanner. As for the training of a GP
model with noisy inputs, the approach presented in Secti@is3ignificantly different from (Girard
and Murray-Smith, 2003).1 am grateful to Professor Mike Titterington and Roderick rkéy-Smith
for their useful comments.

| derived the expressions for the incorporation of derxatibservations into a GP model, which
were implemented and tested by Jus Kocijan. Preliminanylteesan be found in (Kocijan et al.,
2004b) and a paper will be submitted to 6" IFAC World Congress, to be held in 2005.

Although in the current document only additive white noisdloe observed outputs is considered,
| also worked on coloured noise models such as AR, MA or ARMAIfMy-Smith and Girard, 2001).

| have taken part in the evaluation of the GP model and the adetbgy presented in Chapter 4
on various dynamic systems (Kocijan et al., 2003b; Kocijaalg 2003a). Roderick Murray-Smith
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Chapter 2

Modelling with a Gaussian Process

This chapter intends to provide a comprehensive intrododt Gaussian random functions and Gaus-
sian Processes, as used for modelling purposes. The empsawit on the mathematical theory
behind the concepts involved, but rather on their practidiity for our ends. We hope our simple
illustrations will convince the unfamiliar reader of theteotial and flexibility of the model. In Sec-
tion 2.4, we simply recall the Bayesian approach to pardmetodelling and, how GPs relate to that

framework.

2.1 Brief historic

In his chapter on Gaussian Processes (Mackay, 2003), MagBey back to 1880 for the first use
of the model for time-series analysis (Lauritzen, 1999)géwostatistics, where the model is known
askriging (after (Krige, 1951)), it was developed by Matheron (Matimer1963), and much work is

still being done in this field (Cressie, 1993). Also, in geggibs, Tarantola and Valette pioneered the
Bayesian formulation of inverse problems using GPs (Tatarand Valette, 1982). The model was
clearly formulated to solve regression problems in siaigfO’Hagan, 1978) and gained popularity
in the machine learning community, mainly after the workgNéal, 1994; Neal, 1995; Rasmussen,
1996a). The Bayesian interpretation of the model can bedfaurfWilliams and Rasmussen, 1996;
Williams, 1997c; Neal, 1997; Mackay, 1997) and detailedoidtictions in (Williams, 2002; Mackay,

2003; Seeger, 2003). In these last two references in pknticdhe relation of the GP model to gen-

9
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eralised radial basis functions, spline smoothing mettaoas kernel models such as support and
relevance vector machines is presented (we refer to (Madi@8y7; Tipping, 2001; Kimeldorf and

Wahba, 1970) for these models).

2.2 Gaussian random functions

Random functions are very complex mathematical objectsagBdussian process is the simplest ran-
dom function in that it is fully characterised by its mean aodariance functions (Pugachev, 1967;
Papoulis, 1991). If the argument is time, it will usually tmled a Gaussian stochastic process, and a

Gaussian random field if the argument represents a positjsay,R?.

Let f(x) be a stochastic field, fac € RP, with mean functionn(x) = E[f(x)] and covariance
functionC(x;.x;) = Cov[f(x;), f(x;)]. We can denote the Gaussian Process (GR) by
f(X) ~ QP(m(x), C(Xiaxj)) :

A Gaussian Process can be be thought of as a generalisatiomitofariate Gaussian random vari-
ables to infinite sets: The process is Gaussian if all joistrithutions are multivariate normal. There-
fore, foranygiven set of inputgx;, ..., x, }, the corresponding random variable&x1), ..., f(x»)}

have am-dimensional normal distribution:

p(f(x1)y. . f(Xn) X150y xn) = N(m, X)

wherem is then x 1 vector of expectations (mean values) ahdhen x n matrix of covariances

between all pairs of points, i.e.

mi = E[f(xi)|x]

Bij = Cov[f(x), f(x;)xi,x;] = E[f(x:) f(x;)[%,%;] = E[f (%) %] E[f (x;)|%;] .
The covariances between two outputs are given by the cowarifunction evaluated at the corre-
sponding inputs: We havg;; = C(x;, x;), that is

C(x1,x1) ... C(x1,%xp)

C(xn,x1) ... C(xp,xp)
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In this thesis, we consider zero-mean processes, assumipgor information is available to
contradict this hypothesis. In the following example, wdl w@e that this assumption is not overly
restrictive in practice as a great variety of functions caigénerated by a zero-mean process. The rea-
son for the constant mean assumption is that we will mostlintegested in second-order stationary
processes (recall that a process is second-order statidriahas a constant mean and a covariance
function that only depends on the distance between the snffuigachev, 1967)). In that respect,
the constant-mean (or, without loss of generality, zeramjeassumption is natural. We refer to

(O’'Hagan, 1978; Cressie, 1993) for non-constant mean psace

In the remainder of this thesis, we then consider

p(f(x1)y. .oy f(xn)|x1,. .., %) = N(0,8). (2.1)

Picturing an object in three dimensions is at most what weapable of and we are now facing
ann-dimensional probability density. We can get a feeling ofihrepresents by visualising realisa-
tions of the process. We hope the following illustrationl\wighlight how wide a variety of functions

can be produced by a process with zero-mean and a simpléams@function.

2.2.1 Asimple illustration

Consider a Gaussian Procesg:), for a one-dimensionat € R, with zero-mean and covariance
function

Cy(zi,z;) =vexp [—%w(azi - a:j)Q] . (2.2)

Forz; = z;, v corresponds to the variance §tz;), C,(z;,2;) = Cov[f(z;i), f(z;)] = v. The
correlation length, which represents the length along wkigccessive values are strongly correlated
(the correlation diminishing exponentially as the diseabetween the points increases), is defined to
be = 1/,/w. We will look at this particular covariance function in greadetail later.

Let GPI be the GP for whicly = 1, w = 0.25 and let GR be another GP with the same covariance

function but withv = 2, w = 1.

In practice, the zero-mean simplification can be dealt wjthdntring the data as= t — t, wheret is the data sample
mean. One can also add an extra constant term to the covafianction, reflecting how far the mean of the function is
expected to fluctuate from the mean of the process (Mack&g;ZBibbs, 1997).
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Gaussian covariance function

1.5+ !

Cg(x,xj)

0.5f

Figure 2.1: Gaussian covariance functiop(z, z;), for z = 5 andz; € [1,10]. Thew parameter
relates to the width of the kernel and thg@arameter to the amplitude.

Figure 2.1 shows the covariance functions between5 andz; € [1, 10], for GPL (continuous)
and GPR (dashed). For GR w = 0.25 implies a correlation length ¢, corresponding to a broader
function that for GR, for which the correlation length is. The smaller variance of GRv = 1)
implies a maximum (corresponding @z = 5,z = 5)) with lower amplitude than that of GRfor

whichv = 2.

Covariance matrix for GP1 Covariance matrix for GP

Figure 2.2: Symmetric covariance matrices with Gaussianetgiven by (2.2), foe;, z; € [1,10].
The amplitude of the covariances and the variances (on #godal) are controlled by. For GR
(left), with a smallery than GR, points further apart are still correlated.

For given values of; andz;, the knowledge of only these two parameters enables us tputem



2.2. GAUSSIAN RANDOM FUNCTIONS 13

the matrix of covariances between the corresponding osititit;) and f(z;). Figure 2.2 shows the
covariance matrices formed using the Gaussian kernel, @12); andz; in [1,10]. As the distance
between inputs increases, the covariances between thts foinGPL (left) decreases less rapidly
than for GR (right), because of the smaller value of theparameter. Again, we can note the smaller

variances for GP (diagonal terms), controlled by theparameter.

Let us now illustrate the ‘action’ or impact of these two paeters on the possible realisations
(sample functions) of the proce$ssigure 2.3 (left) shows typical realisations drawn fromlGgon-
tinuous lines) and GP(dashed lines). We can first notice that all the realisatamessmooth’, which
is a characteristic of this covariance function. The samfilem GR vary much more rapidly in the
horizontal direction than do those of GPas well as having a larger amplitude of variation. These
two observations are again to be related toth&ndv parameters: A large corresponds to a small
correlation length, thus implying rapid horizontal vaidats, and a large varianaeparameter allows
the realisations to have larger fluctuations away from the-meean. One can think af andv as

knobs for controlling horizontal as well as vertical vaioat.

As noted earlierf(z) is a GP if forany given set of inputgxy,....x,}, {f(x1),...,f(xn)}
have amn-dimensional normal distribution. On the right panel of U#ig 2.3, are the normalised
histogram plots ofl000 samples off (z = 4) for GP1 (left) and GR (right), along with the ‘true’
probability distribution of this random variableg’ (z = 4) ~ N(0,v), with v = 1 for GP1 and
v = 2 for GP2). To further illustrate this point, Figure 2.4 shows thettaraplot of 1000 samples of
flx =4),f(x =6)andf(z = 4), f(z = 9), for GP1 (left) and GR (right). Also plotted is the
normalised joint distribution of the random variables, puted using the true mean and covariances.
Recall that the covariance function gives the covarianedaéenf(z;) and f(z;) as a function of
z; andz;. In the particular case of the covariance functi@y it is a weightedfunction (weighted
by w) of the Euclidean distance between the inputs. Given thevaiw for GP1 compared to GP,
we see that, for GR p(f(z = 4), f(z = 6)) presents a strong correlation betweflx = 4) and

f(z = 6), wherea®(f(z =4), f(z = 9)) corresponds to almost uncorrelated random variables (the

2Jt can easily be shown that realisations of a Gaussian Psaeesbe obtained by the convolution of a white noise and
the square root of the covariance function of the process.
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Samples from a GP GP1 GP2
T T 0.5 " " " 0.5 " "

o =
T ™

(9~GP(0.C)

odin ! |
2 4 -4 -2 2 4

L L L 0
2 4 6 8 10 -4 -2

0 0
X f(x=4) f(x=4)

Figure 2.3: Left panel: Smooth samples from IGontinuous lines) and GRAdashed lines), two
zero-mean Gaussian Processes with Gaussian covariarat@ifiyrwith different values of parame-
ters. The short correlation length and the larggrarameters of GPimply realisations with rapid
horizontal variation and with larger fluctuations aboutazeAt x = 4, the corresponding (z) is a
random variable normally distributed with zero-mean andavece 1 for GP1 and2 for GF2. The
right panel shows the normalised histogram plot of ith&0) samples off (x = 4) and the true corre-
sponding one-dimensional density function (red line).

inputs being further apart). However, for GHor which w is much largerz = 4 andz = 6 are

already too far apart to alloyi(z = 4) to be strongly correlated tf(z = 6).

2.2.2 Covariance functions

Since we consider zero-mean processes, all that is needdthtacterise the GP is its covariance
function. Our simple example will have hopefully alreadgltlighted its central role, as it conveys all
the information on the kind of function generated by the pesc The covariance function thus deter-
mines the properties of samples drawn from the GP and, whaliedpo regression, it controls how
much the data are smoothed in estimating the underlyingiimcA wide choice of valid covariance

functions can be found in (Abrahamsen, 1997; Genton, 2001).

Any form of covariance function is admissible, provided éngrates a non-negative-definite co-

variance matrix. That is, any covariance functidf, .) must satisfy

Z aiajC(xi, X]‘) Z 0
i’j
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Joint Probability (GP2)

Joint Probability (GP1)

4 4
2 ol
3
X o o
_27 <
-4
-4 4
4
2,
3
20
_2,

O | 0
f(x=4)

Figure 2.4: Joint distribution of (x = 4), f(z = 6) (top) andf (z = 4), f(x = 9) (bottom) for GR
(left) and GR (right). For GR, the distance between= 4 andxz = 6 is already too large (wrt tay)
to allow noticeable correlations between the correspandiz = 4) andf(x = 6). For GR, we see
that, as the distance between the inputs increases, thedatmmn decreases.

for any finite set of pointxy, .. ., x,, and arbitrary real coefficients,, . .., a,.

Stationary covariance function

As previously mentioned, the process is (second-ordetipstay if it has constant mean and

Cov[f(xi), f(x;)] = C(||xi — x4]|)

for all x;,x; € RP (note thatC(x) is Cov[f(x), f(0)]). In practice, such isotropic covariance
functions are widely used. They are invariant by transhatsm that the covariance betwegfx;) and
f(x;) does not depend on the values of the corresponding inguisdx; but only on the distance

separating them. In geostatistics, the variogram, defised a

Var[f (x;) — f(x;)] = 2v(I[xi — x;l])

is more widely used (see, e.g. (Cressie, 1993)). Such agsasealled intrinsically stationary. In-
trinsic stationarity is weaker than second-order statibnas considered above but, if the latter holds,

we havey(||x; — x;||) = C(0) — C(||x; — x;||) wherey(.) is the semi-variogram.



16 CHAPTER 2. MODELLING WITH A GAUSSIAN PROCESS

Let 7 be the Euclidean distancx; — x;||. A general class of stationary covariance functions is

o () ().

I'(v)2v—1 K

the Matern form,

wherel is the Gamma function anfl,,(.) is the modified Bessel function of the second kind whose
order is the differentiability parameter > 0. Then,v controls the smoothness of typical sample
functions which ardr — 1) times differentiable. This class allows us to express ther pack of
knowledge about the sample function differentiabilityn@&ing, 2002) derived compactly supported
kernels (covariance functions which vanish when the digtdretween the inputs is larger than a cer-
tain cut-off distance) from this class. Although not usedhis thesis, these kernels are especially
interesting as they can allow for computationally efficisparse matrix techniques (a property much

appreciated when we have to invéftx N matrices, wheréV is the size of the data set).

Forv — oo, the Matern approaches the Gaussian squared expoRetmiariance function.
Such a covariance function has sample functions with iipitnany derivatives which are there-
fore smooth and continuous (as observed in the example io8ex2.1). In the machine learning
community, this covariance function became a popular eafter Rasmussen demonstrated that a
GP with such a covariance function performed as well as,tibetter than, other popular models like

neural networks (Rasmussen, 1996a). It is usually explesse
1 _
C(x;,%x;) = vexp —§(xz~ - Xj)TW 1(xi - X;j) (2.3)

with W~ = diag[w; ... wp] and where each parametey (sometimes referred to as roughness
parameter) relates to the correlation length in directiw, = 1/)2). As already mentioned, the
correlation length represents the length along which ssiee values are strongly correlated, the
correlation diminishing exponentially as the distanceMaein the points increases. Then\f is
large, a typical function is expected to be nearly constatfiat direction and the corresponding input
feature can then be thought of as being irrelevant, as in titerAatic Relevance Determination tool
of MacKay and Neal (Neal, 1995; MacKay, 1994). Here, we omgsider a diagonaW, but a full

matrix, allowing for modelling interactions between diéat input dimensions, can be used (Vivarelli

3This covariance function is sometimes referred to simpliGasissian covariance function’, in statistics, or ‘square
exponential covariance function’ in the machine learniognmunity.
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and Williams, 1999). The parameteris the variance of the process, controlling the overalligalt

scale of variation relative to the zero mean of the processdroutput space (the vertical amplitude
of variation of a typical function). As we will see in Chapt&rthis covariance function is of special
importance to us as it allows for the exact evaluation ofgraés involved when dealing with noisy

inputs.

Non-stationary covariance function

If the covariances are believed not to depend on the distagizeeen the points in the input space but
on the values the inputs take, one can consider non-staficoaariance functions. The simplest one

is the one corresponding to a linear trend,
D
C(xi,x5) = Z adas;ia:? , (2.4)
d=1

wherea:;?l is thed™ component ok; € R”. This covariance function is easily derived by considering
a linear model with a Gaussian prior on the parameters:f(®} = x’w andp(w) = N(0,%,,)

with ¥,, = diag[a; ... ap]. We then have
E[f(zi)|xi] = Blx] w] = x] E[w] =0

and therefore

Var[f(z;)|x;] = E[(XZTW)Q} = XiTE[wa}xi = xiTwai .

Similarly, the covariance betwegfifz;) and f (z;) is

D
Covlf(@:), f(z;)1xi %)) = X Sux; = > agalad .
d=1

Although we have not yet discussed the relationship betwgfesand parametric models, we can al-
ready feel the tight link between Bayesian parametric miodeand the GP model, as here, the form
of the covariance function can be thought of as dictated bydim of the parametric model assumed

in the first place.

In (Paciorek and Schervish, 2004), a class of non-statjooavariance functions is introduced,

which includes a non-stationary version of the Matern davexe. Also, (Gibbs, 1997) uses a similar
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form to that of the Gaussian covariance function (2.3) véthg for spatially varying length scales by
letting \; be a function of.
Following the work of Neal (Neal, 1995), Williams derivesafytically the covariance function

corresponding to networks with sigmoidal and Gaussiandridthits (Williams, 1997a):

2 2%x7 5%
C(x;,%xj) = —sin™! Xi 5% (2.5)

m /(14257 5%;) (1 + 257 S%;)

that corresponds to the Multi-Layer Perceptron (neuralvagt with sigmoidal transfer function),
which is in the rangé—1, 1], wherex is the input augmented by a unit entry (by analogy with the bia
term), andS is the covariance matrix of the normally distributed hiddeit weight?

An alternative to a non-stationary GP is to use a mixture afictary processes, allowing for
variable smoothness in different parts of the input spasajome in (Tresp, 2001; Rasmussen and

Ghahramani, 2002; Shi et al., 2002).

2.3 GP for modelling noisy observations

We now turn to the use of Gaussian Processes in regressiolep® Given a set af D-dimensional
inputs,x; € R”, and corresponding observed scalar outpttss R, we wish to find a mapping
between these inputs and outputs so as to be able to maketfmesliof the system’s future responses,
given new inputs. Due to external disturbances (such asureragnt noise), the observations are seen
as noisy versions of the ‘true’ system’s responses. Althaugre ‘realistic’ noise models have been
considered (Mackay, 1997; Gibbs, 1997; Goldberg et al.8,188urray-Smith and Girard, 2001),
we restrict our attention to an additive white noise with sprunknown variancey; (the noise is
independent and identically distributed across obsemsg}i The data generative mechanism can

then be written

ti=yi+e€, (2.6)

“This covariance function has been implemented by Rasmifbtter//www.gatsby.ucl.ac.ukicarl/Code) in the form

T oz .
C(xi,xj) = vsin™' Xi 5%, .
\/(1 +%x75%;)(1 + %7 S%;)
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fori = 1...N, wherey; = f(x;) is the noise-free response of the system to the ixpuand

€; ~ N(O, Ut)-

2.3.1 From thejoint...

For the moment, we do not wish to specify the form of the cararé function and simply assume
that it depends on a set of unknown parameterff f(x) is a zero-mean GP with covariance function
C(x;,x;), then, for givenx, . .., x,, the joint probability distribution of (x1), ..., f(x,) is normal
with zero mean vector and covariance mabsuch thats;; = C(x;,x;). The noise being white

with variancev;, we simply have
p(t, .. talx1, .., %,) = N(0,K,) with K, =X+ v1, 2.7

wherel is then x n identity matrix.
We can splitty, . .., ¢, into two sets, or, for our purpose, into one vectos [t1,...,tx]T and
one scalat, (and similarly for the corresponding inputs). Splittikg, accordingly, we can write the

joint distribution as follows:

T -1
t K k(x,) t

p(t,14|X, x4) ox exp —% , (2.8)

Ly k(x,)"  k(x) ty
whereK is now anN x N matrix, giving the covariances betwegrandt; (K;; = C(x;, x;) +v:6;;,
fori,j =1...N and where);; = 1 for i = j and zero otherwisek(x,) is anN x 1 vector giving
the covariances betweepandt,, such thatk;(x.) = C(x.,x;) fori = 1... N, andk(x,) is the

variance oft,, that isk(x,) = C(x., X4) + vy.

It is from this joint distribution that we perform the leangi and prediction task, by respectively
marginalizing and conditioning on the observed dés@e Figure 2.5).
2.3.2 ...Tothe marginal ...

Once we have observel = {x;,t;}¥,, the likelihood of the data corresponds to the appropriate

marginal part ofp(t, ¢.|x, x.). It corresponds to the joint probability distributi@valuatedat the

SRefer to Appendix A for a brief note on joint, marginal and ditional Gaussian distributions.
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Figure 2.5: Modelling with Gaussian Processes (circledatdes are random variables, non-circled
ones are observed/given). For givéxry,...,xy, X, }, the corresponding set of random variables
{f(x1),..., f(xn), f(x«)} have a joint multivariate Gaussian distribution. With thzliéive inde-
pendent white noise assumption, the corresponding cifaled. . , ¢y, ¢, } are also jointly normally
distributed. The marginal part of the joint gives us the piality of the data{ts,...,tx}, and the
posterior predictive distribution of(x.) (or equivalentlyt,) corresponding te, is obtained by con-
ditioning on the data ansl,.

observed data:

p(tla"'atN‘Xla"'axN):N(OaK)a (29)

whereK is the N x N ‘data covariance matrix’.

Let® = {©,v;} be the set of free parameters (parameérsf the covariance function and the
noise variance;). Here, we take a maximum-likelihood approach and find tHexawn parameters
by minimising

£(O) = — logp(t|x)] = glog(%r) + % log | K| + %tTKflt , (2.10)
where |K| denotes the determinant &. For doing so, we use a conjugate gradient optimisation
technique with line-search (Rasmussen, 1996a), thatnesjthie computation of the derivatives of the
L(©) with respect to each parametey of ©:

0L©O) _ 1 [ 1 OK] _Lorp 10K o
20,

; 56, , (2.11)

00, 2
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whereTr denotes the trace. This requires the inversion offhe N covariance matriXX at each
iteration which can be computationally demandingMasncreases (techniques have recently been
developed to reduce the computational cost, see (Williants @eeger, 2001; Seeger et al., 2003,
Murray-Smith and Pearlmutter, 2003; Shi et al., 2002)).eNbat, for non-zero-mean processes, the
method of restricted (or residual) maximume-likelihood tenused (Patterson and Thompson, 1971).
We refer to (Rasmussen, 1996a; Neal, 1997) for a Bayesiaintest, where priors are put on the

parameters of the covariance function.

2.3.3 ...And the conditional

Having found the set of most likely parameters, the pregicfposterior) distribution of, corre-
sponding to a new given inguk., is readily obtained by conditioning the joint probabilitistlibution
p(t, t.|x, x,) on the observed daf andx,. It can be shown (Von Mises, 1964) that this conditional

distributionp(t.|D, x,) is Gaussian, with mean
E[t,|D,x,] = k(x,)TK™'¢ (2.12)

and variance

Var[t,|D, x,] = k(x.) — k(x,) K™ 'k(x.) . (2.13)

We are in general more interested in the predictive didinbuof the noise-fre¢f (x..). Denoting
the predictive mean by(x,) and the predictive variance lay (x, ), we directly have
n(xy) = k(x,)TK™1t
(2.14)
0?(x,) = O(x4, %) — k(%) TK 1k(x,) .
The most probable outpyt(x,) can then be used as an estimate for the response of the system
ando(x.), the associated uncertainty, can define a confidence ihtervthe predictor (error-bars
+20(x,)). As the data are used directly for making predictions, theettainty of the model pre-
dictions depends on the local data density, and the modeplesity relates to the amount and the

distribution of available data (Williams et al., 1995; Qaza al., 1996).

®Note that since there is no particular ordering of the inpxitscan be inx:, x|, thus corresponding to smoothing or
filtering. If x. < x1 orx. > xy, it corresponds to an extrapolation task (or predictiorhalast case).
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There are two alternative ways of writing the predictive megiving more insight into this esti-

mate:u(x,) can be seen as a weighted sum of the observed targets,
pw(x,) =alt with ol =k(x,)TK!, (2.15)

wherea is the vector of weights (also called smoothing or effeckiemnel), or as a linear combination

of k(x.) and the observations:
p(x,) =k(x,)"8 with =K 't. (2.16)

As the number of data points increases, the value of the dustfiicients becomes larger and
the amplitude of the smoothing kernel (alpha-coefficiestapller. The latter relates directly to the
behaviour ofk(x,), depending on the number of data points as well as on howdae/the nevk,

is from the training inputs.

The following example illustrates the GP modelling of nodata. In this particular case, we
choose the data to actually come from a realisation of a meran Gaussian Process with Gaussian
covariance function, where = 0.04 (corresponding to a correlation lengthijfandv = 2, given a
one-dimensional argumentin [0, 10]. We selectN = 10 training cases at random and corrupt the
outputs with a white noise with varian€e01. Starting the optimisation of the minus log-likelihood
with an initial ‘guess’ ofl for all parameters, it converges t{©) = —0.9765 after 100 iterations.
The Maximum Likelihood (ML) parameters found ake= 0.0531, v = 1.4363 andv; = 0.0076.
Both v and v; are under-estimated, whereasis over-estimated but these values are satisfactory,
considering the very small number of data points and thed#venly spread in the input space. We
then make two predictions, at. = 1 andz, = 9. Figure 2.6 (left) shows the underlying function
(that is the realisation of the ‘true’ underlying GP), thaiting cases (crosses) and the predictions
with their 20 error-bars (circles). The right upper plot correspondéodovariances between the
test and training cases (fet, = 1, crosses and, = 9, circles) and the bottom plot to the smoothing
kernels.

For z, = 1, which is between training points, the predictive variaicemall, as the model is
confident about its prediction, but far, = 9, the error-bars are significantly larger, as the the test

input lies in a region where there are few or no training ispundeed, the plot of the covariances
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Covariance between x, and training inputs
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Figure 2.6: Left: GP modelling of the noisy observationogses). Mean predictions at = 1 and
x, = 9 with their associated error-bars (circles), along withttine function (continuous line). Right:
Covariances between the test and the training inputs (uplp&s), and smoothing kernels (bottom
plots). The crosses correspondito= 1 and the circles ta:, = 9.

between the test and training inputs indicates that, thageay = 9 diminish more rapidly and to

smaller values than those with = 1.

Figure 2.7 shows samples drawn from the zero-mean GP pdshédl lines) and from the predictive-
posterior process, conditioned on the training datal@idest inputsz. in [0, 10] (that is, the realisa-
tions are drawn from &00-dimensional normal distribution, with mean vectde:.) and covariance
matrix 02(33*), computed fon 00 z,). We can notice the ‘edge effect’ from= 8, where the samples

start diverging, due to the lack of training data.

In all our experiments, we assess the predictive performahthe model by computing the aver-

age squared error,
Ny

1
By=—Y (yi— )
1 Nti:1(yz yz) ;

and the average negative log-predictive density

S 2y, Wi= )’
og(zr) + log(o?) + L PE

By=—
2Ny i=1

wherey; is the ‘true’ output,j; is the model estimate (predictive meamy, the associated predictive

variance and the average is over the numligof test points. This last measure of predictive perfor-
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Samples from the prior and the posterior

0 2 4 6 8 10

Figure 2.7: Samples from the prior process (dashed linasfram the posterior (dotted lines), con-
ditioned on the training data (crosses), fo€ [0, 10].

mance is of greater interest th&h as it accounts for the model uncertainty (the predictivéavee).
It trades-off between the quality of the estimate and thes@wmy of the model (how confident the

model is in its prediction).

For this example, we obtaif’; = 0.0113 and £, = —0.1932 for the prediction at;, = 1 and
E, =0.0657, E5 = 0.2038 for that atz, = 9. The smalletE; and the more negativB,, the ‘better’

the prediction is.

2.4 Relationship to Bayesian parametric modelling

For the reader more familiar with parametric models and th@iMum-Likelihood approach, this last
section might be of interest, as we simply recall the Bayeajgproach to parametric modelling and
how GPs fit into this framework.

The Bayesian paradigm rests on Bayes’ formula, which conoaes & ‘double use’ of the defini-
tion of the joint probability density as the product of mawgiand conditional densities: Let and

zo be two continuous variables amz, , z,) their normalised probability density. By definition, the



2.4. RELATIONSHIP TO BAYESIAN PARAMETRIC MODELLING 25

marginal probability density fazs is obtained by integrating; out, as

p(z2) = /p(ZhZQ)le ; (2.17)
and the conditional probability density fey givenz, is
ploafam) = L) pELz) (2.18)

B fp(Z1, zo)dz, p(z2)

From these definitions, it follows that the joint probalilitensity is given by
p(2z1,22) = p(z1]22)p(22) - (2.19)
Similarly, if we consider the marginal fer; and the conditional foz,, we can write
p(21,22) = p(22|z1)p(21) - (2.20)
Bayes'rule is then simply obtained by equating (2.19) angQR as
p(21]22)p(22) = p(22|21)p(21)

leading to

p(z2|z1)p(z1)  p(z2|z1)p(z1)
Pa2) - [ paam)p(m)dn @21)

p(z1|z2) =
where the second equality is obtained using (2.17) along (i20).

Although Bayes’ formula can first appear as a mathematicabkagy, the beauty of the Bayesian
approach is to interpret it as a combination of states ofrinfdgion which have been translated into
probability densities. Equation (2.21) therefore tellshoss to update our state of information epn
givenz,, i.e. how to go fronp(z;) to p(z1|z2). The unconditioneg(z, ) is then called therior, to
convey the idea that it represents our state of knowledgerdehbserving,. In the same logic, the
conditionedp(z: |z2) is theposteriorandp(zs|z1), seen as a function ef, is thelikelihood of z,
based ore,. The denominatop(z,), independent o%; (the variable of interest), is the normalising
constant, calle@videnceor marginal likelihood, obtained by integrating out thegraetersz;. Up to

the normalising constant(z-), the posterior ok, given thatz, has been observed, is then propor-

tional to its likelihood multiplied by its prior.
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When applied to parametric data modelling, corresponds to the parametsvsthe model de-
pends on, and, to the observed datR. Then, equation (2.21) enables us to update our prior on the

parameters, whengz,|z;) corresponds to the probability of the data when the paramate fixed:
p(w|D) x p(D|w)p(w) . (2.22)

Seen as a function of the parametexd?|w) is the likelihood ofw. For fixedw, p(D|w) corresponds
to the generative model for the data: Given our white noisam@gtion.c ~ N (0,v;), t; = f(x;) +€;

reads as

Eltilx;,w] = f(x;) + Ele] = f(x;)

Var[t;|x;,w] = Var[g] =v;,

and we have/(D|w) = p(t/X, w) = [[X, p(t:|x;, w) wherep(t;|x;, w) = N, (f (x:), ve).
The predictive distribution of (x*) corresponding to a new* is obtained by integration over the

posterior distribution of the parameters:

p(f(x.)|D,x.) = / P(f (%), %0, W)p(w|D, x.)dw (2.23)

where it is in general assumed that the posterior is indepenaf the new input, such that we have
p(w|D,x,) = p(w[D).

Note that the normalised distributions require the evauadf p(D) = fl’[i]\ilp(ti\w)p(w)dw
which is usually intractable, even in simple cases. It candbeed numerically, using Markov-Chain
Monte-Carlo (MCMC) methods, to get samples from the postdiieal, 1993; Mackay, 1999), or,
given an approximate analytical treatment, by computimgniiaximum a posteriori (MAP) estimator

of w after maximisation of the posterior (Mackay, 1997).

As we have seen, the GP ‘prior’ is imposed directly on thetjpi, z>), wherez; now repre-
sents the new function outpyf andz, the sety,...,yy (Or equivalentlyt,...,tyx). Then, given
the independent noise assumptip(z,) corresponds to the marginal probability distribution foe t
data and the predictive distribution 9f, p(z:|z2), is obtained using equation (2.18). We thought
recalling this point is important as it might be misleadiradliog the GP model Bayesian, as is some-

times done: The prior put on the space of functions comes franvery probabilistic nature of the
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model, not out of a use of Bayes’ formula. At least in its mastsic’ form (the one considered here,
that is without setting hyper-priors on the parameters efdbvariance function), the GP machinery

relies on the definition of conditional probabilities, not Bayes’ formula.

Finally, it might be helpful to interpret; = f(x;) + ¢; as follows: f(x;) is onerandom variable
(RV) ‘coming from’ a GP with zero-mean and covariance fumet’(x;,x;). Therefore,f(x;) has

zero-mean and varian€g(x;, x;). Assuminge ~ N (0, v;) is independent of (x;), we have

E[ti|xz~] = 0

Var[ti|x;] = C(xi,%;) + v .

Now, for two inputsx; andx ;, the corresponding RVA(x;),f (x;), ‘coming from’ the same GP, have

a joint normal distribution, implying

0 Var[ti\xi} COV[ti,t]“Xi,X]‘]
p(tivtj‘xivxj) = N )
0 COV[t]‘,tZ’|X]‘,XZ’] Var[tj|xj]
_ 0 | C(x;,%;) + vy C(xi,xj)
0 C(xj,x;) C(xj,%x;) + vt

The very point of the GP model is to explicitmodelthe correlations between the observations.
Random functions are very complicated mathematical abjaatthe way we use them can be thought
of more as a ‘tool’ from which stems the feasibility of modadj covariances. Indeed, if we were to
assume that, ..., yny corresponding ta, ...,z y were jointly normal (with zero-mean for sim-
plicity), this would mean having to determimé(N + 1)/2 parameters (the entries of tié x N
covariance matrix), with onlyV observations! But if we enter the realm of stochastic preegsnd
view y1,...,yn as an incomplete realisation of a Gaussian random functiitim zero-mean and
covariance functiorC'(x;, x;), the covariances between all pairs of points are simplyioétaby
computingCovly;. y,|x;, x;] = C(x;,%x;) whereC(.,.) typically depends on very few parameters

(D + 1in the case of the covariance function given by (2.3)).
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Chapter 3

Dealing with noisy inputs

In the previous chapter, we saw that, with the GP model, teéigtive distribution of the output
corresponding to a new noise-free input is Gaussian. We rduveas the problem of predicting
the system output when the input is noisy (uncertain). Is ttdse, the integration over the input
distribution leads to a non-Gaussian predictive distiiut We present an analytical approach that
consists of computing only the mean and variance of thigibigion Gaussian approximatign
We show how, depending on the form of the covariance funadibthe process, we can evaluate
these moments exactly or approximately (within a Taylorrapimation of the covariance function).
On a simple static numerical example, we compare @anssian approximatioro the numerical
approximation of the true predictive distribution by simpllonte-Carlo.

In Section 3.6, we indicate how a similar approximation canaken to deal with the challenging
problem of training a GP model with noisy inputs. Assuming @a§sian covariance function, we
show how the mean and covariance function of the noisy (nans&an) process can be derived,

accounting for the input noise.

3.1 Introduction

So far, we have only considered the inference task with rioése inputs, but in many situations
the inputs can be noisy, uncertain or ultimately missingr(glete noise). Noisy inputs can arise in

different situations, depending on the nature of a padicapplication.

29



30 CHAPTER 3. DEALING WITH NOISY INPUTS
3.1.1 Background

In statistics, models dealing with uncertain inputs arekmaserrors-in-variablesmodels (Kendall
and Stuart, 1958). Two principal error-in-variables madale the ‘classical model’ and Berkson's
model. For the classical model, the observed input is seeargiig around a true value, a situation
arising when the system senses the inputs imperfectly,aowh observe a noise corrupted version of
the true inputs. With Berkson’s model, the observed inpfikéxl and the true one is subject to random
errors with zero mean. This model is useful for situationgemtihe observed input is set to some value
but the unobserved true input varies about this settingmiasing the unknowns (model parameters
and true inputs) is a difficult task for nonlinear models arahgntechniques consist of substituting a
single value for the unseen input (as done in regressiobratithtn, moment reconstruction (Freedman
et al., 2004)). In (Snoussi et al., 2002), the problem is esklrd using a stochastic version of the
EM algorithm, treating the true inputs as hidden variables(Dellaportas and Stephens, 1995), a
Bayesian approach is taken to infer the unknown paramesang MCMC techniques, showing that,
in this framework, the formulation for a Berkson-type modahe same as that for a classical model
(the distinction being made otherwise).

In the machine learning community, the emphasis is not schronaecovering the true value of
the missing or noisy data but on the estimation of the pararmetf the model when data is missing.
In (Ahmad and Tresp, 1993), they show that closed form smistiexist when using Gaussian basis
function networks and, in the case of noisy features, thetisol depends on the form of the noise.
Also, mixture models were proved to deal naturally with nmgsfeatures, by a dual use of the EM
algorithm (Ghahramani and Jordan, 1994a). For a feed-forwaural network, the missing features
have to be integrated out in order to compute the likelihdbith® data, thus requiring a model of the
input density. In (Tresp et al., 1994), they estimate thenomln input distribution directly from the
data using a Gaussian mixture model. In this chapter, theimgwt is assumed to be corrupted by a

white noise and we assume that is has a Gaussian probalislityodtion.

3.1.2 Motivation

As we will see in greater detail in the next chapter, our edem the prediction at a noisy input is mo-

tivated by the iterative multiple-step-ahead predictiétirne-series. Ley,...,y; be the observed
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time-series. Assuming the simple model, = f(y;), we wish to predict the value of the time-series
at, say, time + k. Having formed the input/output pairs (where the input n@sresponds to a de-
layed value of the time-series), we can train a GP to learmidyepingf (.). With this one-step ahead
model, the prediction of; ;. is done by iterating the model up kgi.e. by predictingy;+ 1, y;+2, and
S0 on, up tay., . Since the time-series is known up to tihevith the GP model, the predictive dis-
tribution of y; ;1 is readily obtained: We have(y; (1|D,y:) = N (u(y:), 0% (y:)), as given by (2.14)
evaluated ak, = y;. For the next time-step, a naive approach would simplyu{gg) as an estimate
for y,41 and evaluate (y,12| D, §1+1) = N (u(Gi+1), 02 (§i+1)), wheregur = p(y:). As we will
see, this approach is not advisable for two reasons: it isamefident about the estimate (leading
to predictions with unrealistically small uncertainties)d it is throwing away valuable information,
namely, the variance associated with the estimatg of. If we wish to account for the uncertainty
ony;1, we need to be able to evaluat@y; »| D, v+ 1), wherey, 1 ~ N (u(ye), 02 (y;)). This means
being able to derive the predictive distributionyef, corresponding to the normally distributed ran-

dom inputy; 1.

The necessity of being able to make a prediction at an unicartanoisy input is also obviously
relevant for static problems. In real experiments and apptins, we use sensors and detectors that
can be corrupted by many different sources of disturban¥és.might then only observe a noise-
corrupted version of the true input and/or the system sehsdaaput imperfectly. Again, if the model
does not account for this ‘extra’ uncertainty (as opposethéouncertainty usually acknowledged
on the observed outputs), the model is too confident, whichisdeading and could potentially be
dangerous if, say, the model’'s output were to be used in @idaemaking process of a critical appli-
cation. Note that, in the static case, the approach we stiggesmes prior knowledge of the input

noise variance.

In the following section, we present the problem of makingediction at a noisy input for the
Gaussian Process model, and then highlight the analytigabaimation that we take, leading to the

computation of only the predictive mean and variance of #he predictive distribution.
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3.2 Prediction at an uncertain input

We assume that, based on d&ta= {x;, ti}i]\il (where thex;’s are noise-free), a zero-mean GP with
covariance functiorC(x;,x;) has been used to model the input/output relationships v; + €,

wherey; = f(x;) ande; has zero-mean and varianee

As we saw in Chapter 2, with this model, given a new ‘test’ inpuand based on the observed
dataD, the predictive distribution of the corresponding output f(x) is readily obtained. This

distribution is Gaussiafp(y| D, x) = N, (u(x), 02 (x)), with mean and variance respectively given

by

N (3.1)
o?(x) = C(x,x) = Y K;'C(x,%)C(x,x;)

ij=1
with 8 = K~ 't. Figure 3.1 shows the predictive means (dashed line) amd2herror-bars (dotted
lines) computed fo81 test inputs iff1, 10]. A Gaussian Process with zero-mean and Gaussian covari-
ance function (given by equation (2.3)) was trained using & = 10 input/output pairs (crosses),
where the outputs correspond to noise corrupted version§©f = sin(z)/z (the noise level is

vy = 0.001). Near the data points, the predictive variance (model iaicy) is small, and increasing

as the test inputs are moved far away from the training ones.

Now, let the new input be corrupted by some naige~ N (0, %), such thatx = u + ex. That
is, we wish to make a prediction at~ A (u,X,) and to do so, we need to integrate the predictive

distributionp(y| D, x) over the input distributioh

p(0ID.0.E) = [ plolD,xIp(xlu, B, (3.2)
wherep(y|D,x) = \/ﬁ exp [—%%} Sincep(y|D, x) is a nonlinear function ok, the

'Note that in the previous chapter we denoted the new inpwt.bgnd the corresponding function output px.. ) but
we change here our notation for simplicity.

2The notationy ~ N'(u(x),0%(x)) indicates thaty is ‘distributed as’, that isp(y) = N, (u(x),o%(x)), fory €
] — 00, +00], whereN, is the normalised probability density.

3When the bounds are not indicated, it is assumed that thgraiseare evaluated fromoo to +co.
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0.8n Predictions at noise—free inputs

0.6f - +20(X)

o4 T e

0.2f —-20(x)
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Figure 3.1: Predictive means (dashed line) 2makrror-bars (dotted lines) correspondingStonoise-
free test inputs. A zero-mean GP was trainedl Orraining points (crosses) to learn the underlying
function (continuous line).

new predictive distributiomn(y|D, u, ;) is not Gaussian and this integral cannot be solved without

resorting to approximations.

3.2.1 Possible approximations

Many techniques are available to approximate intractatitegials of this kind. Approximation meth-
ods are divided into deterministic approximations and Medarlo numerical methods. The most
popular deterministic approaches are variational metfddsmplace’s method and Gaussian quadra-
ture that consist of analytical approximations of the ingWe refer to (Mackay, 2003) for a review

of these methods.

Numerical methods relying on Markov-Chain Monte-Carlo plng technigues evaluate the in-
tegral numerically, thus approximating the true distridbit(see e.g. (Neal, 1993)). In our case, the
numerical approximation by simple Monte-Carlo is straigiward since we simply need to sample

from a Gaussian distributiof/, (u,X,). For each sample! from this distribution,p(y|D, x!) is

4See http://www.gatsby.ucl.ac.uk/vbayes/ for references
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normal, with mean and variance given by equations (3.1):

T T

pID. 1,5 ~ 2 37 (D x) = o SN, (u(x), (<)) (3.3)

t=1 t=1
The numerical approximation ofy|D, u, X,) is then a mixture of” Gaussians with identical mixing
proportions, and as the number of samglegrows, the approximate distribution will tend to the true

distribution. We refer to (Titterington et al., 1985) foreview of finite mixture models.

In Figure 3.2, the ‘true’ test inputs are = 2 (left) and andu = 6 (right) but we observe:
(asterisks). Fot00 samplest! from p(x), centred at the noisy with variancev, = 1, we compute

the corresponding predictive meami!’) (crosses) and their error-bat0 (z*) (dots).

Prediction at x= 2.4 Prediction at x= 6.9

Figure 3.2: Monte-Carlo approximation for the predictidraaoisy inputz (asterisk). The true input
distribution isz ~ N (u,v,), foru = 2 (left), » = 6 (right) andv, = 1 (circles indicate the output
f (u) corresponding to the noise-freg. For100 samples:! from p(z), with meanz and variance,,
we compute:(z?) (crosses) and the associated error-bes (z!) (dots).

The histograms of the samples at which predictions are medshewn in Figure 3.3. The cir-
cle and asterisk indicate the noise-fre@and noisy inputg respectively. After having computed the
losses (squared error and negative log-predictive d§nsitthe predictions associated with each
we find the input value for which the loss is minimum (indicht®y a triangle). Note how closer to

the true input this:! is, compared to the observed input.

We now focus on an analytical approximation which consistsamnputing only the first two
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Histogram of X' from p(x=6.9)
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Figure 3.3: Histogram of the sample$ from p(x) at which predictions were made, when the true
input (circle) isu = 2 (left) andu = 6 (right). Also plotted, the observed noisy input (asterisétken
as the mean gf(z), and the sample’ that leads to the minimum loss (triangle).

moments, the mean and variancep@j|D, u, X,).

3.2.2 Analytical approximation

To distinguish fromy(u) ando?(u), the mean and variance of the Gaussian predictive disitsibut
p(y|D,u) in the noise-free case, we denotebyu, ¥,) the mean and by(u, X,) the variance of
the non-Gaussian predictive distributip(y|D, u, X, ), corresponding tex ~ Nx(u,X,). This can

be interpreted as @aussian approximatigrsuch that
p(y|D,u,Bg) = N(m(u, Xg),v(u, Bz)) -
From (3.2), the mean and variance are respectively given by

/y{/p(yD,X)p(Xu,Ex)dX} dy

[ [ sol2xoptcda )i dy - w57

m(u,X;)

v(u,X,)

where we have

[ oD x)dy = utx)
/

y’p(y|D,x)dy = 0 (x) + p(x)” .
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We can then write

m(u,¥,;) = /,u p(x|u,X;)

v(u,X,) = /02 p(x|u, X )dx+/u(x)2p(x|u,2x)dx —m(u,X,)?
or, for short®

m(u,B,) = Ex[p(x)] (3.4)

v(,5,) = Bxlo?(x)] + Bxlu(x)? — m(u,Z,)? (35)

Replacingu(x) ando?(x) by their expressions, we have

Exlu(x)] = ZIBZ x[C(%, ;)] (3.6)
Ex[o?(x)] = FEx[C(x,x)] - Z KZ?EX[C(X, x;)C(x,x;)] (3.7)
ij=1
Bylu(x)?] = Zﬂ@ C(x,%:)C(x, x;)] . (3.8)
i,j=1

The new predictive mean and variance are then given by

N
m(u,5,) =Y BiEx[C(x.x;)]
= N (3.9)
v(u,X;) = Ex[C(x,x)] — Z (KZ;1 — BiBBj) Ex[C(x,%x;)C(x,%;)] — m(u,E;)?
ij—=1
Let
I = Ex[C(x,x)] = /C(x,x)p(x)dx (3.10)
L= &wwxm:/cmmm@@ (3.11)
lij = FEx[C(x,%;)C(x,%;)] =/C(x,xi)0(x,xj)p(x)dx, (3.12)

wherep(x) is the input noise distribution.

How solvable integrals (3.10)-(3.12) are basically degesthe form of the covariance function.

SNote these equations could have been readily obtained tisrigw of iterated expectations and conditional variances
(see appendix A).
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1. If the covariance function is e.g. linear, Gaussian, pofgial (or a mixture of those), we can
compute these integrals exactly and obtain ékactmean and variance. In Section 3.4, we

derive the exact moments for the linear and Gaussian covarifunctions.

2. Otherwise, we can again approximate (3.10)-(3.12) inrabar of ways. Since we are mostly
interested in closed form approximate solutions, we evalttze integrals within a Taylor ap-
proximation of the covariance function around the meaof x and obtain theapproximate

mean and variance.

Note that this second case, that requires approximatioightine required, if the form of the co-
variance function is definitely one for which one cannot edhe integrals exactly, or simply prefer-
able, if the integrals are tractable but at the cost of lordjtadious calculations. Also, assuming one
has access to software like Mathematica or Matlab’s syralbotilbox to compute the derivatives, the
solutions obtained using the proposed approximation geogisuitable performance/implementation

trade-off.

Figure 3.4 schematises the situation and highlights thiytice approximation we take. We now
turn to the evaluation of the mean and variance in the caseaithe covariance function is such that

approximations are needed to evaluate integrals (3.102)&nalytically.

3.3 Gaussian approximatiorApproximate moments

We are going to approximate these integrals analyticallyttain approximate moments, based on a

Taylor approximation of the covariance function.

3.3.1 Delta method

We use the Delta method (also called Moment Approximatiamich consists of approximating the
integrand by a Taylor polynomial. In the one-dimensionae;dhe Delta method is stated as follows

(Lindley, 1969; Papoulis, 1991): Let be a random variable with medt,;[z] = u and variance
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x given| ———=> | p(y|D,x) Numerical
~
~
~ . p(y|D,ux ): < (Approximations
X~ Nuyr——> integrate p(y|D,x) over x | ™ (\pp )

~
A Analytical

|

Compute mean and variance
of p(y|D,u.y )

N\

/Dependiri';
C(,.
1// on C(.,.) \\\

Approximate Exact
moments moments

Figure 3.4: Dealing with a noisy test input: With the GP modgyen the dataD and a new input
z, the predictive distribution of the corresponding output f(z) is readily obtained. When

is noisy, orz ~ N (u,v;), the corresponding predictive distribution is obtainedirggration over
z. Sincep(y|D, z) is nonlinear inz, the integral is analytically intractable. Although a nuical
approximation of the integral is possible, we concentratamanalytical approximation. We suggest
computing the mean and the variance of the new predictiviilmison, which is done exactly or
approximately, depending on the parametric form of the camae functionC(., .).

Var,[z] = v,, andy = ¢(x). For sufficiently smalb,, = /v, and well-behave@ we can write

1

Egly] ¢(u) + %vxqﬁ”(u) (3.13)

Varg[y] ~ ¢'(u)’v, (3.14)

where¢’ and¢” are the first and second derivativesfoévaluated at:.

These results are simply obtained by considering the eigran$ ¢(z) as Taylor series about,

up to the second order:
y=¢(z) = ¢(u) + (v — u)¢'(u) + %(w —u)?¢"(u) + O([(z — u)?]) . (3.15)

By taking the expectation on both sides, we directly find thgraximation (3.13). For the variance,
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Var,[y] = E.[y?] — E;[y]?, (3.14) corresponds to an approximation of the second @stémate’

Neglecting the term im? for both E[y?] and E[y]?, we have

$(u)” +vod' (1) + p(u)¢" (u)vy
$(u)” + p(u)¢" (u)vs

s
Qel\)
2

s
S
2

leading to (3.14). This approximation is motivated by thet taat the Taylor approximation is useful
for small standard deviations (if, is small, by Chebychev’s inequalit®#(|z — u| > ko,) < k%),
such thatz will depart only a little fromu except on rare occasions and therefare- «) will be small
(Lindley, 1969).

There are obviously conditions whigt{z) should fulfil to make the Taylor series possible (in the
neighbourhood of;) and to avoid anomalies of behaviour away framAs in (Lindley, 1969), we do

not state such conditions and assume the covariance fariotlze such that the expressions are valid.

3.3.2 Approximate mean and variance

Letm® (u,X,) be the approximate mean, such that

N
m(u, ;) = > Bil?
i=1

with [{? = Ex[C"(x,x;)], and where>?(x, x;) corresponds to the second-order Taylor polynomial

approximation ofC'(x, x;) around the mean of x,
1
C(x,%;) = C(u,%;) + (x — ) C'(u, x;) + glx— u)"C" (u,x;)(x —u) .

We directly have
17 = C(u,x;) + %Tr[C”(u,xi)Ez]

so that the approximate mean is

mP(u,B,) = p(u) + L SN B Tr[C (u, x;) 5] (3.16)

®Note that (3.14) can also be seen as a first-order estimate ¢bnsidery = ¢(u) + (z — )¢’ (u), we haveE[y]* ~
¢(u)? and
y* = ¢(u)” +2¢(u)(z — w)¢' (u) + (z — u)’¢' (u)’
leading toE[y”] = ¢(u)” + v. ¢’ (u)> and therefore (3.14).
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wherep(u) = Zfil B:C(u, x;) is the noise-free predictive mean computed é&ee Appendix B for

a note on this approximation).

Similarly, the approximate variance is

N
v (0, 8,) =1 = Y (K" = BBl — m™(u, By)?
i,j=1
with 1P = Ex[CP(x,x)] andli] = Ex[C(x,x;)C(x, x;)], whereC(.,.) is again the second

order Taylor approximation af'(., .). We have
1
1P = C(u,u) + §Tr[C"(u, u)X,]
and

1
i~ C(u,x;)C(u,x;) + Tr[C'(u,x;)C'(u, x;)T8,] + §C(u, x;) Tr[C" (u, x;)E,]
1
+§C(u’ Xj)ﬂ[cll(ua XZ)EI] ’
where the approximation comes from discarding terms ofdrignder thaiXX, in C* (x, x;)C?(x, x;),

as discussed in the previous section. Similarly, approtimgan? (u, ,)? by

N
map(u’zx)Q ~ Z /BZ/B] (C(u,xi)C(u, Xj) + %C(ua XZ')TI‘[C”(H, Xj)zx]
ij=1

+%C(u,xJ‘)T‘r[C"(uaXi)2x]> ;

we find, after simplification,

N
v (1, 5,) =02 (u) + %Tr[C”(u, W] = 3 (KL - i) T[C (%) C' (1, %;) TS, ]
i,7=1

N
-5 K (Ol O (,3)8] + O, ) THC (1, 1), )
i,j=1

(3.17)
whereo?(u) = C(u,u) — Zf}’jzl Kl-;lo(u, x;)C(u, x;) is the noise-free predictive variance.
Both approximate mean and variance are composed of thefme&spredictive moments plus cor-

rection terms. 18, is assumed diagonal, these correction terms consist ofitheo§the derivatives



3.3. GAUSSIAN APPROXIMATIOMPPROXIMATE MOMENTS 41

of the covariance function in each input dimension, weidtitg the variance of the new test input in

the same direction.

Figure 3.5 illustrates these results. The noise-free ;mpoeu = 2,6 and9.5 but we observe
z = 2.4,6.9 and9.2 (asterisks), sampled from(z) = N, (u, v,) with v, = 1 (distributions plotted
aty = —0.8). The circles indicate the function outpfitu) corresponding to the noise-fress. The
approximate means.*?(u,v,) and associated uncertaintie®,/v"” (u, v,) are plotted as triangles
and dotted lines. We can compare them torthige(noise-free) meang,(u), with error-barst2o(u),
which do not account for the noise on the input. The right ksidé displays plots of the covariance
function (which is the squared exponential given by (2.8)] ds first and second derivatives, which
appear in the expressions for the approximate mean andear{ghe continuous lines correspond to
the covariances at = 2.4 and inputs in1, 10] and the dashed lines to thoserat 6.9), the circles

indicating the covariances with the training points.

Approximate v Naive

ap B
+2sqrt(vh) ()
0.5r
m?2P
or , : .
-2sqrt(v®®) :
-0.5r \ / \/
N(u,v =1
xobseryed ‘ ,  -0.05
2 0 2 4 6 8 10

X X

Figure 3.5:Gaussian approximatioto the prediction at: (asterisk), noisy version of the true =
2,6,9.5, where the noise has varianeg = 1. Left: Approximate meann® (z) and uncertainty
+2,/v%(z) (triangles). The noise-free momenis(£) + 20(z)) are indicated by crosses and the
circles show the function outputs corresponding to theaxbisew's. Right: From top to bottom,
covariance function and derivatives, betweea [1, 10] and the noisy test inputs (= 2.4, continuous
line, andz = 6.9, dashed line), the circles indicating the covariances thightraining inputs.
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3.3.3 Approximating x(x) and o?(x) directly

In (Girard et al., 2003; Girard et al., 2002), we derived thpraximate mean and variance by solving
equations (3.4) and (3.5) directly, that is replacpgk) ando?(x) by their first and second order
Taylor approximations respectively. Applying (3.13) aBdl@#) directly tou(x) ando?(x), we have

Blu()] = p(u) + 5Tl ()5 (3.18)
Vardu(x)] = Telp () (w)7S,] (3.19)
Eyo?(x)] ~ 02(u)+%'1‘r[02”(u)2x]. (3.20)

Substituting intan(u, £,) = Ex[u(x)], we have
(,B) = u(u) + 5 Tl ()]
with p(u) = 3", 8;C(u,x;) and
= Sacx). ww) = S AC wx),
so that we can write l
ZBZ ( u,x;) + Tr[C"(u xz)zz]> . (3.21)

Similarly, we havey(u, X,) = Ex[a (x)]+ Ex[p(x)?] —m(u, ;)% = Ex[0?(x)] + Vary[p(x)],

that is

"

o, 2,) = o) + 1 | (307 () + ') ) 2

with o%(u) = C(u, u) — Zij Kl-;lo(u, x;)C(u,x;) and
o2 (u) = ZK (u,%;)C(u, %) + C(u,%;)C' (u, x;)]
o’ (u) = C"(u,u) ZK [C"(u, x;)C(u, x;) + C(u, x;)C"(u, x,)
+2C'(u, xi)C (u,x;)7].
After simplification, we obtain
v(u, ;) =C(u,u) + ;Tr C"(u,u)x ZK (u,x;)C(u,x;)
+ %Tr[(C”(u,xi)C(u, x;) + C(u,%;)C" (u,x;))E,]) (3.22)

—ZK‘ — BiB)THC (1, %,)C (u, %,)T,] .
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Obviously, the Taylor approximation gf(x) ando?(x) implies a second order Taylor approxima-
tion of the covariance function. Although these resultstheesame as those obtained when working
with the covariance function, this approach lacks flexipiln that it does not highlight the depen-
dence on the form of the covariance function and it is theesfmt clear that exact moments can be

computed in particular cases, as we will now illustrate.

3.4 Gaussian approximatiaorExact moments

In the special cases of the linear and the Gaussian (squgpedential) covariance functions, we can

evaluate integrals (3.10)-(3.12) exactly.

3.4.1 Case of the linear covariance function

Let us write the linear covariance function @g(x;,x;) = x;foj whereL = diag[a; ... ap]. In

the noise-free case, the predictionideads to a Gaussian distribution with mean and variance

N
pr(u) =Y BiCr(u,x;)
= (3.23)

N
op(u) = Cpr(wu) = > K 'Cr(u,%;)Cr(u,x;) .
ij=1

When we are predicting at a noisy input, the predictive meahvariance, now denoted by**z

andv®*L (the subscript indicating the exact linear case), are gen

N
mer(w,8,) = Y Bl (3.24)
=1
N
v (0, E,) = 1 = Y (K = BB — m (u, B,)? (3.25)

3,j=1
where
17 = Ey[Cr(x,x)] = / x" LN (u, By )dx
I = BxlCr(xx)] = / x” LN (u, By ) dx

i7" = Ex[Cr(x,%i)CL(x,%;)] :/XTLX"XTLXjNX(“vEI)dX'
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Using the formula giving the expectation of a quadratic formder a Gaussian (see Appendix A),

we directly obtain

1t = ulLu+ Tr[LE,| = Cr(u,u) + Tr[LE,]
lfIL = uTLXi = Cr(u,x;)
7t = u’(Lxx] L)u + Tr[Lx;x] LE,] = Cr(u,x;)Cy(x;,u) + Tr[Lxx] LE,] .

In the linear case, the new predictive mean is then the saihe awise-free one, as we have

meL(u,%,) = YL, BiCr(u, x;) (3.26)

On the other hand, the variance becomes

N
v (1, 8,) = Cp(w,u) + Tr[LE,] — Y (K" = Bif;) Tr[Lx;x] LE,))
i,7=1

N (3.27)
- Z KZ‘EICL(uaXi)CL(Xjau)
i,5=1
after simplification of thes; 3; terms. Alternatively, in terms of the noise-free variandgu),
N
v (1, 8,) = oF (0) + Tr[LE,] — Y (K" — BiB) Tr[Lxix] LE,]) . (3.28)

ij=1

If we note thatC/, (u, x;) = W = Lx; andC// (u,u) = % = 2L, we can also write it

as

ve (0, ;) = o7 (u) + 5 Te[C (u, ) 8] — Y7 (K" — Bif) Tr[CY (%, %:) €Y (x, %) " Ea))

(3.29)
As we would expect, in this case, the predictive mean andivee exactly correspond to the

approximate moments we would obtain within a first order agpipnation of the covariance function.

3.4.2 Case of the Gaussian covariance function

As noted in the previous chapter, the Gaussian covariamezidun

1
Ca(xi,xj) = vexp _E(Xi - x;) "W (x; - x;) (3.30)
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is of special importance as it has been shown that a GP with&wgovariance function performed as

well as other popular nonlinear models like neural netwgRasmussen, 1996a).

Let 4 (u) ando (u) denote the noise-free predictive mean and variance,

N
pa() =Y BiCa(u,x;)
=t N (3.31)
og(u) = Ca(u,u) - Y K;;'Calu,x;)Ca(u,x;)

ij=1

where, according to (3.300;;(u, u) = v. Now, for predicting ak ~ A (u,X,), we need to compute

N
mi(u,B,) = Y Bili"C (3.32)
i=1
N
v (0, 8,) = 196 = Y (KN = BiBy)liTe — mE (u, B,)?, (3.33)
3,j=1

where we directly hav&*¢ = E4[Cq(x,x)] = v = Cg(u,u), and
15" = Ex[Ca(x,xi)], 1579 = Ex[Ca(x,%;)Ca(x,%;)] -

For notational convenience, let us write the Gaussian @wvee function asC; (x;, x;) = cNx, (x;, W),
with ¢ = (27)P/2|W /25, Using the product of Gaussians formula (see Appendix A)directly

have

1676 = ¢ [ Nalot, WA (1, B = oo, W+ 8, (3.34)

For the evaluation oaffc we need to use this product twice, leading to

R / N (362 W) N (5, W) NGe (11, ) (3.35)
_ CQNXi(xj,zvv)/Nx (Xi;"j,g> Ni(u, ,)dx (3.36)

P+ X W
= 2Ny, (x;,2W) Ny, (X ;Xﬂ,zz + 7) (3.37)

"Although we writeCe (x;, x;) as a normalised probability density, we denote it¥ygince the variables involved are
not random.
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Exact predictive mean

Replacing/;““ by its expression im“*¢ (u, X,), we have

N
mee (u,8,) = Y BicNu(xi, W +5,) (3.38)
i=1

and we can then directly check that, as we would expe¢ts, £, = 0) = ug(u). With W= =

diag[w, ..., wp], and assuming a diagon8l,, ¥, = diag[v,i,...,v:p], thed™ element on the

diagonal of(W + £,)" ! is Hu“j:vzd. Recall that, in the noise-free casey relates to the variation
in directiond (linked to the correlation length). Now, this length-scalévidened’, proportionally to
the noise variance. Also, the vertical amplitude of vaoiatiformally controlled by, is now accord-
ingly weighted down byl + W—'%,|~'/2_ Itis an overalflatteningphenomenon, with an increased

correlation length and decreased vertical amplitude.

It is useful to writem®*¢(u,X,) as acorrectedversion of u;(u). Using the matrix inversion

lemma, we hav¢W + %,) ' =W I - W (W1 + 2 )" IW~!, leading to

mee (u,B,) = N | BiCa(u, %) Coorr (0, x;) (3.39)

whereC¢(u, x;) is the Gaussian covariance function betweesndx; and with
1
Ceorr(u,x;) = [T+ W_lzx\_l/Q exp i(u — Xi)TA_l(u - x;) (3.40)

whereA ! = W (W1 + -1~ 1W~1, that simplifies intAA ! = W1 — (W + X,) !, again

using the matrix inversion lemma.

Compared to the noise-frge;(u), the covariances between the new noisy input and the train-
ing inputs, formerly given by’ (u, x;), are now weighted by, (u, x;), thus accounting for the

uncertainty associated witin
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Exact predictive variance

For the variance, replaciri@?G andi®*¢ by their expression, we find

72:E+_

N
S, = Caluu) - & 3 (K" = 55N s 2WIN (25 }

ij=1

—me (11, EIE)Q 3

X; + X; W>

with

N
mee(u,8,)? = ¢ Z BiBiNu(xi, W + X, ) Nyu(x;, W + X,)
i,5=1

N
— 02Zﬁiﬁiji(xj,Q(W—i-Zz))Nu( 5 5

x; +x; W+ EI>
i,j=1

ForX, = 0, the new predictive variance becomes

N
itx; W
erxG (u,Ex = 0) = Cg(u, u)—c2 Z (Kigl—ﬁiﬂj)in(Xj, 2W)Nu <X —;X] ) 7) _mexa(uazx = 0)2 )
i,j=1

with meee (u, B = 0)2 = 2 SN, Bifl; N, (x;, 2W) Ny (X522, W), Recalling that the prediic-

tive variance corresponding to a noise-freecomputed using the Gaussian covariance function is
given by

N
og(u) = Co(uu) = > K ' Ny(xi, W)Ny(x;, W)
ij=1

N
= Cauu) —c® ) Kz.lexi(Xj,QW)Nu< T

X; + X; W)
t,j=1

we can again check that’¢ (u, 2, = 0) = o2 (u).

As was done for the predictive mean, we can find another form“ (u, £,) where the Gaus-
sian covariance function appears weighted by a correction.t Using the matrix inversion lemma,
-1 —1 -1 -1 _1\ 7! —1 o X
we have(S, + W)™ = ()7 - (1) (W7 +2) (W) 7 and, withx = 25X, we

can write

W \%%
lffG = ¢* Ny, (x;,2W)N, <5c,21 + 7) = * Ny, (x;,2W) Ny (ia 7) Ceorrs (1, %)
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W -1
(7> 5+

with A=1 = (W)~ ((%)_1 —|-2‘1>71 (W)™ = 2w~! - (AW +5,)"". We can also show

where
—1/2

Ceorr, (0, X) = exp B(u —%x)"A  (u - x) (3.41)

2 T 2
thate? Ny, (xj,2W) Ny (5(, %) = Cg(u, x;)Cg(u, x;), leading to
lffG = Cc(u,x;)Cq (u, x5) Ceorr, (1, X) (3.42)

and therefore

el (ll, EI) = Cg(ll, ll) — ZN (K;l — ,Biﬂj)CG(ll, Xi)Cg(u, Xj)Ccorr2 (ll, }_C) — mexG(u, ZI)Q

ij=1
(3.43)
In terms ofc2,(u) plus correction terms, we can rewrite the variance as
N
v (0, 8,) = 05(u) + Y K Calu,x;)Ca(u,x;) (1 = Cogrr, (u,%))
W (3.44)

N
+ Z BiBjCG(uaXi)CG(uaxj)(Ccorrz (11, i) - Ccorr(uaxi)ccorr(uaxj))
1,7=1

having replacean®*c (u, ¥,)? by its expression, using (3.39).

It can be shown that the predictive mean and variance olttamthe Gaussian case tend to the
approximate mean and variance wi¥pntends to zero. As with Figure 3.5 for the approximate mo-
ments, Figure 3.6 shows the exact predictive mean and leargr{triangles) obtained when predicting

at noisy inputs (asterisks).

3.5 Qualitative comparisons

Using the simple one-dimensional static example used ¢fvauwt this chapter, we now compare the
predictive distributions given by the Monte-Carlo approation and by thé&aussian approximatign

with moments computed both exactly and approximately. Viéetlus following notations:

e MC, denotes the Monte-Carlo approximation to the true pragidistribution corresponding

to a noisy input, i.ep(y|D, u, ;) ~ + 5>, p(y|D,x"), whereT = 100;
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Exact v Naive

1 o
+2sqrt(v® :
0.5-
meX
-2sqrt(v®)
05 / / \ /
N(ug[x,:
-1 ‘ ‘ x observed ‘
-2 0 2 4 6 8 10

X

Figure 3.6: As in Figure 3.5, the triangles now indicate thace predictive means with their error-
bars, within theGaussian approximatioaccounting for the uncertainty on the noisy inputs (asts)is

e A, denotes th&aussian approximatiothat computes only the mean and variance of this distri-
bution, and specificallyl,, when these moments are computed using the Taylor appragimat

andA., when they are computed exactly (both using the Gaussiariaaga function);

e N, denotes thaaive predictive mean and variances that do not account for theenan the

input.

Figure 3.7 shows the predictive distribution given l4C' (continuous),N (dashed)A,, (dots)
and A, (asterisks), when the true noise-free input {$ft) and6 (right) and the input noise variance
vz IS 1. We can observe how the naive approach leads to a narrovibdigin, peaked around its
mean value, since it does not account for the uncertainth@imput. In this example, the distribution
defined by the approximate moments is strongly similar tbdeéined by the exact ones, supporting
the idea that the approximation is a valid and useful one. Nbate-Carlo approximation to the
true distribution highlights how the true distribution ismGaussian. Nevertheless, daaussian
approximationseems appropriate as it spreads about the area where mbst wkight of the true
distribution seems to lie.

Figure 3.8 shows the histogram of the losses (squared Byron the left and minus log predictive
density F» on the right) computed for each of the0 samples given by the Monte-Carlo approxima-

tion, when predicting at = 2.4 (left) andz = 6.9 (right). For these two predictions, the average
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Prediction at x= 2.4 Prediction at x= 6.9

4 2 0 2 4 6 8 10 0 5 10 15

Figure 3.7: Predictive distributions (on the y-axis) ob& when predicting at a noisy inpus/ C
is the numerical approximation by simple Monte-Carly,, and A,, correspond to th&aussian
approximationwith moments computed exactly and approximatélyis thenaive predictive distri-
bution that does not account for the noise on the input.

losses ardy; = 0.002 and E; = —1.46, computed using the sample means and sample variances.
With A.;, we obtainE; = 0.06 andE; = —0.14, andE; = 0.07 andE, = 0.09 with A,,. The

naive approach leads 6, = 0.02 andE, = —1.29.

For x=2.4 For x=6.9
‘ 90— ‘ ‘ 18— : : 45—

45

80r
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50r
40¢

# of samples
# of samples

# of samples

30r

# of samples

20t
101

0

0 200 400

Figure 3.8: Squared erroF() and minus log-likelihood ;) computed fo 00 samples of the Monte-
Carlo approximation (for the observed noisy= 2.4, left andxz = 6.9, right).
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3.6 Extension to the learning task

A similar approximation to that taken in this chapter can sedito solve the more challenging prob-
lem of training a model in the presence of noisy or uncertapuis. Again, we make the assumption
that the inputs are independent and normally distributed.

3.6.1 Defining anoisyprocess

Fory; = f(x;), wherex; is noise-free, recall that the GP prior gnhwith zero-mean and covariance

function C'(x;, x;), implies that

Elyi|lxi] = /yz'p(yi)dyz‘ =0 (3.45)

Covly, yj|xi,x;] = C(xi,%5) . (3.46)

If we now consider the situation where noisy inputs are stbhgehe system, we havg = f(x;)
with x; = u; + ex,, Whereey, ~ N(0,2,;). Givenx; ~ N (u;,E,;), although the process is not
Gaussian anymore, we can still determine the mean and aocarfunction of what we shall call the

noisyprocess (as noted in (Seeger, 2003) p&)e

According to the law of iterated expectations, we can write
Elyilu;] = Ex[Elyi|xi]] =0 (3.47)

sinceE[y;|x;] = 0. Also, the law of conditional variances tells us that-[y;|u;] = Fx[Var[y;|x;]] +

Vary[Ex|yi|x;|]] = Ex[Var|y;|x;]]. Extending this result to the covariances leads to

Cov[yi,yj\ui,uj} = //C(Xi,Xj)p(Xi,Xj)dXide, (348)

where we allow the noise to vary for each input, péx;) = Nx, (u;, Ez;) andp(x;) = Ny, (u;, Bz;).
Let C,,(u;,u;) denote this ‘noisy’ covariance function giving the covada betweeny; andy;. As-

suming the inputs are independent given their charadtsrjste can define

Co (s, 1) = / / O (i, % )p () p () il (3.49)

and, as before, how solvable the integral is depends on thredbthe covariance function.
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Approximation via Taylor expansion

We first consider the case where the covariance fundafi¢r;,x;) is such that integral (3.49) is
analytically intractable. Assuming we can perform a Taggpansion of” around(u;, u;), we can

approximate the function by the following second order polyial

C(xi,%5) = C(ui,u)) + (xi —wi)" Cy, (i, uy) + (x5 — w;)"Cy. (uy, ;)
1 1
+5(xi — w)" Cy, o, (Wi, ) (% — wy) + 5% — w;)" CY, o, (i) (x5 — uy)
+(X’i - ui)Tclllli,u]' (111‘, llj)(Xj - uj) )
0C (x4, 82C(x;,x; 82C(x;,x;
whereC}, (u;,u;) = % Cy, o (ui,u)) = W andC’l’li,uj(ui,uj) = ﬁxjf), all
evaluated ak; = u;, x; = u;. Replacing this approximation in (3.49), we have
Camuiw) = [ [ € (ot
Integrating the integral with respectxg first, and then with respect to;, we obtain
1
CpPP(u;,u5) = C(u;,uy) + 3 (Tr[C'L'lZ_’ui(ui,uj)Em} + Tr[C'l',],’u],(ui,uj)EIjD } (3.50)

If we further assume the inputs are corrupted by the samedipeise (that is, with the same

varianceX;; = X, ; = 3;), this expression simplifies into

1
Cﬁp”(ui, Uj) = C(ui, llj) + —TI“[(C” (ui, Uj) + Cll’l].’uj (ui, uj))Em} . (3.51)

2 u;,u;
Note that, for a given covariance functié{u;, u;), one should verify tha®,"” (u;, u;) is a valid
covariance function, i.e. leading to a positive semi-definbvariance matri&.
Exact Gaussian case

When the covariance function is Gaussian, we can evaltiafe;, u;) exactly. As before, using

the notationcNy, (x;, W) for the Gaussian covariance function, where= (27)°/2|W|'/?4 and

8n the case of the Gaussian kernel, this implies a conditiothe input noise variance. In one-dimension, we have
C(ui,uj) = vexp [—1w(z} — 23)], andCy, ,, (us, u;) = Oy (uisuy) = [—w + w?(u; — u;)?)C(ui,u;), SO that
Y 1
Cnpp(uia U]‘) = C(ula uj) + Evm [C::i,ui (uia uj) + ng,uj (ui7 u])] = C(ula uj) + vmcilli,ui (ui7 Uj) s
which should be positive. In particular, we ha@&?? (u;, u;) = C(ui, ui) + vaCy, u, (ui, ui) = v(1 — v,w), since
C(ui,ui) = vandCy, ., (ui, ui) = —wC(u;i, u;). Therefore, folC7P? (u;, u;) to be positive, we neetl— v,w > 0, that
isvy < 1/w.
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W ! = diag[w; ... wp], we need to evaluate

Cy%(uj,uj) = c//in (x5, W)p(x;)p(x;)dx;dx; . (3.52)
Using the product of Gaussians and integrating eydeads to
/in (x5, W)p(x;)dx; = Ny, (u;, W + Ey;)
and, integrating this result with respectsg, we have
/Nx]. (uj, W + 2,,)p(x;)dx; = Ny, (uj, W+ X, +5,) .
The noisy covariance function can then be writt€l{*c (u;, u;) = cNy, (u;, W + E;; + X;5),
that is
O576 (ws, ;) = vI1+ W (S 4+ 8a,) 2 exp H(ui —u)T(W + B + o)~ (wi - u»] .
(3.53)

Assuming thak,;; = 3, ; = ¥,, we obtain

1
Cir¢ (uj,uy) = v|I+ 2W71295|71/2 exp [_E(ui — uj)T(W + 22x)*1(ui — uj)] . (3.54)

”lUD

For a diagonall,, we haveW + X, = diag LU% + Ugq,. .., =+ uw} , so that eactw parameter
is weighted by the corresponding uncertainty in the givgmiidimension. We can then write

D
1 w
e 1) — —ly |—1/2 1 d d_,dy2
Ci%%(u,uj) = ]I+ 2W™ 5, | exp[ 2}114—2“}(1%@1(% uf) ] . (3.55)

Note that, unless one has prior knowledge of the input naisance, and use (3.55) for fixed val-

ues ofv,; ... v, p, it might be preferable to learn a single parametén place ofy|I+2W 'S, |~1/2,

3.6.2 Inference and prediction

Given the covariance function

D
1 Wq
ex ) N 4 d __,d\2
O3 (u, ;) = o' exp |~ d}jl e G IR I (3.56)
with parameter® = {w1,...,wp,v',vz,...,0.p,v¢}, the learning and prediction tasks are no

more difficult than in the ‘noise-free’ case presented inti®ac2.3.1 of the previous chapter. Sim-

ply now, the minimisation of the likelihood’ (©) is with respect toD more parameters, namely

Vgiy« s VzD-
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Similarly, the prediction at a new (noise-free) inputs simply obtained by conditioning on the
training data anc. The predictive distribution of the corresponding outmuGiaussian with mean

and variance

N
p(x) = Z BiCr e (%, 1;)
=1 (3.57)

N
o?(x) = C%6(x,x) — Z KiglCﬁxG(x,ui)CﬁxG(x, u;),
ij=1

wheref = K~ 't, K;; = Cf¥4(x;,x;) + v40;; andt is the vector of observed targets. The vector of
covariances between the noise-free input and the noisyirigainputs,C5*¢ (x, u;), is found directly
by considering (3.53) and lettirlg, ; go to zero. Since we consider the case where the noise varianc

is the same for all inputs, we simply have
1
C57 (x,w7) = o exp | =5 (x — ) (W + 2,) 7 (x — w) | (3.58)

and similarly for Cs*(x,u;). Also, the variance between the new input and itself is gibgn

Cere (x,x) = v'.

It can be noted that, with the new kern€};”<(u;, u;), the length-scales are bounded below,
meaning that the corresponding process does not allow fartifins with very high resolution, an
effect that could certainly be obtained by setting a suitgisior onW. A last remark is that the noise
on the inputs needs not be white, as the extension to colowisd, as suggested in (Murray-Smith

and Girard, 2001), should be straightforward.

3.7 Summary

Central to this chapter is the prediction at a noisy input. hafee presented an analytical approxi-
mation allowing the GP model to compute the mean and variahttee predictive distribution of the

output corresponding to an input corrupted by some noide xeéto mean and varian&;,.

Recall that in the noise-free case, the predictive distiobw(y|D, x) of the outputy correspond-

ing to a newx is Gaussian, with meam(x) and variancer?(x). When the new input is noisy, such
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thatx ~ N (u, X;), one has to integratgy|D, x) over the input distribution, leading to an intractable
integral. In this case, the analytical approximation weppse consists of computing only the mean
and variance of the corresponding new predictive distidbu{Gaussian approximation These mo-

ments are respectively given by

N
muw ) = 3 BECx %)
i=1

N
v(u,¥;) = Ex[C(x,x)] — Z (Kz;I - ﬁiﬁj)EX[C(xvxi)C(xa Xj)] - m(uaEI)Q )

t,j=1
and can be computed exactly or approximately, dependinpeform of the covariance function of

the process.

We have shown how, for a Gaussian and a linear covariancédascthesaoisymean and vari-
ance could be computed exactly (given by (3.26) and (3.28)drhinear case, and by (3.39) and (3.43)
in the case of the Gaussian kernel). For general covariammiéns, we have suggested using a Tay-
lor approximation, leading to approximate moments (give316) and (3.17)). A simple numerical
comparison of ouGaussian approximatioto the numerical approximation of the intractable integral

by simple Monte-Carlo (equation (3.3)) has shown the viglidf our approach.

In Section 3.6, we have introduced a similar approximattorgeal with the more difficult task
of learning a model that accounts for the noise on the induatthe case of the Gaussian covariance
function, we have shown that a model accounting for thissemtiise (as opposed to the output noise)

had a Gaussian kernel with its length-scales bounded bptopwortionally to the input noise variance.

We now proceed to the modelling of nonlinear dynamic systemd the application of the pre-
diction at a noisy input to the iterative multi-step-aheaddiction task, with propagation of the un-

certainty.
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Chapter 4

Modelling nonlinear dynamic systems

One of the main objectives in time series analysis is fotémasWhereas good one-step-ahead models
can be relatively easily obtained, multiple-step-aheagsawnstitute a far more challenging problem.
We now focus on the modelling of nonlinear dynamic systenaspopose to apply the methodology
presented in the previous chapters to the iterative matpgp ahead prediction of time-series with
propagation of the uncertainty. Assuming a GP was traineditimise one-step-ahead predictions,
we show how we can formally incorporate the uncertainty &bdarmediate regressor values induced
by each successive prediction as we predict ahead in time Lipdating the uncertainty on the current
prediction. We illustrate the approach on the simulatedidgeaslass chaotic time-series and compare
the propagation of uncertainty algorithm within tB@ussian approximatiomnd the Monte-Carlo

alternative.

4.1 Introduction

When it comes to dynamic systems modelling, system ideatifin is that branch dealing with the
general process of extracting information about a system fneasured input and output data. Once
a model is identified, it can be used for simulation, predigticontroller design or analysis. We refer
to (Ljung, 1999; Soderstrom and Stoica, 1989) as genextibdoks on system identification. Typ-
ically, we can distinguish between ‘fundamental modelstivced from first principles, or empirical

models. The reason why empirical models might be prefesdtiat no detailed understanding of

57
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the process is required to develop the model. Within the goghimodel class, we find state-space
(e.g. Kalman filters (Welch and Bishop, 1995; Julier and Wirim 2000)) or input-output models.

Although distinct theories have been developed for theserdpresentations, it is always possible to
convert an identified input-output model into a state-spacelel (see e.g. (Phan et al., 1998)). In
the following, we consider the input-output class, repnése as a Nonlinear Auto-Regressive (NAR)

model. In discrete time, we have

Yir1 = fWe Y1, Y1) + €141, (4.1)

wherey, ,; is the system output at time+ 1 andx; 1 = [ys, ¢ 1,...,y:1]" is the corresponding
state Here, the additive noise terep,; reflects the fact that the next output will not be an exact

function of past data.

This representation is motivated by viewing the observestdimensional time-seriag, ..., y;
as a projection of the underlying dynamics, which lie in ahleigdimensional space (Takens, 1981).
The order of the NAR modell., which corresponds to the number of delayed outputs (somaseti
referred to asag or embedding dimensipngives the dimension of the reconstructed space (Casdagli
1989; Farmer and Sidorowich, 1988). It is important to nbi&t this representation implicitly as-
sumes that the statistical properties of the data are tichepiendent, so that the task is finally reduced
to the learning of a static mapping (as pointed out in (BisH®95), page802 — 303 for feed-forward
neural networks). Roughly speaking, nonlinear systemtifigation then involves model and struc-
ture selection (choice of a model for the mappifig), selection ofL), noise modelling, parameter
estimation and model validation. Most commonly, neuralwoeks have been used for the nonlin-
ear mappingf(.) (Principe et al., 1992a; Kuo and Principe, 1994; Principe ldno, 1995; Bakker
et al., 1998). Support vector regressors have also beetogedefor prediction purposes (Mukherjee
et al., 1997; Muller et al., 1997) and, recently, an extemsif linear dynamical systems (see (Roweis
and Ghahramani, 1997) for a review) using kernels has beggested (Ralaivola and d’Alché Buc,
2003). The use of Gaussian Processes is still in its infaocyhe modelling of dynamic systems
(Murray-Smith et al., 1999; Murray-Smith and Girard, 20&hcijan et al., 2003b; Kocijan et al.,
2003a).
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We are patrticularly interested in multi-step-ahead tirges prediction, which is a much more
challenging problem than the one-step-ahead predictisk tahe problem is as follows: Given a
time-series known, say, up to timewe wish to predict (or get the predictive distribution dfiet
output at timet + &, wherek is the predictive horizon. This corresponds to a missingasyndata
modelling problem, wherey;,_; down toy, are missing. Currently, predicting ahead in time can
be achieved directly or iteratively. With the direct methadmodel is explicitly trained to learn to
predictk steps ahead, e.g. assumingx = f (¢, ¥1—1. - - -, yi—1.); the model being therefore tailored
for a fixed horizonk (which might actually be difficult to fix in advance). Afis large and the system
very nonlinear, the drawback of the direct method is thatilitivgeneral require a large amount of

data to get a good model, because of the larger amount offmidaita between targets and inputs.

In the following, we focus on the iterative approach, thatgists of the iteration of a one-step-
ahead model such as (4.1), up to the desired horizon. Inakks, ¢here are different ways of dealing
with the missing data. Numerical solutions consist of iratigg over the unknown (or missing)
variables, weighted by their conditional probability digngwhich is done, albeit in a classification
context, in (Tresp and Hofmann, 1995; Tresp and Hofmann89® naive way of iterating a one-
step-ahead model is simply to substitute a single valueh®missing value. This approach has been
shown not to be optimal (Ahmad and Tresp, 1993; Tresp and Hofin1995), as we will illustrate in
our numerical examples. In (Tresp and Hofmann, 1998), sstahsampling is shown to be superior
to both simply iterating the system and using the extenddthi&m filter.

Two obvious reasons for favouring the iterative method dierdirect one are that accurate one-
step-ahead models are usually easy to get and, alsd;-atgp-ahead forecast is available, up to the
prediction horizon. However, the well known drawback of itieeative approach is the accumulation
of errors as we predict ahead in time, as each subsequetedeprediction uses no more information
than was used in the first one-step prediction. In (Small anhti, J1999; Judd and Small, 2000),
they aim at improving long-term predictions by eliminatitige systematic errors induced by each

successive short term prediction. Here, we suggest noirtonglte the error but on the contrary to

1The missing variables can be seen as noisy variables forletenmise.
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propagate it through the model as we predict ahead intime.

4.2 Iterative multi-step ahead forecasting

We are now going to show how we can propagate in the model tbertainty induced by each suc-
cessive prediction. That is, at each time-step, we not @y back the predictive mean (i.e. a single

point estimate) but also the predictive variance, thatasgmts the associated uncertainty.

We consider the NAR model (4.1), that is

yr = f(x¢) + €, (4.2)

wherex; = [y;—1,...,y—1—1] and the functionalf(.) is modelled by a zero-mean GP with covari-
ance functionC'(x;, x;). Although richer noise models, such as ARMA models coulddresitlered

(Murray-Smith and Girard, 2001), we simply assume thad a white noise.

With this one-step ahead model, in order toget. = f(Ysik_1,---sYsik_1), WENeedy 1 =
f(Wisk—2y - s Ytik—2-1), down toy,1 = f(y, ..., y—1,). Since the time-series is assumed to
be known up to time, the predictive distribution ofj;,, is readily obtained. We havg,,, ~
N (p(x41),0%(x441)), @s given by equations (3.1). Fgr, 2, a naive approach is to use only the point
estimate ofy; 1, and considey;.o = f(Ger1,Yt, .- Ytro—1), Whereg,1 = pu(x4e1). Here, we
suggest to feed-back the whole predictive distribution,qf to account for the model’s uncertainty
o%(x;41) on the estimate:(x;,1). We then havey;, o = f(yit1,¥s,--.,yi12-1.), Where the state
X492 1S now a random vector with mean(x;.+1), v, - - - , Y1+2—1,] @nd zero covariance matrix, apart
from the first entry which isr?(x;,1). This takes us back to Chapter 3 and the task of making a

prediction given a random input.

20ur approach can be linked to the extended Kalman filter thainsarises past data by an estimate of the mean and
covariance of the variables.
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4.2.1 Propagation of uncertainty algorithm within the Gaussian approximation

Within the approximation presented in Chapter 3, we can ectenghe mean and variance gf, 5.

Interpreting this approximation as Gaussian, we can write

Yrro ~ N(m(upy2,Big2), v(ugyo, Beya))

whereu, 5 and¥, o are the mean and covariance matrixxgf,. As we saw then, the predictive
mean and variance can be computed exactly or approximalehending on the form of the covari-
ance function. Then, for the next time-step, we can feed bty 5, ¥; 1 2) andv(u;12, X;42) back

into x;. 3, and repeat the process up to the desired horizon.

Here is a sketch of how we proceed:

o t+ 1, %401 =[ys,.-. ,yt,L}T. Computey; 1 ~ N (p(x¢41), 02(xt+1)).

o t+2,Xi10 = [Yes1, Yty s Yer1-1]" ~ N (o, Biro) With
[ p(xp41) ] [ o?(x441) 0 ... 0 ]
upn — y.t and S,y = 0 0 ... 0
| Yt+1-1 ] i 0 0 ... 0]

Computey; o ~ N (m (a2, 8142), v(Up2, Bit2)).

o t+3, %113 = [Yt12, Yei1s- - - ayt—i—Q—L]T- We now have
m(ugy2,842) v(Upy2,8e42)  Cov[yrio,yita] 0 ... 0
p(Xi41) Covlyrit,yrs2] 0% (Xpt1) 0 ... 0
X3 ~ N n ; 0 0 0 ... 0
Yt+2-L 1 L 0 0 coe e 0

Computey s ~ N (m (w43, Bi13), v(wgs, Bit3)).
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Repeating this procedure upiowe finally havey; ,, ~ N (m(uy g, Ziik), v(0ig, Biak)). At
timet + k, with & > L, the random input i, = [Yisk—1, Yitk—2,- - - Yirk—1]" » With meanu,,

formed of theL delayed previously predicted means,

m(Wg 1, B4k 1)

m(Uptk—2, Biik—2)
Uptg =

i m(W k1, Detk—1) i

andL x L covariance matrix, ; with the delayed predictive variances on its diagonal:

v(ugk-1,84%-1)  Cov[Yspk—1,Yerk—2] .. Cov[Yrik—1,Ytrk—1]
Coviyipr—2, Yesk—1] v(Wyp—2,8i46—2) ... Cov[yipr—2, Yisk—1]
Yie =
| Covlyerh—r,Yerh—1] Covlyiir—r,yesn—2] ... v(Wpk—r, Bepp—r) |

We now need to compute the cross-covariance terms of thé agrariance matrix. They corre-
spond to the covariances between the delayed outputsstatfy; ;. y;1r—;], fori =1... L -1
andj =i+ 1... L. Since we fill in the input covariance matrix as we progressadhin time, this
is equivalent to computing the cross-covariances betweematput and the input the time-step be-
fore, that isCov|ys4r—1,X¢1%1], discarding the lasb{des) element ofk; ;1. For simplicity in the

notation, let us writé = k£ — 1. We need to compute

Covlyiti, xe+1] = Elyrrixert] — Elyen] Elxe14] (4.3)
whereE[x;1;] = uyy andEly,4] = m(uyy, ¥44,). For the expectation of the product, we have

Elyiyixi11] = //yt+lxt+lp(yt+l,Xt+l)dyt+ldxt+l
= //yt+lxt+lp(yt+lXt+l)p(xt+l)dyt+ldxt+l
= /Xt+m(xt+l)P(Xt+l)dXt+l-

Replacingu(x;.;) by its expressiony(x;1;) = >, 8iC(x441, %;), we have

Elyrixi41] Zﬂz /Xt+l0 Xt+15 X )P(Xt1 ) dXp 4 - (4.4)
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As in Chapter 3, we can evaluate this integral exactly or @gprately, depending on the form of
C(.,.). Denotingx;;; by x for notational convenience, léf = [ xC(x, x;)p(x)dx be the integral

we wish to evaluate.

Case of the Gaussian covariance function

We first derive the expressions of the cross-covariancedlgxa the case of the Gaussian covariance
function. As in Section 3.4.2 of the previous chapter, wetavthe Gaussian covariance function

Ca(x, x;) ascNy (x;, W), with ¢ = (27)P/2|W|'/25. So we wish to solve
I6 = c/xNx(xi,W)p(x)dx (4.5)
wherep(x) = Nx(u,X,).
Using the product of Gaussians, we haVig(x;, W)Nx (u,2;) = Ny(x;, W + ,)Nx(d;, D)
withD = (W~ ! + 2,11 andd; = D(W 'x; + £, 'u). Substituting inf{* gives
16 = Ny (xi, W + 5,) /x/\/’x(di, D)dx = cNy(xi, W + 5,)d; ,

that is

I[76 = cNy(xi, W+ Z) (W + 2. )T (W x; + 8, M) (4.6)

Using the matrix inversion lemma, we can write

Wlis Hh)y'lw!l = I-WW+Xx,) ]

(W +E7)7'5 = [T-3(W+3,)7],
leading to
IF%¢ = cNy(xi, W+ E) (I - W(W 4+ 5,) 1 +[I-Z,(W+Z,) 'u).  (47)
In this short notation, the cross-covariance terms are gham by

Covly,x] = 3" BI70 — mee (u, 2, )u
7
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wherem®*¢ (u, ¥) is the predictive mean obtained in the Gaussian case. Rer#iat we can write
itas) ; BicNu(xi, W + X,), we have

Covly,x] = 3 BieNu(xi, W+ o) ([T = W(W + 2)~']x; = 5y (W + 5,) ')

and we can check that, as should be the dase[y, x] = 0 if ¥, is zero. UsingNy (x;, W +X,) =

C(u,%;)Ceorr(u, x;), with C,rr given by (3.40), we can finally write

Covlyen xet] = Y BiC (i1 %) Coorr (et %) (I=W(WHE10) %=yt (WHB04) M ugy)
l (4.8)
General case

If we cannot evaluatd; exactly, as in the previous chapter, we use a Taylor apptam of the

covariance function.

In the one-dimensional case, we need to compute [ 2C(z, z;)p(z)dz with p(z) = Ny (u, vy).

Within a second-order approximation of the covariance tioncaroundu, we can write

%

1o /g: <C(u, 25) + (2 — ) C'(u, 35) + %(:13 - U)QC"(U,%)> p(x)dz

%

uC(u, z;) + v,C' (u, z;) + %’U/OIC”(U, x;) ,

where we have useflz?p(z)dz = v, +u? and [ 23p(z)dr = 3uv, + ud.

Extending this result td.-dimensional inputs, we have
1
Il-ap ~ uTC’(u,Xi) + C'(u,xi)TEx + EuTTr[C"(u,Xi)Ex] , 4.9

and the cross-covariance terms are given by
Covly,x Z GBI — X, )u,
wherem® (u,2) = Y, i [C(u,x;) + 3Tr[C" (u, x;)E,]], thus simplifyingCovly, x] into

Covly,x Z BiC'(u xZ )3
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Therefore, the cross-covariance terms of the input caveeianatrix at time + & are given by

Cov [ys+1, X¢+1] Z BiC' (w41, %) Ty, (4.10)

wherel = k — 1. Note that we would have obtained the same result if we haglgioconsidered a

first-order Taylor approximation of the covariance funitio

We can then compute the full input covariance matrix at eank-step. The advantage of this
approach is that we account not only for the uncertainty ¢eduby each successive prediction but
also for the cross-covariances between the delayed peedietriables, enabling us access to the full

joint distribution of thel delayed outputs.

We now turn to the numerical solution of the propagation afartainty when using the iterative

method.

4.2.2 Monte-Carlo alternative

As already seen, if the time-series is assumed to be knowo timé ¢, att + 1, we havex; | =
[Ye, i1, .-,y 1] SO that we can simply computg; ~ N (u(xs41),0%(xs41)), Using equations

(3.1). For the next time-step, propagating the uncertaimdyced byy; ., implies the evaluation of

P(Yi42|D,up g0, Biyo) = /P(yt+2D,Xt+2)P(Xt+2)dXt+2 ,

whereD is the set of training data andl o = [yi+1,ys, - - -, Yi+1-1], SO thap(x;42) = Ny, (Wrp2, Biyo),

with wyo = [u(xe41), Yt - - -, Yer1—1) @ndSL, = 0?(x441) and zero elsewhere.

Instead of computing only the mean and variancg(gf;2|D, u;42,X;+2), as done in th&aus-

sian approximationwe can approximate the integral numerically, by simple MeBarlo:

P(yi+2|D uiy2, Biyo) ~ g ZP Yi+2|D,Xi o)
s=1

whereS is the number of samples and, , is a sample of(x42).> Now, for givenx;, ,, we know

®Note that at this point, sampling from(x;+-) is equivalent to sampling;,, from p(y:+1) and lettingx;,, =
[yf+17 Yty 7yt+1—L}'
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that the corresponding output is normally distributed. \&e then write

S
1
P(Yi+2|D, Wpy2, Bigo) = g ZNyHg(M(XfH)aUQ(XfH)) )
s=1
such that the distribution aj;. o can be seen as a mixture $fGaussians with same mixing weight

1
5

At ¢t + 3, things start complicating as we now havg s = [yi12, Yit1, - - -, Yr+2—1.], Wherey, 11

is normal buty; 5 is a mixture ofS Gaussians. ..

Instead of working out the whole distribution @f, 5, a first approximation consists of considering

one Gaussian from the mixture at a time. We can then write

o 1+ 2 CompUtep(yt-l-Q‘Da Ut12, 2t-|-2) = % Zf:l Nyt+2 (M(X§+2)a 02 (Xi+2))

e 1+ 3: Loop overs

— X443 = [Y142, Y141, - - - » Y42—1], Where we considey, o ~ N (u(x} o), 02 (x5 ,5)).

We then havey(x;43) = N, (143, Bi13) with

ey o?(xj1s)  Cov[yria, 1] 0 ... 0
p(Xe41) Covlyri1, vl 0% (%Xet1) 0 ... 0
uggg = n and 0 0 0 ... 0
| Yi+o-L | | 0 0 v e 0]
— Evaluate
1< 1S

P(Yr+3|D, upi3, Bigz) ~ 5 > p(yirs|Dx},5) = g D Ny ((x513), 0% (x515))
s=1 s=1

wherex;, ; is a sample fromp(x;3).

e End Loop

Each single Gaussiantherefore leads to a mixture of Gaussianspf); 3| D, us43, £443), implying

S mixtures of Gaussians for time-step- 3 (behaving like a branching process), which is not compu-
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tationally tractable.

This leads us to the following second approximation, whesecwnsider one sample at a time, up

to the desired horizon:

e Loop overs

=t 420 X0 = (Y1, Yt - Yer1—n] ~ N (g2, Do)

Samplex;, , from p(x;2)
Computep(y;12|D, Uy y2,Bi42) = Nyt+2 (M(Xf+2)a o? (Xf+2))

-1+ 3 X443 = [yt+2,yt+17 cee ayt+27L] ~ N(ut+3,2t+3)

Samplex}, ; from p(x;3)

Computep(yi+3| D, urgs, Bips) = Ny, o (w(x5,4), 02 (x5, 5))

— Uptot + k.
e End Loop

This way, we effectively obtai§ Gaussians for the output distribution at each time-steys #pprox-

imating the ‘true’ mixture of Gaussians distributions.

In our experiments, we consider the following simplifiedsien of the above algorithm:

e Loop overs

—t+1, %01 = [y, yi—1, .-, yr—). Computey, 1 ~ N (u(x11), 02 (x441))
—Fore=2...k

+ Draw a sampley/, ., fromp(yiix—1|D, X¢45-1)

+ Shift the time-window and forns; 1« = [y, . 15+, ¥/ 1)

+ Computey; i ~ N (1(Xt1x), 0% (Xt1x))

— End For
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e End Loop

The notable difference we would expect between this algoriand the previous one would be in
terms of ‘smoothness’ of the state sample at each time-$betiis last algorithm, the state is com-
posed of delayed sampled outputs, each one of them samptadtfrcorresponding one dimensional
Gaussian distribution (thus treating each of them indepetiyg). On the other hand, in the previous
algorithm, the state sample comes fromladimensional distribution, with a full covariance matrix,
thereby introducing some ‘smoothness’. Neverthelesspbagnfrom anL-dimensional distribution
will become cumbersome for large. Although we have not investigated this point any furtheg, w
speculate that our approximation should not have a greadtrgn the overall numerical approxima-

tion to the true distribution.

4.3 k-step-ahead prediction of the Mackey-Glass chaotic timeesies

This first numerical example is intended to illustrate thepaigation of uncertainty algorithm. On the

100-step ahead prediction of the Mackey-Glass time-seriegregoing to

e Compare the predictions given by tBaussian approximatioand in particular

— When propagating the uncertainty: Assess the quality ofptieelictions computed ap-
proximately (4,,), by comparing them to those computed exactly,{), in the case of the
Gaussian covariance functién;

— Compare these predictions to those given bynhe approach ), that does not ac-
count for the uncertainty induced by the successive priedistas it feeds back only the

predictive means when predicting ahead in time.

e Compare the exackaussian approximatior., to the numerical approximation of the propa-

gation of uncertainty algorithm by Monte-Carl®/(C).

Recall that, when predicting at~ Ny (u, X, ), the naive approach simply compujegi) ando?(u)
(given by equations (3.1)), whereas within tBaussian approximatigrihe predictive mean and vari-

ance are given by (3.39) and (3.44), in the case of the Gaussiariance function, and by (3.16) and

“4To do so, the approximate moments are computed using a secdedTaylor approximation of the Gaussian covari-
ance function.
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(3.17) within the Taylor approximation.

The Mackey-Glass chaotic system constitutes a well-kndvatienging benchmark for the multiple-
step-ahead prediction task, due to its strong non-lineékitackey and Glass, 1977). We consider
d?ji—gt) = —by(t) + a%, witha = 0.2, b = 0.1 and7 = 17. This continuous-time model is
discretised and the series is re-sampled with periadd normalised. We then assume the following
one-step-ahead NAR modgl.1 = f(ye, yi-1,---,%—1), WhereL = 16, and form a vector ofV
outputs, wheréV = 500 (taken at random from the series), that we corrupt by a wiitgenwith vari-
ance(.001, and the corresponding matrix &f x L inputs. We train a zero-mean Gaussian Process

with Gaussian covariance function
1 _
C(xi,xj-) = vexp _E(Xi — Xj)TW 1(xi — Xj) , (4.11)

whereW~! = diag[w, ... wp] and withv set tol. On the one-step-ahead prediction of the train-
ing data, we obtain an average squared efprof 8.4870 x 10~* and an average negative log-
predictive density E, of —2.1145. For the validation (test) set, we ha¥g = 6.4734 x 10~* and

By = —2.5297.

We now proceed to make0-step-ahead predictions of the test series and comparéftbeet

methods.

4.3.1 Gaussian approximation

We first compare the predictions obtained with and withoappgation of the uncertainty, thatds,,

andA,,, to the naive approach .

Figures 4.1, 4.2, 4.3 show predictions frdnto 100 steps ahead, for different starting points in
the test series. The left plots show the mean predictiont twangles and circles indicating those
obtained when propagating the uncertainty and computiegndans exactly4.,.) and approximately
(Aqp) respectively. The dots correspond to the mean predictiowes by the naive approachi. For

clarity, the corresponding error-barsZx standard deviation) are shown on the right plots.

5See Chapter 2, Section 2.3.3 where these measures of pregietformance are introduced.
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Predictive means from 1 to k= 100 Error-bars from 1 to k= 100

45 60 80 100 120 140 45 60 80 100 120 140

Figure 4.1: Iterative method in action, frolh = 45: Predictions froml to 100 steps ahead of the
Mackey-Glass time-series (continuous line). Left: Priesiomeans given byl (triangles) and4,,
(circles), corresponding to propagation of the uncenyaiand those given by the naive approagh
(dots). Right: Confidence intervals (error-barsdef x standard deviation) given by the different
methods.

Predictive means from 1 to k= 100 Error-bars from 1 to k= 100
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Figure 4.2: Predictions frorh to 100 steps ahead starting frof = 124. Same legend as for Figure
4.1. Note how the predictive mean given Hy, atk = 100 is the closest to the true value.
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Predictive means from 1 to k= 100 Errorbars from 1 to k= 100

‘ ‘ ‘ ‘ ‘ -250 ‘ ‘ ‘ ‘
130 140 160 180 200 220 130 140 160 180 200 220

Figure 4.3: Predictions frorh to 100 steps ahead starting frof = 130. Same legend as for Figure
4.1. Now, atk = 100, itis A, which leads to the best prediction.

Common to these three figures is the fact that, even thoughatire method might lead, in some
cases, to better mean predictions than the methods prapadhe uncertainty (as is the case in
Figure 4.1), the associated uncertainties are always igitydnd not representative of how good the
estimates are. In particular, fat= 100 in Figure 4.1, the mean prediction given Byis closer to the
true value than eithed,, or A.,. Nevertheless, the associated error-bars are very snthii@mot
include the true value. Although the mean predictions glwetthe naive approach may significantly

differ from the true time-series, this model is too confidabbut its estimates.

In terms of mean predictions, the three methods give sinedimates, up to arountd steps
ahead, and start diverging after that. Figure 4.2 illusgdhe case when,, leads to a better predic-
tion thanA., atk = 100. Compared to the naive approach, the error-bars obtained wopagating
the uncertainty are more informative. Although difficultitberpret, it is interesting to note how the
error-bars given by botA., andA,, vary, as they do not simply increase wittfwe could expect the
model to become more and more uncertain, as predictionsgat Aaare based on the same amount
of information as those at smal). Although, in general, the model’s uncertainty startgéasing
quite rapidly, it does not prevent the model from rectifyitgglf, leading to smaller error-bars as it

has more confidence into its estimates, at least for thigcpéat simulation.
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Figure 4.4 shows th&0-step (left) andi00-step (right) ahead predictive means with their con-
fidence intervals (note that in these plots each pisiat k-step ahead prediction). The upper plots
correspond to the predictive means given by the naive appraeith their2o error-bars (which are
so tight that one cannot distinguish them from the meansg mtddle and bottom plots correspond

to A,, and A., respectively, where the shaded area represents the ungertion.

k= 50-step ahead predictions k= 100-step ahead predictions

50 100 150 200 50 100 150 200

50 100 150 200 50 100 150 200

Figure 4.4:50-step (left) andl00-step (right) ahead predictions of the test time-seriest{coous
thin line). From top to bottom, moments given by the naiverapph and by the propagation of
uncertainty approach with moments computed approximatety exactly. The crosses indicate the
predictive means and the shaded regions correspond to tifiel@ace/uncertainty intervals. (Note
that each point is &-step ahead prediction).)

Again, the inadequacy of the naive approach is evident, &ritbr-bars that are not anymore rep-
resentative of the model’s uncertainty. Given that the axiprate moments were computed using
the Gaussian covariance function, these plots providetdipealitative comparison betweet,, and
A.... For the50-step-ahead predictions, the predictions look very simi@r & = 100, we can see
that A,, is generally more ‘cautious’, with larger error-bars thagn,. What we are interested in is
having variances that actually reflect the quality of théneesties (i.e. inaccurate mean predictions
should have large error-bars). This requirement beindladffor almost allk-step ahead predictions
(apart from around@0 and150 of the 100-step ahead predictions), we feel confident the approximate

moments lead to ‘sensible’ results.

For each100** point predicted, Figure 4.5 shows the corresponding squamer £, (left) and
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minus log-predictive density, (right). (For clarity, we omitEy given by the naive approach as it is

very large compared to that obtained fby, andA,,.)

E, for each 100-step ahead prediction 12- E, for each 100-step ahead prediction

1.4

150 200
Figure 4.5: Left: Squared error for eath0*” predicted point, for all three approaches. Right: Minus
log-predictive density, forl., andA,,.

This figure provides us with quantitative evidence for thevabconclusions. In terms afy,
which measures the quality of predictions by only compathmey estimate (predictive mean) to the
true value, there are points for which the naive approactloisggto be better. However, in terms
of E,, which accounts for the model uncertainty, the results arevbrse for the naive method than
when propagating the uncertainty. Also, this plot dematst thatd,,, is effectively comparable to

Ay

4.3.2 ExactGaussian approximatiomn Monte-Carlo

We now turn to comparing!.,, based on the exact moments obtained withinGlagissian approxi-

mation to M C, the Monte-Carlo approximation to the propagation of utagety algorithm.

For the Monte-Carlo approximation, we compute= 500 samples at each time step, resulting in
aN; x S x k matrix of predictive means (and similarly for the variarjceghereN, is the number of
starting points Z02). From+¢ + 1 to ¢ + 100, Figure 4.6 shows the predictive means givenM¢’,

their average (used to compute the losses, thick line),lantheans given by, (crosses). The right
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plot shows the corresponding uncertainties (error-bars).

Predictive means from t+1 to t+100 Predictive error—bars from t+1 to t+100

2 t+100 |

1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
Figure 4.6: Front + 1 to ¢ + 100: Predictive means (left) and error-bars (right) givenMy’ (500
samples and average, thick line) andAy; (crosses).

Until about60 steps ahead, the error-barsA, are similar to those of the Monte-Carlo approxi-
mation (as they include most of the samples). The plot of tediptive distributions at+ 10, ¢ + 60
andt + 100 on Figure 4.7 shows that up & steps ahead, the Gaussian approximation is close to
the true distribution. But as the number of steps incredkedyue distribution approximated By C

departs more and more from the Gaussian distribution assbmd....

Finally, Figure 4.8 shows the evolution of the average lesgith increasing: for all methods.
The losses fod C correspond to those computed using the average sample meéaaré&ance. These
results for the Monte-Carlo approximation might look sigimg, but one should keep in mind that es-
timating the quality of this approximation with these lasgenot representative (since the distribution

is not normal).

4.4 Summary

Assuming a one-step-ahead NAR model of the form

Y1 = f(Yt Y1, Yi—1) + €141,
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Figure 4.7: Predictive distribution given By C (continuous line) and as approximated by @&us-
sian approximatior{crosses), at = 10, 60, 100.
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Figure 4.8: Evolution of the average squared error (left) mrnus log-predictive density (on a log-
scale, right) as the number of steps ahead increasesiftorm00.)
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wheref(.) is modelled by a GP with zero-mean and covariance funefion.), we have shown how
one could derive the (approximate) predictive distributmf ;. x, where the uncertainty induced
by each successive predictiog (; t0 y;+x—1) iS being accounted for. At time+ k, using the re-
sults of the previous chapter, we can wrjte;, ~ N (m(upik, Bivk), vk, Birk)), Whereug
andX,, are the vector of expectations and covariance matrix of dmeesponding random input
Xitk = [Yiako1,Yirk—2s---Yirk—r] . In this setting, the mean vectar, ;. is formed of theL
delayed previously predicted means (output estimatesyangis the L x L covariance matrix with
the delayed predictive variances on its diagonal (asstiahcertainties) and the cross-covariances

between the delayed outputs (see Section 4.2.1).

On the Mackey-Glass chaotic system, we compare the iterfii-step-ahead prediction of the
time-series obtained using the propagation of uncertailggrithm within theGaussian approxima-
tion (as discussed above) and within the Monte-Carlo numergalaximation (see Section 4.2.2).
This experiment shows that, as the number of steps incretisedrue distribution (approximated
by Monte-Carlo) departs from the Gaussian assumption. tHetess, thé&aussian approximation

proves to be valid up to arour@d steps ahead.

When compared to a naive approach that predicts ahead irbynealy considering the output
estimate at each time-step (treating it as if it were the dhserved value), our approximate propaga-
tion of uncertainty algorithm shows indeed to improve thedistive performance of the model. The
naive method is consistently over-confident about its egtig) with associated uncertainties which
are no longer representative (very tight error-bars nobemassing the true values). On the other
hand, a model propagating the uncertainty as it proceedsldhdime leads to informative error-bars
on its estimates. Importantly, such a model does not onlytsg®edictive variance increasing with

the predictive harizon.



Chapter 5

Real-life applications

We now illustrate the modelling and forecasting of two rifalprocesses with the Gaussian Process
model and the methodology presented in Chapter 4, focusinbeoiterative:-step ahead predictions
within the Gaussian approximation For the gas-liquid separator process, the identificatioth®
NARX structure is performed using a subset-selection aaprobased on the Automatic Relevance
Determination tool and Occam’s razor principle. A test puge signal is then simulated by the
model, with and without propagation of the uncertainty. $aeond application is a pH neutralisation
process. After fitting a linear model, a GP is used to modetébaluals and with this ‘mixed model’,
we perform the iterativé-step-ahead prediction of a test pH signal, with and withiwapagation of
the uncertainty. The modified propagation of uncertainpodthm, accounting for the linear part, is
presented. Also, the iterative approach is compared toitbetanulti-step-ahead prediction method

where the model is tailored for predictihgsteps ahead.

5.1 Modelling the gas-liquid separator process

The gas-liquid separator process is part of a plant (Figute $tuated at the Jozef Stefan Institute
(Slovenia), which serves as a test bed for various contigiheering problems. In our case, the gas is
simply oxygen and the liquid is water. A pump feeds the gagemmixture into a separator where the
gas is separated from the water. The internal pressure isefh@rator then increases and a pressure

valve is opened to blow out the gas from the separator to tkieumét.

77
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Figure 5.1: The gas-liquid separator part of the proces# jlathe Jozef Stefan Institute (Slovenia).
A pump feeds the gas-water mixture into a reservoir whergé#sds separated from the water.

Figure 5.2 shows a schematic diagram of the identificatiarctre. The separator has two valves,
one at the top controlling the pressyreand one at the bottom, for controlling the water |dvéhside
the separator. The openness of the pressure and level eabvéxdicated by, anduy, respectively.
r, corresponds to the desired set-point for the water levethodigh the separator is a multivariate
process, with two inputs and two outputs, it is controlledivas distinct univariate processes, for
simplicity. The pressure is controlled by a predictive coler and the water level by a PI controller.
Since the pressure dynamics depend on the water level ghtifidation of these dynamics is achieved

by controlling the pressure valve and varying the waterlleve

u u P
P > Pyl ; >
Gas-liquid
separator
T~ Up h
§ 4?» Pl controller f——p| g -

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 5.2: Schematic representation of the identificatidhe pressure dynamics (provided by Bojan
Likar).
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In this application, we can distinguish between the quatita noise, due to the transformation
from continuous to digital signals, and the noise on the mmemsent devices (sensor noise). The
valve openness signal (a pseudo-random sequence witletdiderels) is noise-free, but the noise
on the water level signal is coloured (due to the contrgllas) therefore is that on the gas pressure
measurement. Typically, the overall noise is broadbanth wontinuous spectrum, but, in the range

of the process dynamics, the behaviour is similar to thatwhite noise.

5.1.1 Model selection

In the following, we denote by the measured gas pressure, that we wish to modéltheymeasured
(controlled) water level and by the pressure valve openness. Figure 5.3 shows the sigreisars

the identification and validation of the GP model.

Identification signals Validation signals
Neln 08,
br 0.6
o o
A 0.4
0.2 . . . 0.2 . . . . L4
5000 10000 15000 2000 4000 6000 8000 10000
1.5 T ; 1.5r T : . —
_1r -
0.5f 1
5000 10000 15000 2000 4000 6000 8000 10000
0.6 T T ; 0.6 . . . ! :
c)O.55* b 00.557
0.5¢ | 0.5
5000 10000 15000 2000 4000 6000 8000 10000

Figure 5.3: Identification (left) and validation (rightgsials for the modelling of the gas-liquid sepa-
rator. From top to bottom: pressure, water level and openokthe pressure valve, as a function of
time.

For modelling the pressure in the separator, we assume Hogviftg NARX (nonlinear auto-
regressive with exogeneous inputs) structure:
p(t) = f(p(t - 1)7 s ap(t - Ll)al(t - 1)7 cee al(t - LQ)ao(t - 1)7 s ,O(t - L3)) + € (51)

wherep(t) is the gas pressurat timet, [(t — 1) ando(t — 1) are the one-sample-delayed water

level and openness of the pressure valve, both used as lcomtubs, ande; is a white noise with

!In experiments, we subtract the sample mean from the peesamals.
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unknown variancey;. Using the identification signals, we then form thex D matrix of inputs
x = [p(t—1),...,p(t—Ly),1(t=1),...,1(t—Ls),0(t—1),...,0(t—L3)]", whereD = L+ Lo+ L3,
and theN x 1 vector of corresponding targets.

Although interactions are likely to exist between the dethyater level and the gas pressure in

the separator, we use a GP with Gaussian covariance furaibdiagonaW:

D
1
C(xi,x;) = vexp [—5 de(as;i - g;;i)Ql .
d=1

This means that there is one parametgifor each delayed variable. As in the Automatic Relevance
Determination tool, developed by Neal and MacKay for the d&&gn treatment of neural networks
(Neal, 1995; MacKay, 1994), these parameters give an itidicaf the relative importance of one
delayed variable over an other. A largg implies a large contribution of the input in directiahto

the covariance, which can then be interpreted as an ‘impbitgput for prediction. Also, we have
seen thaty, is inversely proportional to the horizontal scale of vaoiatin directiond. Therefore, a
largewy corresponds to rapid variations in the same direction, imrest with a smally,, associated
with a large correlation length and slow variation in thaedtion, implying that a change in the state
will have little effect on the corresponding outputs.

Note that unless all inputs are normalised so as to vary igdh& range, one should not compare
the weights between different variables: Thef one variable may be ‘small’, if compared to that
of another variable, but still be ‘large’ for the one varmlglonsidered. In that respect, we will only
compare thew’s relative to one variable only and denote qbﬁl the weight corresponding to thié

delayed variablé:, reflecting the relevance of the corresponding delayedbki

Since we do not know a priori the optimal number of delayedatdes, we perform a method
of subset selection and train GPs with different structitieat is with varying number of delayed
variables in the state). We first consider straightforward models, for whith= Ly, = L3 = L, for

decreasing values df:
o My, x=[p(t—1),p(t—2),p(t—3),1(t—1),1(t—2),1(t—3),0(t —1),0(t — 2),0(t — 3)]";

o My, x =[p(t —1),p(t — 2),1(t — 1),1(t — 2), 0t — 1), 0(t — 2)]T:
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o M3, x=[p(t—1),l(t—1),0(t—1)T.

We also test
o My, x=[p(t—1),I(t—1),I(t—3),0(t —1)]7, and
o Ms,x=[p(t—1),I(t—3),0(t—1)]7T,

the rationale behind the choice 84, and M5 being to keep only those reIevamﬁ, as found by
previous models (treating one variable at a time). Tablérlitates the Maximum Likelihood (ML)
estimates of they parameters corresponding to the delayed pressure variapearing in the differ-
ent models. Similarly, Tables 5.2 and 5.3 report the ML eatés of the parameters associated with

the delayed water level and valve openness respectively.

Table 5.1: ML estimate of the) parameters for the delayed pressure values for the diffenedels
(for clarity, we indicate the corresponding delayed vddakithin brackets).

Model wh wh wh
p(t = 3)) | p(t—2) | [plt — 1)
M, 0.0669 0.003 1.4702
M, 0.2379 1.5962
M; 9.4249
M, 0.8621
M; 2.4194

Table 5.2: ML estimate of the parameters corresponding to delayed values of the watel lev

Model wh wh wf
0= 3) | 11— 2)) | e - 1))
M, 0.0165 0.0022 0.0124
M, 0.0029 0.0009
Ms; 0.1392
M, 0.1897 0.1773
Ms 0.1337

Starting with the model/;, we see from Table 5.1 that most weight is assigned wittcorre-

sponding tap(t — 1), which is three orders of magnitude larger thethand two orders of magnitude
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Table 5.3: ML estimate of the parameters corresponding to delayed values of the valvenags.

Model wj w$ wy

[o(t =3)] | [o(t = 2)] | [o(t — 1)]
M; | 00764 | 2.0372 | 14.1725

M, 1.3142 | 11.1741
M, 45.9108
M, 29.2038
M; 48.2743

larger thanw®. Similarly, Table 5.2 shows that the weights associatet ifit— 1) andi(t — 3) are

of the same order, both one order of magnitude larger thawdight associated with{t — 2). As for
the pressurey(t — 1) is by far the most relevant delayed value of the valve openri€seping those
delayed variables whose associat€fis of the same order, we have the state structuré/ gfthat is

x = [p(t — 1),1(t — 1),1(t — 3),0(t — 1)]7. After training a GP using this structure, we find that the
most relevant delayed variable for the pressurgis- 1), that of the water level i§t — 3), and that

for the openness of the valved§t — 1). These delayed variables then form the stateMigr

We compare the models and rate them according to their predfmerformance. For each model,
we compute the one-step-ahead prediction of the identditatata and the corresponding average
squared erroy; and average negative log-predictive dendity Table 5.4 indicates the results ob-
tained, as well as the minus log-likelihodd®) of each model after learning.

Table 5.4: Negative log-likelihood and losses achievedamhanodel on the one-step ahead prediction
of the identification data.

M, Mo M;3 My Ms

L(O) (><103) —1.3565 —1.35568 —1.3423 —1.3469 —1.3389

E (><10_4) 4.6419 4.7662 4.9696 4.6757 4.9668
E, —2.4187 —2.4062 —2.3862 —2.4169 —2.3866

The model which has the highest probability (smallest miogslikelihood) is M; and the one
with lowest isM5. However, in terms of losses, from best to worst, we hifig My, Mo, My, Ms;.
The fact thatMy, which considersc = [p(t — 1),1(t — 1),1(t — 3),0(t — 1)]7, does better than

M;5 is an indication of the importance of the delayi¢tl— 1), as M5 ignores that delayed variable.
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Also, the poorer result oy, compared taVf;, can be explained by the fact that the model, with
x = [p(t—1),p(t—2),1(t—1),1(t —2),0(t —1),0(t —2)]T, is ‘forced’ to find a weighting between
I(t —1),I(t — 2) andp(t — 1), p(t — 2) althoughM; highlighted the greater significance l¢f — 3)

andp(t — 3) overl(t — 2) andp(t — 2) respectively.

If we compute the ratiogz}"* /EM and E)' /EJ"* (corresponding to the ratios of the train-
ing errors of the best model over that of the worst model), we (i9341 and1.0136 respectively,
meaning that model3/,; and M3 are actually quite similar. It can then be argued that thecame
of model complexity inAM; might not be worth the computational effort, in terms of jictide per-
formance of the model, when compared to a much simpler omeMik (following the Occam’s
razor principle, (Rasmussen and Ghahramani, 2001), fangoeimple models in the face of the com-
plexity/performance trade-off). Note if we artificially tstv zero the parameters corresponding to
p(t —3),p(t —2),I(t —3),I(t — 2),0(t — 3),0(t — 2), the minus log-likelihood of\/; increases to
—1.3326 x 103, making it less likely thardZs. This highlights the fact that simply ignoring the inputs
thought not to be relevant is not enough: The model has to-tmireed, to allow a re-weighting of
the remaining parameters.

In the light of these results, we choose to model the pressgral using the structure of model

Ms, that is

p(t) = flp(t = 1)1t =1),0(t = 1)) + & . (5.2)

Recall that, for this model, after training a GP with Gausstavariance function, we haue, =
2.4249, corresponding t@(t — 1), we = 0.1392 andws = 45.9108, corresponding té(¢ — 1) and

o(t — 1) respectively. Alsoy = 0.0748 and the estimated noise levekis= 0.0005.

5.1.2 Validation
One-step-ahead prediction

We first test the model on the one-step-ahead predictioneofveilidation’ pressure signal, which is
composed o0B36 points. Figure 5.4 (left) shows the mean predictions witkirtBo error-bars (to

which we have added the model’s estimate of the output n@isanceuv;, since we predict the noisy
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time-series). The corresponding average losses obtaiedd, a= 0.0010 and F; = —1.9106.

One-step ahead predictions log(predictive variances)
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Figure 5.4: One-step ahead prediction of the test seriadingt at: = 63 ms (thin line). Left: Mean
predictions (thick continuous line) with thele error-bars (dotted lines). Right: Plot of the predictive
variances only.

The plot of the log of the predictive variances (right) clgandicates that there are regions where
the model becomes less accurate and confident about ittwedj which correspond to regions
where the pressure varies slowly. This can be explained dyatt that the model was trained on
rapidly varying signals (see the identification signalsufrég5.3) and therefore does not deal very
well with slowly varying signals (explaining the greatercentainty and the constant over- or under-
shooting of the mean predictions in those regions). Alse tloeé peak aroungiD00, due to the rapid

changes of the pressure signal between two slowly varyigigms.

Simulation

Since we do not know a priori the maximum prediction horiztiva( is, the horizon up to which pre-
dictions are still ‘reasonably good’), we run a simulatidrire test set. In practice, the simulation, or
‘infinite-step’-ahead prediction, corresponds toMasteps ahead prediction, whekg is the length

of the test series.

For this simple model, the propagation of uncertainty wittie Gaussian approximations
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straightforward, as the water leviehnd the openness of the valwaignals are assumed to be known
up to NV, and there is only one delayed value of the pressure in tiie &@ad therefore no cross-
covariances to be computed as we predict ahead in time). isguve know the pressune up to

time ¢, we simply have
o t+1,%x:41 = [p(t),l(t),0(t)]": Computep(t + 1) ~ N (u(x¢11), 0% (X¢41) + 7).
o t+2,xi00=[p(t+1),1(t+1),0(t+1)]T ~ N(usy2,5¢12) with
Upro = [p(xesn, Ut + 1), 0t + 1)]T

and

0’2 (:Et+1) + Ut 0 0
Yipo = 0 00|,
0 0 0

provided we pass on the exd¢t + 1) ando(t + 1) to the model.

Computep(t + 2) ~ ./\f(m(uH_Q, 2t+2), ’U(uH_Q, 2t+2) + Ut).

o 143, X3 = [p(t—|-2), l(t+2), 0(t‘|—2)]T ~ N(ut+3,2t+3), Where’ut+3 = [m(ut+2,2t+2), l(t—i—
2),0(t +2)]T and

v(ug2,Beyo) +v; 0 0
i3 = 0 0 0
0 0 0

Computep(t + 3) ~ N (m(u13,8:43), v(u43,813) + vy).

e ...Upto the end of the test set.

In this experiment, the mean and variance at each time-séepoaputed using the exact equations

corresponding to the Gaussian covariance functibn ).

The simulation (0B36-step-ahead prediction) of the test signal is shown in eigus. We com-

pare the simulation with propagation of uncertainty.{, as explained above) to the naive simulation
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Simulation: Naive method Simulation: Propagation of uncertainty

n

63 2000 4000 6000 8000 10000 63 2000 4000 6000 8000 10000
t t

Figure 5.5: Simulation of the test pressure signal (thie)linom¢ = 63 ms. Mean predictions(thick
continuous line) with their associated error-bars (dofiteek), given by the naive approach (left) and
by with propagation of the uncertainty (right).

(N) that does not account for the uncertainty induced by eacbessive prediction. The left plot
shows the predictions given By and the right one those given bl.,.

The mean predictions given by and A., are extremely similar (the difference between the two
is of the orderl0~*). Again, we can notice the under- and over-shooting of thelet® estimates
in slowly varying areas, most probably due to the fact thatrttodel was trained using much more
rapidly varying signals. Although not quite clear from thgsots, the predictive variances (standard
deviations squared) obtained with., show more variability than those obtained with although
both are in the same range. For this simulation, we h&fe = E7' = 0.0014, £} = —1.5289
and E5* = —1.6463, where the upper-scrigt’ refers toA., and™ to N. So, in terms of negative

log-predictive density, the propagation of uncertaintgslbetter than the naive approach.

The simulation was started from the first point of the test fegtwhich the one-step ahead pre-
diction errors areZio = 6.2501 x 10~* and EY = —2.2555 (where® indicates the first point, that
is att = 63). We would expect a link between the point at which we startdimulation, the average
performance of the model and the variation between naivgeoghgation of uncertainty approaches.
That is, starting from a ‘good’ point (a point for which theesatep ahead predictive losses are good),
we would expect the average losses (over the simulatiorg teekier than those obtained when start-

ing from a ‘bad’ point, and the two methods to differ only slily, the difference increasing if the
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starting point is one at which the model is already unsuressit® prediction.

In order to validate our hypothesis, we ran the followingexxpents:

e Sy: Start the simulation at; = 5087, corresponding to the point at which the one-step-ahead

losses are the worst (that#g' = 0.0473 andE}' = 40.3721);

e S, Start the simulation at, = 2847, corresponding to the best one-step-ahead squared error,

that isE!? = 7.6528 x 10! (for this point, we havel.? = —2.8686);

e S3: Start the simulation at = 767, the point corresponding to the best one-step-ahead wegati

log-predictive density, that iB% = —2.8709 (E!* = 2.0305 x 1077 for this point).

The fact that the best one-step-ahead squared error antivedgg-predictive density do not coincide

with the same point highlights the difference between thesaneasures of ‘goodness’ of predictions.
Recall that, whereas the squared error loss is only a fumcfithe estimate (the predictive mean), the
negative log-predictive density trades off the estimai# the uncertainty attached to it (an accurate

estimate with large variance will have a larger than a rougher estimate with small variance).

In terms of averagesquared error, we obtaili? = E¢* = 0.002 for S; andE? = E{® = 0.0019
for Sy. For Ss, we haveE} = 0.0013 and Ef* = 0.0012. Table 5.5 reports the value of the average
negative log-predictive density, computed by, and N, for each simulation. To assess further the
difference between the two methods, we compute the ratibeotorresponding losses: The closer

this ratio is to one, the more similar are the two methods.

From this table, we conclude thdi,, does consistently better than the naive approach, and, as
expected, the performance of the simulation is indeed t&ifeby the starting point, if only slightly
(better losses fafy andS; than forSy). Also, the difference between the two methods is greaterwh

starting at a ‘bad’ point than at a ‘good’ one (6, the ratioES” / EZ is further from one than that

Note thatS; corresponds to the shortest simulation (wit9 points), whereas, andS; imply the prediction o249
and314 points respectively. In order to compare fairly the losstsvigen the simulations and average over the same number
of points, we stopped th&, andS; simulations afted 79 steps.
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Table 5.5: Average negative log-predictive density fordiferent simulations.

Simulation E3 ES® ES*/EY
Si —-0.9917 —-1.1515 | 1.1611
So —1.1226 —1.2886 | 1.1479
Ss3 —1.6931 -1.8 1.0631

for S, andS3), showing that the propagation of uncertainty copes betittr the model’s uncertainty
than does the naive method, which simply ignores it.

The above reasoning can in fact be generalised to any patnh@tessarily the starting point of
a simulation): In general, once the model has passed thratigéd’ point, we expect the following
predictions to be less accurate, as the model becomes liekderdrom then on, with the two methods

possibly diverging (although for some systems the modelaaoh’ the state again).

For this application in particular, the propagation of utaiaty algorithm does not greatly im-
prove the predictions: Although the system is dynamic amdinear, the GP, using the simple NARX
structure with three delayed variables, could capture yimauwhics of the model well enough to make

good predictions over the whole length of the test signal.

5.2 The pH neutralisation process

We now turn to the more challenging problem of modelling alimear pH neutralisation process, as

depicted in Figure 5.6.

The process consists of an acid stred@p)( a buffer stream@,) and a base streand{) that are
mixed in a tank (T). The effluent pH is the measured variable and, in this stitidy,controlled by
manipulating the base flow rate with a flow control valve. Tigial dynamic system is well-known
for its complexity as it contains various nonlinear elerseM/e refer to (Henson and Seborg, 1994)

for more details.

After investigation into the identification of the proceg®¢€ijan et al., 2002), it was found that
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Figure 5.6: Schematic diagram of the pH neutralisation ggsc

>

the following NARX structure was suitalfiéo model the pH signaj, given the control input:

y(t) = fly(t—=1),...,y(t — L),u(t —1),...,u(t — L)), (5.3)

with L = 8. Figure 5.7 shows portions of the signals used for identiiogleft) and validation (right)

of the model.
12 Identification Signals 12 Validation Signals
101 1 101
> 8 .8
6 6r
4 4
2 L L L L 2 L L L L
2 2.2 2.4 2.6 2.8 3 2 2.2 2.4 ¢ 2.6 2.8 3
t x 10 x 10*
30+ 1 30+ b
> 20t q s 20y
10f ’M 100 W\ i
0 L L L L 0 L L L
2 2.2 2.4 2.6 2.8 3 2 2.2 2.4 2.6 2.8 3
t x 10" t x10*

Figure 5.7: Portions of the real signals used for identifacaleft) and validation (right) of the model.
The upper plots correspond to the measured pH as a functiimefind the lower ones to the control
input.

3That is in terms of trade-off between model complexity anerage error on the training set.
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5.2.1 ‘Mixed-model’ identification

Since the signals are very longp052 points), and the GP, as we usé itannot handle such a large
data-set, we sub-sample the identification signals, tiaguih a N x D matrix of training inputs,

whereN = 1226 andD = 16, and the correspondiny x 1 vector of target pH values.

Although the process is nonlinear, a great deal of variaticthe pH signal can be explained by a
linear model and we decide to first fit a linear model to the daththen model the residuals with a

GP (again with Gaussian covariance function). The clakhiear model is

2041

u(t) = Y w4t (5.4)

d=1

wherewld, ford = 1...2L + 1, are the parameters of the linear modzqaj“(+1 corresponding to
the bias) anck™ () = [y(t — 1),...,y(t — L),u(t — 1),...,u(t — L), 1] is the augmented input
(the unit entry taking care of the bias). The Least Squar&) (lbear parameters are then given by
wiS = A7'b, whereA%® = YV 2dz¢ andb? = YV, yizd, ford,e = 1...2L + 1. For this
linear model, the average squared error on the training 8di(11. Figure 5.8 shows a portion of the

residualsy(t) — y;(t) wherey,(t) = wlLSTx+(t).

pH residuals

0.25f
0.2r
0.15f
0.1r

> 0.05+

—-0.05
-0.1

-0.15¢

4 45 5 t 55 6
x 10"

Figure 5.8: Plot of a subset of the residuals, after fittingpedr model.

“Refer to Chapter 2, Section 2.3.2.
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Assuming

Yop(t) = fly(t—1),...,y(t — L),u(t —1),...,u(t— L)), (5.5)

whereyg,(t) = y(t) — yi(t), we model these residuals with a GP with Gaussian covariamotion.
For a givenx(t), the GP then provides us with the predictive distributigp() ~ N (u(x(t)), o2 (x(t))),

whereyu(x(t)) corresponds to the estimate of the residual at time

Blending the linear and the GP models together, the estinfate system’s outpuj(t) is given
by p(x(t)) + yi(t), with uncertainty+20(x(¢)). For this ‘mixed model’, the training errors (i.e.
average errors on the one-step-ahead predictions of timntyaset) areF; = 1.1838 x 10~7 and
FEy = —5.6479 (if we had fitted a GP directly onto the original data, we woliéle obtaineds; =
3.3420 x 107% and By = —4.6854). The training errors of the linear-GP model are then onerord
of magnitude better than those obtained for the GP aloneur&i§.9 shows a portion of the one-
step-ahead prediction of the validation pH signal (whichtams15952 points). The test errors are
E; =3.9396 x 10~* and E, = —3.3816 (compared ta; = 0.0022 andE> = —2.9150 for the GP

alone).

x 1072 One-step ahead predictive variances

One-step ahead predictive means

11

x 10*

Figure 5.9: One-step-ahead prediction of the validatiorsjgiial (continuous line) from= 2to¢ =
2.4 x 10* ms with the model's mean predictions (dotted line). Thetrjgbt shows the corresponding
predictive variances.
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5.2.2 k-step ahead predictions with the linear model

If we now wish to make multiple-step-ahead predictions arap@gate the uncertainty, we need to
update the algorithm presented in Section 4.2.1 of the puevthapter, to account for the linear part

at each time-step.

Modified algorithm

For simplicity, we denote by, the input at time+ k. At each time-step 1.’ refers to the contribution

of the linear model an®"’ to that of the GP. The algorithm is now as follows:
o t+1,x1 =[y(t),...,y(t — L),u(t),...,u(t — L)
1 oy(t+1)= wlLSTxl+ (wherex] is the augmented input vector)
2. ygp(t +1) ~ N(pgp(x1), 05, (x1))
=yt +1) =yt +1) +ygp(t+ 1) ~ N(m(x1),v(x1)) with
m(x1) = pgp(x1) + it +1),  v(x1) = 05,(x1)
o t+2,xy=[y(t+1),y(t),...,yt+1 L), u(t+1),...,ut+1—-L)] ~ N(ug,Bs) with
w = [m(x1),y(t),...,y(t+1—L),u(t+1),...,ut+1-L)]T,
andXi! = v(x;) and zero elsewhere,

1. yl(t+2) NN(ml(UQ,EQ),Ul(UQ,EQ))

2. ygp(t +2) ~ N(mgp(UQ,EQ)avgp(u2,22))
=yt +2) =yt +2) + ygp(t +2) ~ N(m(uz,X2),v(uz, X2)) with

m(uz,X2) = my(ug, V) + mgp(uz, Xa)

v(ug, o) = wv(ug, L) + vgp(ug,Xo) + 2Cov(y(t + 2), ygp(t + 2)]

o t+3,x3=[y(t+2),y(t+1),y(t),...,y(t+2—L),u(t+2),...,u(t+2—L)]T ~ N(u3z,X3)

u3 = [m(ug, o), m(x1),y(t),...,yt +2 - L), u(t +2),...,u(t+2 - L)]"
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v(ug, X9) Covly(t+2),y(t+1)] 0 . 0

Covy(t +1),y(t + 2)] v(x1) 0 ... 0
¥y = 0 0 0 ... 0]
i 0 0 0 ... 0

1. yl(t + 3) ~ N(ml(ug,Eg), ’Ul(ug,zg))

2. Ygp(t + 3) ~ N (mgp(uz, B3),vgp(us, X3))
= y(t +3) ~ N(m(u3,23),v(u3, X3)).
e ...Up to the desired horizon.

At each time-step, the predictive mean,(.) and variancey,(.) given by the GP are computed ex-

actly (for the Gaussian kernel) using equations (3.39) anti}.

We now need to compute,(.) andw,(.), the predictive mean and variance given by the linear
model, the cross-covariance between the linear and the GRImarising in the predictive variance

of the output at each time-step, and the cross-covariamges tef the input covariance matrix.

Linear part In general, at time-step, given the inputx;, ~ N (uy,X;), it is straightforward that

the linear contributiony; (¢ + k) has mean and variance
T
ml(uk,Ek) = WlLS u;'

LS—

rs-T
w, Ypw,

v(ug, Bg) =

Wherewfs ~ is the vector of parameters without the bias term aﬁds the augmented input vector.

Output distribution At ¢ + k, the ‘mixed model’ output ig/(t + k) = ygp(t + k) + yi(t + k) ~
N(m(uk, Ek), v(uk, Ek)) with mean

m(ug, Bg) = mgp(ug, k) + my(ug, B)
and variance

v(ug, Bi) = vgp(ug, Bi) + vy(ug, Bg) + 2Cov[ygp(t + k), yi(t + k)] .
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We haveCov[yg,(t + k), yi(t + k)] = Elygp(t + k)it + k)] — Elygp(t + B)Elyi(t + k)], where

Elygp(t + k)] = mgp(ug, ) and Ely, (t + k)] = my(ug, E). We therefore need to compute
Blup(t + -+ 1) = 3 v P [0 xplan)x

wherex; denotes theé'” training case. As already seen in Chapter 4, Section 4ldslintegral can
be evaluated exactly or approximately, depending on tha fufrthe covariance function. In the case

of the Gaussian kernel used in this experiment, we can tiretcite

Cov[ygp(t + k), yi(t + k)] Z BiC (g, x;) Coorr (g, ;) [(I = W(W + ) Hx;
—Ek(W + Ek) uk] WZLS

Input distribution ~ Therefore, attime + k, the inputxy = [y(t + &k —1),...,y(t+k — L), u(t +

k—1),...,u(t+k— L)]isa2L x 1 random vector, normally distributed, with mean
u, = [m(uk—lazk—l)a s ,m(llk_L,Ek_L),U(t +k - 1)7 s 7U(t + k- L)]

and covariance matriX; with the delayed variancegu;_;, ¥;_;) on the firstZ diagonal elements
(the remaining elements + 1,...,2L corresponding to the delayed control input being zero). As
seen in Section 4.2.1, computing the cross-covariancegbetthe delayed outputs at each time-step
corresponds to computin@ov|y(t + k — 1), x|, discarding the last element ®f_;. That is, with

ylt+k—0)=ypt+k—10)+ylt+k-1),
Covly(t +k —1),x_1] = Covlyg(t + k — 1), x5_] + Cov]y(t + k — 1), xx_(] ,

where we already knoWov[y,,(t+k —1), x;_;] (given by equation (4.8) for the Gaussian covariance

function). For the linear part, we simply have

COV[yl(t + k’ — l)axk—l] = E[yl(t + k’ — l)Xk_l] — E[yl(t + k,' — l)}E[Xk—l]
_T T
= WlML [uk—lug—l + 1] - WZML uk_luf_l

_T
= Wl]WL Ekfl .
We are now going to apply these results to #lestep ahead prediction of the test pH signal.

Furthermore, we compare the predictive performance of tdrative method to that of the direct

model, trained to predidt-steps ahead (where again we consider a linear model firdshandca GP).
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Results

We performk-step-ahead predictions, whete= 20, starting at226 points, taken at random from
the test set. Figure 5.10 shows the iterafivetep-ahead predictive means and Figure 5.11 shows the
predictive variances, fot = 5,10, 15,20, obtained for the naive approacét (using the ‘certainty
principle’ on the estimates at each time-step) and the jgietjEn of uncertaintyd.,. (using the exact

moments). Note that no time index is given because each igairit-step ahead prediction.

Means at k= 5 steps ahead Means at k= 10 steps ahead
10F ] ! . ! j j % ] " ! ! ! !
z pd
6 6l
4t 4r |
1 40 80 120 160 200 1 40 80 120 160 200
10, ;
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5 5 8
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1 40 80 120 160 200 1 40 80 120 160 200
Means at k= 15 steps ahead Means at k= 20 steps ahead
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z | z
6L
47 .
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10t 10
8 8f Ll
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4 | 4‘
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Figure 5.10: True pH values (continuous line) and predictiveans (dotted lines) &tsteps ahead
(note that each point is & step ahead prediction, so that the x-axis simply indicatessample
number, not time). In each figure, the top plots indicate tleams given by the naive approach and
the bottom ones those obtained when propagating the umtgrta

From Figure 5.10, we see that thestep-ahead predictive means givenMyand A.,, are similar

but start differing fromk = 10. Around the40'” 10-step-ahead prediction (indicated by an arrow), the
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3 Variances at k= 5 steps ahead -3 Variances at k= 10 steps ahead
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Figure 5.11:k-step-ahead predictive variances, for different valuek.dbame legend as for Figure
5.10.



5.2. THE PH NEUTRALISATION PROCESS 97

naive approach overshoots more th&y,, and undershoots around thg0*" prediction (see arrow).
The same behaviour occurs for= 15 andk = 20, around the20%" point. In terms of variances, we
can note that, whatever the prediction horizon is, the ptedivariances given by the naive approach
are always very small. Also, the variances givendyy are one order of magnitude different between
k = 5 andk = 10, but stay in the same range fbr> 10 (there is no ‘blowing up effect’ for large
k). Regardless of the amplitude of the variances, we seeltbahbdels do not necessarily agree on
which points are ‘certain’ and which ones are not (e.gxfer 5, the 10" prediction is very uncertain

according taN but not for A, similarly for the140* 15-step ahead prediction).

Let us now look more closely at the predictions from on@Q@esteps ahead for different starting
points. LetM be the point at which the variance given by the exact methal) ateps ahead is
maximum andm the point at which it is minimum. Figure 5.12 shows the prédit from one to
k = 20 steps ahead, starting &f andm (the crosses indicating the moments givendy and the
dots those given by,,). From these plots, we see that, starting framthe mean predictions given
by the two methods are really good. Interestingly, the vaea given byA., start decreasing aftér
steps ahead. When starting frai, as the mean predictions get worse, the uncertainty of trdemo

A, also increases, which is not the case for the naive model.

The values of the average errors given by Table 5.6 confirmreaarks concerning the iterative

predictions, with and without propagation of the uncettain

Table 5.6: Average squared ertBy and negative log-predictive densiy, for different values ofk.

k=15 k=10 k=15 k=20
Ey Ey Eq Ey Ey Ey Eq Ey
N | 0.0275 105 0.1187 725 0.1880 2096 0.2243 13652
Az || 0.0263 —1.1315 | 0.0899 —0.3946 | 0.1005  0.0028 | 0.1233 0.2053

| D [0.0562 —0.0194 | 0.0481  0.1431 [ 0.0456 —0.0523 | 0.0554 0.0184 |

Ask increasesd., becomes one order of magnitude better tharin terms ofFE;. The very large
values forEs obtained for the naive approach can be explained by the liatt sk increases, the

model’s uncertainty stays small, even though the estinategaot accurate. We also report the losses
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Predictive means

Predictive variances (log scale)
11 ; ‘ : : 1
10 : . . .
10, . 4 ++++++++++
. + T . 100 4
9r : . "
8 107 o
Tr _
107 X
6,
-3 +
10 ¢ . ]
5 M+20
M
4 L L 1 L ]-O_4 + L L ) 1 1
215 220 225 230 235 240 215 220 225 230 235 240
Predictive means Predictive variances (log—scale)
7.8 . ! -2
10 : . . .
7.67 - +++++++++++++
m . + T
7.4 {00 *
7.2r 1 m+20
-4
10 £ ¢
77 ¢+ i m
6.8} A
m+20 10
6.6 b
6.4 | | | 1 10’6 . . Lt
225 230 235 240 245 250 225 230 235 240 245 250

Figure 5.12: Top plots: pH signal (continuous line) frdnto 20 steps ahead, starting at poihf,

for which the variance &0 steps ahead is maximum. The crosses correspond to the niefins (
and variances (right) obtained when propagating the usiogytand the dots to the naive approach.
Bottom plots: Same as above, startingnat the point at which the variance ab steps ahead is
minimum.
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obtained when training a model to directly prediesteps-aheadl{). We can see that for relatively
short prediction horizons, the iterative method with pggtéon of uncertainty performs better than
the direct method, which is due to the accuracy of the one-ahead model. But as the predictive
horizon grows larger, the direct model shows a better ptiediperformance. Although the number
of missing data increases wikh for this particular example, the direct model does not iffeulties

to learn the mapping as the number of data points is very A2 training cases are available to

learn the20-step-ahead maodel, for which the input dimensioBss

5.3 Concluding remarks

In this chapter, we have highlighted how the GP model couleftaetively used to model and forecast
real dynamic systems. In particular, for the gas-liquidcpss, we have seen how the parameters of
the covariance function could be used to identify the stmaciof the NARX model. We simply
would like to recall that the ARD tool should be used with damt Only those parameters associated
with the same (delayed) variables should be compared, hpameters between them, as different
variables are likely to vary in different ranges. Also, slynpetting to zero the parameters of less
relevant variables is not enough: A model with the corredpan simpler structure (i.e. ignoring
those variables) should be re-trained, as we saw that théhidod of M; is less than that of\fs,

when setting to zero those parameterddin corresponding to the variables not accounted fav/in

Another important remark is that, the intuitive idea that@del trained on a ‘rich’ rapidly varying
signal should automatically generalise well on ‘simplégnsls is not true, as we could see for the
gas-liquid system. The model trained on rapidly varyingnalg has mean predictions over- or under-
shooting in those regions where the test signal varies gldvdrtunately, this is reflected in the larger
predictive variances, indicating that the model is lesdident in its estimates.

The comparison of the predictions obtained with and withpsapagation of the uncertainty indi-
cate that, in general, propagating the uncertainty doesowvethe multiple-step-ahead predictions, if
only with respect to the predictive variances. Also, if thedal passes through a ‘new’ region, induc-
ing a larger predictive variance for the corresponding oistpa model propagating the uncertainty is

more likely to be able to ‘catch’ the state again and ‘retiifypredictions afterwards.
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At last, we have shown how a linear model could be eleganttieddand accounted for in the

k-step-ahead iterative prediction with propagation of theautainty.

Likewise, we are now going to show how derivative observetioan be easily accounted for in

the model, and then extend the propagation of uncertaigtyri#hm in this case.



Chapter 6

Including derivative observations and

allowing cautious control

In this chapter, we present the methodology for using Gans3iocesses, and the approach we have
developed to account for the uncertainty, in two importamligations. In Section 6.1, we first show
how derivative observations can be incorporated into a GBefnwhere function observations are
already available, which is of particular importance inieegring applications, for the identification
of nonlinear dynamic systems from experimental data. Aemtixedtraining set, we then derive the
expressions of the predictive mean and variance of a fumctitput corresponding to a noisy input,
within the Gaussian approximationThe second part of this chapter is devoted to the use of @auss
Processes in a control context. Of particular interesttaétodel Predictive Control framework and
adaptive controllers, where the controllers present aioas’ feature, arising in an objective function

that does not disregard the model’s uncertainty.

6.1 Incorporating derivative observations in a GP model

Accounting for derivative observations, either directlgasured or obtained from linearisations, in
the GP framework has been addressed in (Solak et al., 2063helfollowing, we first explicitly
write down the expressions of the predictive mean and veeiaf a function output, accounting for

the mixednature of the training set. We then use these results toed#révmean and variance of the

101
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output corresponding to a noisy test input.

6.1.1 Derivative process

Let us first consider the Gaussian Procgss f(x) with a one-dimensional argument with mean

functionm, (x) and covariance functio@'y (z;, z;).

It can be shown (Pugachev, 1967) that the derivative proté¢ss = 3](;(;3) , that we denote by!,

is also a Gaussian Process with mean and covariance fumespectively given by

_ omy(a) PG,
my1(z) = Ea Cyr(zi,z5) = mm; (6.1)

Also, the cross-covariance function between the two psE®Rs

(i, 3y) = 2@ ) 6.2)

G 0z

Yy

In the general case where the argumerig D-dimensional, we will consider one derivative at a
time, denoting by, the first derivative of; in directiond, i.e. y? = %(dx). In this case, the covariance

function ofy? is
820y(xz~, Xj)
Cyd(xiaxj) = W ) (6.3)

the cross-covariance betweghandy is

0C, (x;,%;)
Cyya (Xi, xj) = W , (6.4)
J
and that betweep? and, sayy® is
02Cy(xi,%;)
Caye (xi, %) = W : (6.5)
? J
We refer to Appendix A for operations on random functions.
6.1.2 Output predictive distribution for a new input
Consider the case where we haVeobservations of the function output,, . .., yx, andN, observa-
tions of the first derivativkin directiond, 3¢, . . . ,y?vd so that we allow the number of points to differ

1The derivative observations need not be taken at the sarutsiap the function observations.
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from one derivativé to another. Note that, in the following, we make the simpiificn of considering

noise-free function and derivative observations.

We refer to such a data set amiedtraining set. The complete vector of observations is then

d d D D 1T
t:[yl---yNay%a"'ay]le"'ayla"'7yNda"'ay1a"'ayND]

’

and we can partition the data covariance maKixaccordingly, into blocks corresponding to the

function observations only, the derivative observatiomd the cross-covariances between them:

K, ... Kyyd ... Kny
K =
Kydy Kydyd KydyD ;
i KyDy ... KyDyd ... KyDyD ]

whereK ,, denotes théV x N matrix of covariances between function observatidiig,(= Cov[y;, ],
fori,j =1...N), K, the N x Ny matrix of covariances between function observations anstaie
tives in directiond (K@%d = Covly;, y?, fori=1...N,j =1... Ny), K a,a the Ny x Ny matrix of
covariances between derivative observations in dire(ztioﬁ;{;yd = Cov[ys, y]d-], fori,j =1...Ny)
and, in generaIKydye the N; x N, matrix of covariances between derivative observationsriece
tion d and directiore (K;ﬂye = Cov[yf,y;r], fori =1...Ng4,j=1...N.andd,e =1...D). All
these covariances can be readily computed for a given em@ifunction, using the formulae given

in6.1.1.

Given the full vector of observations and the covariancerimnd{, the learning can be achieved
as in Section 2.3.2 of Chapter 2, by minimisidg®) = — log[p(t|X)], whereX is the matrix of
the inputs at which function and derivative observatioresrande and® are the parameters of the
covariance function (see (Solak et al., 2003)). Note trantlodel need not be trained on the full data
set, as the training of the model can be achieved using ttaifumobservations only. Providing the

derivative observations would not affect the model (in ®mwh carrying more information likely to

2By which we understand the first derivative in a given dimensi
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change the value of the parameters learnt), they could thewltbed to the model, or possibly be used
in place of some function observations for making predittjathe latter enabling a speed-up in the

computations.

Given a new inpuk, as in the ‘usual’ GP case (Chapter 2, Section 2.3.3), thaiginee distribu-
tion of the corresponding function poigt= f(x) is Gaussian, with mean and variance respectively

given by
p(x) = ZﬂiC(X,Xi) (6.6)
o*(x) = Clxx) =Y Kj'Clxx)Cx %), (6.7)

where =K 'tandi,j =1...(N + Ny +--- + Np).

When computing the covariances between the function outipilte newx and the observations

at the training points, we can distinguish between functiod derivative observations and write
D Ny

ZIBZCOV y yz ’|' Z ZBZCOV y yz ) (68)
d=1 i=1
that is
N D Ny
p(x) =Y BiCy(x,xi) + > Y BiCyya(x,x;) (6.9)
=1 d=1 =1
for the mean, and similarly
D Ng N
o*(x) =Cov[y,y] — Z Kj;'Covly, 4ilCovly,y;] + > Y > K;;'Covly, yf|Covly, yf]
i,j=1 d,e=11i=1 j=1

D N Ny
+2) ) Y K;;'Covly. yilCovly. yfl|
d=1 i=1 j=1

(6.10)
or
D Nd Ne
o?(x) = Z K, 1C (x,%;)Cy(x, x5) Z ZZK 1C (x, %) Cyye (x,x5)
i,j=1 de=1i=1 j=1

D N Ny
—i-ZZ Z Kiglcy(x,xi)nyd (x,x;)
d—1i=1 j—1

(6.11)
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for the variance.

Let
N
jy(x) = ZIBiCy(XaXi) (6.12)
=1 N
op(x) = Cy(x,x) = Y K;;'Cy(x,%;)Cy(x,%;) (6.13)

ij=1

be the mean and variance relative to the function obsenstaly,

Ny
Hyd (X) = Z /BZ nyd (Xa Xi) (614)
i=1
Nd Ne
Uzdye (x) = - Z Z Kiglcyyd (3¢, %) Cyye (%, %) (6.15)

i=1 j=1
the moments relative to the derivative observations, and

N Ny
020(x) = =SS K;Cy(x,%i)Cpa(x.%;) (6.16)

i=1 j=1
the part accounting for the cross-covariance betweenifimeind derivative observations. The pre-

dictive mean and variance can then be written

D

px) = (%) + > pya(x) (6.17)
>

o’ (x) = op(X)+ Y on (X)+2) 00 (%), (6.18)
d,e=1 d=1

reflecting the ‘mixed’ nature of the data set.

6.1.3 Prediction at a noisy input

We now turn to the problem of making a prediction given a n@isyandomx ~ Ny (u, X,). We do
so in theGaussian approximatiopresented in Chapter 3, Section 3.2.2. That is, we only ctertpe
mean and variance of the (non-Gaussian) predictive digioifb. As seen then, these two moments

are given by

m(w,) = Belu(x)] (6.19)

v(0,8;) = Ex[o”(x)] + Ex[p(x)’] — m(u,5,)?, (6.20)
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wherep(x) ando?(x) are now given by equations (6.17) and (6.18) respectively.

Replacingu(x) by its expression, we have

D

= Ex[py ()] + ) Bxlpya(x)] .
d=1

D

Hy(x)'+'§£:/lyd(x)

d=1

m(u,X;) = Fx

Letmy(u, ;) = Ex[py(x)] andm,a(u,E;) = Ex[p,q(x)]. The predictive mean corresponding to

the noisyx can be written

D
m(u,By) = my(u,5,) + Y mya(u,E,) (6.21)
d=1

which corresponds to the sum of the ‘noisy’ predictive medremvonly function observations are
available (which is the case derived in Chapter 3), and thaesponding to the derivative observa-

tions in each dimension.

We can work out a similar expression for the variance. Rémdae? (x) by its expression, we first

have
D D
Eglo®(x)] = Ex |ol(x)+ Oraye (%) +2Y 07 4(x)
d,e=1 d=1
D D
= BEo(x)]+Ex | > aydye(x)] +2) " Exo) 4(x)]
d,e=1 d=1
Also,
D D 2
Eu(x)’] = By |py(%) + 20y (x) Y prya(x) + <Zuyd(><)) ]
d=1 d=1

Wit B | (S22 0y 0)) | = S Bl e ()
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Putting the different terms together, we have

D D
v(W, ;) = Bxlog(®X)]+ Y Bxlonu, (x)]+2 Bxlog(x)] + Ex[uy,(x)’]
d=1

d,e=1
D
+ Z Bl (%) e (%)] 423 By (%) 10 (%)) = m(u, 54)?
d,e=1 d=1
where
D 2 D
m(w,Bg)? = Exy (%) + Bx |3 pya(x) | +2Y " Bxlpy (%)) Exlpya(x)]
d=1 d=1

2 -
and By [0, j1,0(x)| = 8, Exlity (x)) Exlpye (x). Letting

vy(u,B;) = EX[US(X)} + EX[Ny(X)Q} - Ex[ﬂy(x)]Q (6.22)
Vyye (0, 85) = Bx[07a,c (%)] + Ex[piye (30)pye (x)] = Bx[ppya (%)) Bx[pye (%)) (6.23)
Vyyt (W, 25) = Bx[o] 4 (%)] + Bx[py (%) prya (x)] = Exc[pay (%) Bxc [0 (%)) (6.24)

we can finally write

v(u,X;) = vy(u,X,) Z’U c(u,X;) +2ZUW (u,X2;) . (6.25)
d,e=1

Due to the mixed nature of the training set, the new predictariance is not only the sum of the new

variances but also accounts for cross-terms.

Case of the Gaussian kernel

As in Chapter 3, Section 3.4.2, we can computertbisy predictive mean and variance exactly. We

find (see Appendix C, Section C.1 for the detailed calcufetjo

m(u,X;) ZﬂZCG u,X; ) Ceorr (U, x;) (1 + de o — x; ) (6.26)
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wherecf is thed" component of W + £.1) 1 (W !x; + ¥, 'u), and

D
v(u,X;) = Cg(u,u) + Z(,Bifa’j - K;l) 1+ Z wWaWe(Coe + c%cfj — x?cgj - xzdcfj + xfx;z)

,J d,e=1
D
+2) " wy(c; — 29) | Ca(u,%:)Ca (. %;)Ceorry (1, %) — my (0, By)?
d=1
D D
= mya(u, ) mye (1, 8;) — 2my (0, 85) Y - mya(u, E,)
d,e=1 d=1

(6.27)

_ -1
whereCy, is the(d, e) entry of C = ((%) T4 2;1) andcf; thed'" element of

C ()" 2P 5, ).

If we now wish to use this model for the modelling of a nonlindgnamic system and perform
an iterativek-step ahead prediction with propagation of the uncertawty can simply apply the
algorithm presented in Chapter 4, Section 4.2.1. Only ia ti@se is the input covariance matrix
slightly changed as we need to account for the derivativerbions when computing the cross-
covariance terms. The new expressions of these terms caube in Appendix C, Subsection C.1.3.

We refer to (Kocijan et al., 2004b) for numerical results.

6.2 GPsin control

We now turn to the use of Gaussian Processes for the contrardinear dynamic systems. In the
control community, nonlinear control has mostly been baseadhonlinear parametric models (e.qg.
neural networks), and it is only recently that GPs have aggokean the control scene (Murray-Smith
et al., 1999; Leith et al., 2000).

Nonlinear Model Predictive Control (NMPC) is a methodoldtat refers to a class of control
algorithms in which a nonlinear dynamic model of the plantded to predict and optimise the future
behaviour of the process (Henson, 1998; Qin and BadgwdlQR0t can be formulated as follows
(Henson, 1998): A sequence of control moves is computed minmge an objective function (also
referred to as loss or cost function) which includes prediduture values of the controlled outputs,

obtained from the nonlinear model. Then, only the contrplin: computed for the present time-step
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is implemented, and the prediction horizon is moved one &tepard, and the procedure repeated
again, using new process measurements. The ability of ttedeollers to deal with constraints and
multi-variable systems has made them very popular in imguskiowever, the approach relies heavily
on the quality of the nonlinear model of the process. It is w@mn that most of the available data lie
around equilibrium points, and only sparse data are aveilaliransient regions, thus jeopardising the
identification and performance of a parametric model. Ia tespect, Gaussian Processes appear to
be better suited for the task, as the data are used diregihgdiction. This way, the uncertainty of the
model’s predictions can be made dependent on local datdtyjearsd the model complexity directly
relates to the amount of available data. GPs have recently fieccessfully tested for NMPC (Ko-
cijan et al., 2004c), with constraints on the variance, gishe propagation of uncertainty algorithm

proposed in Chapter 4 to compute the future outputs.

When deriving the control moves, most researchers havedses cost functions where the
model’s predictions are used as if they were the true systemtputs Astrom, 1995). These adaptive
controllers, based on theertainty equivalence principléherefore do not account for the uncertainty
on the model’s predictions, and the control actions takenatanfluence the uncertainty either. Con-
trollers achievingcaution by accounting for the model’s uncertainty, gmabing (exploration), by
going into yet unexplored regions, have been the scope ohrimierest in the control community
(Wittenmark, 1995). Assuming a quadratic cost functiois Kind of dual controller aims at finding

a control inputu; which minimises aK -stage criterion, as

J=FE

K
> Wik — verr) ] : (6.28)
k=1

wherey? is the reference signal andis the controlled output. The numerical cost associateti wit
this optimisation has usually led to sub-optimal or ad-haattons to regularise the control behaviour
when following the reference signal, depending on the madeliracy (Fabri and Kadirkamanathan,
1998). In the following, we present a controller with a ‘daut’ feature as it is used in the multi-

step-ahead optimisation of the control moves, with propagaf the uncertainty.
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6.2.1 One-step-ahead cautious control

Consider a nonlinear a multi-input single-output (MISO3teyn,

Yir1 = FWts oo s Ytmny Uty Uty - ooy Upepn) + €441 (6.29)

wherey, 1 is the controlled outputy, is the current ‘manipulated’ input, angl, ; is assumed to be a
white noise with unknown varianeg. We denote byx,, u;] the state at + 1, wherex; is composed
of the delayed outputs and inputs. We wish to control thisesgusing the following cost function,

which includes a penalty term on the control effort:
Jie1 = B[yl — yer1)’] + Mjy (6.30)
Expanding the ter&[(yd, ; — yi+1)?], we have
E[(yiiﬂ — 1)’ = E[yng? - 2y§l+1yk + th+1]
= ytd+12 — 2yt Blyr] + Elya] -
Using B[y, ;] = Var[y+1] + Elyi4+1]%, the cost at time + 1 can be written
Jes1 = (i — Blye1))® + Var[yea] + Mg, (6.31)

This cost function accounts naturally for the uncertaindgaziated withE[y,1], which arises by
doing simple manipulations, as noted by (Murray-Smith abdrBaro, 2002). That most researchers
have ignored the variance term is likely to be related to tloe@hused in the first place, as it might
be difficult to obtain this uncertainty, and to compute thevdgives of the cost function with respect

to it. Indeed, the optimal control input is now found by snbyi‘ng*tl = 0, that is

OJpy1 d OE[yi+1] | OVar[ypi1] _
St =2 (ytH—E[yHl]) et g D =0, (6.32)

For a GP with zero-mean and covariance functiof, .), Ely,+1] is simply the predictive mean at
t+1,
p([x,u]) = > BiC([xe, g, [xi,ui)) (6.33)

andVar[y,1] its associated variance,

o ([xeyw]) = C %, wil, [xywi]) = > K C[xp w], [xiy wi]) O, el [x5,w5]) - (6.34)
i,J
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wheref = K~'t andK is the data covariance matrix computed using the pajrs; used for

training. In this case, it is straightforward that

aﬂ([xtaut]) 80([Xtaut]v [Xiaui})
8Ut zz: Bz 8Ut

902 ([xp,w])  OC([x¢, wel, [%4, wi)) _1 [ OC([x¢, uel, [x4, wil) o
# _ t a;t tut]) %szl ( t a;t C([x¢, ugl, [x5,u4])
’l'O([XtautL[Xi,Ui])ao([Xt’gj;[xj’ujD) ‘

We refer to (Murray-Smith and Sbarbaro, 2002; Sbharbaro anday-Smith, 2003) for various
examples, illustrating how a controller which does notefisird the variance information leads to a

robust control action during adaptation.

6.2.2 Exploration and multi-step-ahead control

The total cost of controlling a system framt 1 to, say, timef + K, whereK is our control horizon,

is given by
J-Lsy
= K et ks

where, for simplicity in the notation, we now denote Jythe cost at time + k given by
Je = (yit — Ely])? + Var[y] + dui_, . (6.35)

If we want to propagate the uncertainty as we are making gtieds ahead in time, and assuming
the covariance function of the process is the Gaussianiopg] and Var[y;] are given by (3.39) and
(3.43) of Chapter 3 (only fot: = 1 do we use (6.33) and (6.34)). Letdenoterbifuy, 1, Xk 1, ux_1])
the predictive mean afy, and its variance by([u;_1,%,_1, ux—1]), or, for short,m; andwy, corre-

sponding to
Xh—1 = [Yh—1s- - s Yhmlmns Uk=2: - - -, Upm2mm] | ~ N (151, Bg_1)

with

T
Ug—1 = [mkfla ey MEp—1—ns Ugp—2, - - - ,Uk,Q,m} 3
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wheremy,_; = Elyx_;+1], and

Vg-1 .. Cov[yr—1,Yk-1-n] O 0

0 0

> Vk—1-n +-- Cov[yk,l,n, ykfl] 0O ... 0
k-1 = )

0 0 0 0 0 O

0 0 0 0 0 O

wherev,_; = Var[yk_i“} .

Now, the multi-step-ahead control of the system consistinding the control signal such that
the total cost is minimum over the whole horizon. That is, wshwo finduy, ..., ux 1 such that/

is minimum, which is achieved by solving

K
aJ 0
= Jp=0. 6.36
8(u0,...,uK_1) a(uoi"'auK—l); k ( )

A ‘local approximation’ then consists of computing the opdil control input for each time-step,

i.e. to findu; 1 such thatJ; is minimum. However, it is likely that the resulting contrsignal

udP', ... uf",, composed of all the local optimal contributions, is famfrthe overall optimal one
(ug,...,ux_1)°". Following (Murray-Smith et al., 2003), the minimisatiofitbe total cost requires

the computation of theensitivity equationswvhich tell us how a change in the control signal at time

affects the total cost. We need to compute

oJ 0Jy

since the cost at time < i is independent ofi; (J;, only depends omy_1).

Sensitivity equations

We therefore need to solve

0Jy
8uz~ N

(6.38)
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wheremy, = m([ug_1,25_1,ux_1]) and andvy = v([ug_1,2k_1,ux_1]). In the case of the Gaus-

sian covariance function, we can write
mig =Y BiC([up-1, k-1, 8:) Coorr ([ —1, up_1], i) , (6.39)
i

wheres; = [x;,u;] denotes the training states and control inputs, @ngl, (., .) is given by (3.40),

and
N
ve = C[ue 1w 1) e 1w 1)) = > (K5 = BiB)C([ak 1, we1),5:)C([uk 1, ue 1), ;)
ij=1

N
Ceorrs ([Ug—1, up—1]8) — Z BiBiC([ugp—1, uk—1],8;)C([Ug—1,up_1],s5)

ij=1
Ceorr([Ug—1,ug—1],8:)Ceorr ([Ug—1, ug—1],s;) ,
(6.40)
wheres = 25 andCiorr, (., .) is given by (3.41).
For k = 7 + 1, the differentiation with respect to; can then be done term-wise, in a rather
straightforward manner. On the other hand, for- 7 + 1, we need to account for the interactions
between the delayed outputs. The derivativesipfandv;, with respect tau; are then obtained using

the chain rule:

Bmk . Bmk 8uk_1 8mk BEk_l
8ul~ N 8uk_1 8ui + 32k_1 8ul~ (6.41)
8’0k 8’0k 8uk_1 8vk BEk_l
= . 42
8ul~ 8uk_1 8ui + 32k_1 8ul~ (6 )

Given the derivativé J/0u,, we can then find the optimal control sequence. We refer tai@ju
Smith et al., 2003) for preliminary results. In Appendix &cBon C.2, we simply provide the ex-
pressions for the predictive mean and variance correspgridia MISO system affine in. Note that
these equations can be used directly in the casenaikadtraining set, formed of derivative as well
as function observations, provided the above partial dévies are computed numerically (we leave

it to the reader to compute the analytical derivatives).

6.2.3 A probabilistic view?

So far, the cost of controlling a system has been expresdbe aspected squared differenEﬁy,‘j -

yi)?] (ignoring the control term). It would seem a natural thingctompute the variance, therefore
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viewing .J, as a random quantity. We can then defihe= (y{ — yx)?, with expectation®[.J,] =

E[(y{ — yx)?) and varianc&var[J;] = Var[(y{ — yx)?]. As we have already shown, we have

E[Jy] = El(y§ — yr)’] = Wk — Elyk])* + Var[yg] ,

or simply

E[Ji] = (yff — my)? + vy,

wherem;, = E[yx] andv;, = Var[y]. Expanding the square difference and taking the varianteeof

corresponding products, the variance/gfis given by
2 2
Var[Jx] = Var[yf” — 2yfye + yi] = 4yi Varfyy] + Var[yg] .

We now need to expres&éir[y,%]. To do so, let us consider the standard normal variaple y’f\}%
k
so thatz;, ~ N(0,1). Therefore,z,% is chi-squared distributed, with mearand varianc®. We then

havey, = \/v,z, + my, and
vk = (Vogzr + mi)® = vezi + 2V/upzemi +my
leading to
Var[yZ] = Var[vgz? + 2v/vpzrmy, + mi] = viVar[zi] + dvpmi Var[z] = 20i + dvpmi

obtained by taking the variance on both side and usimgz;] = 2 andVar[z;] = 1.

We can then considef, = (y{ — yx)? with

E[J] = (yf—mp)?+w (6.43)

Var[J,] = 4y,‘§20k + 21),% + 4vkm% . (6.44)

Therefore, rather than performing the minimisation&jf/;] only, one could constrain it on the
associated variancéar[.J; ], or even blend the knowledge of batlj.J | andVar[.J;| together in some
‘meta-cost’ function, thereby viewing, as a ‘latent variable’. This ‘hierarchical’ view could emab
more rational decisions when selecting the final controicjed. A somehow similar idea has been

recently suggested in a reinforcement learning controteednwhere a Gaussian Process represents
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the value function (Rasmussen and Kuss, 2004), althoughtlalexpectation is used in the paper.

We have not explored the potential interest of this appr@exchan investigation would be needed

to appreciate the validity and usefulness of such an approac

6.3 Summary

In this last chapter, we have presented further extensibihe @ropagation of uncertainty framework.
We have first shown how the predictive distribution of a fimtioutput corresponding to a new noisy
input could be derived, when the training set was formed néfion as well as derivative observations
of a system. Again, these results allow to perform the isegaultiple-step-ahead prediction of a sys-
tem of which derivative observations are available, whgbften the case in engineering applications
(linearisations of measured data around equilibrium gpinAlso, a methodology to account for the
uncertainty in a control context has been presented. Usaugtafunction that does not disregard the
output uncertainty (cautious controller), we have showw @ could again perform the multi-step-

ahead control of a system while propagating the uncertaingad in time.

This chapter only deals with the methodological aspect aadefer to (Kocijan et al., 2004b)
for preliminary numerical results concerning the use oivdéive observations, and to (Murray-Smith

et al., 2003) for the cautious multi-step-ahead control ¢B®I systems.
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Chapter 7

Conclusions

In this thesis, we have explored a number of extensions thdt e made to the Gaussian Process
model, most of them related to the informative use of the rf®dacertainty, in order to improve the
modelling, forecasting and control of nonlinear dynamistegns. We have suggested an approach
to account for the noise on the inputs, when making predistid-rom this, we have derived an al-
gorithm to propagate the uncertainty ahead in time, for theiive multiple-step-ahead prediction
of dynamic systems. We have also contributed to the devetapwf tools that will hopefully make
the GP an attractive model in the eyes of the engineering agrityn as the model can now make
effective use of derivative observations, when these aaiadle, and of its predictive uncertainty, in

a cost function, thus enabling the cautious control of sgyste

As we have seen, although a Gaussian Process is a set oflyfimany random variables, it is
in practice reduced to the size of the sets we are interesteddulting in a process finally modelled
by a joint multi-dimensional Gaussian distribution. Evlough we have not taken a Bayesian ap-
proach, whereby priors are put on the parameters of the ieonar function of the process and then
combined to the data to compute posterior distributions véry probabilistic nature of the model is
enough to lead to a distribution as the solution to the ptiegidask. As a result of the neat properties
of the Gaussian assumption, this predictive distribut®also Gaussian, fully specified by its mean
and variance which can then be used respectively as an ési@md the associated uncertainty of the

model’s output.
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With this model, we have then addressed the problem of makipigediction at a normally dis-
tributed random input. We solve it within an analytical appmation, whereby we only compute the
mean and variance of the corresponding predictive digtdbyGaussian approximatign Based on
the parametric form of the covariance function, we derivacexnoments, for the linear and squared
exponential (Gaussian) covariance functions, or appraténones, relying on a second-order Taylor
approximation. Also, using a simil@&aussian approximatigrwe show how the challenging problem
of learning with noisy inputs can be tackled, resulting incasiance function where the length-
scales are weighted down by the input uncertainty (in the cashe Gaussian covariance function).
Although the emphasis is on the application of these reguttsek-step-ahead prediction of nonlinear
dynamic systems, predicting at a random input is of intéreste static case. If the system senses the
inputs imperfectly, due to faulty sensors or some otherreatalisturbance, we can now account for
this extra uncertainty, although prior knowledge of thelitpoise variance is assumed in this case. In
the dynamic case, we show how the uncertainty induced by sadessive prediction can be prop-
agated ahead in time, when making iterative multiple-stiepad predictions of a nonlinear dynamic
system represented by a one-step-ahead nonlinear auess®g model. The derived algorithm for-
mally accounts for the predictive variance of each delayegdu, as well as for the cross-covariances
among them, thereby providing the model with full knowleddehe characteristics of the random
state (mean and covariance matrix), as it progresses ahdimael. At each time-step, the predictive
mean and variance and the cross-covariance elements camtputed exactly, in the case of the

Gaussian covariance function, or within the Taylor appraion.

Our experimental results on the simulated Mackey-Glasstahéime-series suggest that our
Gaussian approximatignwhen compared to the numerical approximation of the trsgridution
by simple Monte-Carlo, is well grounded. We are aware thatemerk should be done towards the
Monte-Carlo approximation and its evaluation (the measoferedictive performance that we used,
i.e. squared error loss and negative log-predictive dgnsitt being ideal for non-Gaussian distribu-
tions). These experiments also validate the results addaivithin the Taylor approximation of the

Gaussian approximatigras we compare them to the exact ones, using the Gaussia. Réenknow
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that the integrals required for the computation of the prtiddt mean and variance are solvable exactly
in the case of linear, Gaussian and polynomial (or a mixtéitbase) covariance functions. However,
we have not defined the family of valid covariance functiamsvwhich the Taylor approximation was
needed. Let us simply recall that, when using this approtidnaone should not forget to check the
continuity properties of the function and positive-deniess of the resulting approximation, as well
as the other requirements inherent in the Taylor approximatOur main focus is nonetheless on
the Gaussian covariance function, which has been predothinessed when modelling with Gaussian

Processes, and which is shared by many other kernel models.

In general, we highlight the well-founded nature of the @gation of uncertainty approach by
comparing it to a naive method that only feeds back estimatieigh are thereby viewed by the model
as if they were the true outputs. This naive approach can bkading, as the error-bars on its pre-
dictions stay small, no matter how far ahead we predict iretand how good its estimates are. On
the other hand, propagating the uncertainty leads to méable predictions, suggesting that the full
matrix of covariances, accounting for all the uncertagbietween the delayed outputs, has a real im-
pact on future predictions. Note that, as a first approxiomatone could simply consider a diagonal
input covariance matrix, with only the delayed predictiagiances on the diagonal, although we do
not see why one should do so, as the computational cost ofwtomgpthe cross-covariance terms is

low.

After investigation whether the approach would generatiseeal systems, the results prove en-
couraging. We first show how the GP can effectively model teegressure in a gas-liquid separator
process. Based on the Automatic Relevance Determinatmin(feal, 1995; MacKay, 1994) and
on Occam’s razor principle (Rasmussen and Ghahramani,) 20l identify the model with the
best complexity/performance trade-off. Although the aigrused for identification are significantly
different from those used for the validation of the modepidéslowly varying signals), the model
successfully captures the dynamics of the system, as cagebefrom its performance on the predic-
tion of the test signal over its whole length. For this precdsrther experiments could consider the

incorporation of a less crude model for the noise than theendme (i.e. a coloured noise model, as
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suggested in (Murray-Smith and Girard, 2001), or a full imdr model, such as in (Goldberg et al.,
1998)). Also, for the Gaussian covariance function, inicigda full covariance matriW, allowing
for correlations between input dimensions (as done in (¢hizand Williams, 1999)), could improve

the modelling of the interactions between the variables.

The identification of a model for the pH of a chemical procdssised to be improved when a lin-
ear model was first fitted onto the original data and a GP useubttel the residuals. We then showed
how we could elegantly incorporate this linear model into framework to perform multiple-step-
ahead predictions, therefore accounting for the linear grad its interaction with the GP model at
each time-step. When comparing the propagation of unogytto the naive approach, we again no-
tice how the latter leads to unreliable predictive disttitns, peaked around the mean even though
it is not close (with respect to some given metric) to the tegponse (such that the variance is no
longer an indicator of the reliability of the model). As ftret Mackey-Glass system, we observe that
the predictive variances given by the exact moments, witieitaussian approximatiqrdo not sim-
ply increase with the predictive horizén Whether such a desired behaviour happens or not is likely
to depend on the properties of the system being modelled. hi@rsystem, the comparison of the
iterative approach to the direct method, where a model isedato predict: steps ahead, leads us to
think that the iterative scheme can indeed be valuable.ofitih for this particular example the direct
model becomes better than the iterative one, as the predictirizon increases, favouring a direct
model is arguable as one model is only valid for a given harizehich can prove difficult or even
infeasible in practice (the training of the model can be trnasuming and the predictive horizon is

often not known in advance).

It is well known that the modelling of nonlinear dynamic gyss can be very difficult, for rea-
sons ranging from the properties of the underlying of theéesysto our computational resources. A
frequent problem encountered in practice is the uneveradéthe data in the operating regime of
the system. Often, the available data is confined aroundaiétium points of the system, and few
or no data can be measured in transient regions. A commoiagphas been to build local linear
models and blend them to obtain a nonlinear model, covetiegathole operating range (Murray-

Smith et al., 1999; Murray-Smith and Johansen, 1997). Neskss, this approach proves difficult
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when it comes to choosing the number of local models, theaypearning (global/local), etc. In that
respect, GPs are likely to improve the modelling of suchesyist thanks to their flexibility and the
way inference is performed, by conditioning on the currdatesand local data. So far, their major
burden has been the computational cost associated with(thermversion of théV x N data covari-
ance matrix). Although many technigues are now availabledaoce this cost (Williams and Seeger,
2001; Seeger et al., 2003; Murray-Smith and Pearlmuttéy328hi et al., 2002), the methodology
we have presented (accounting for derivative observatisr@iginal and possibly more appealing as
it enables us to not only potentially reduce the computationst, but also to be in accord with engi-
neering practice, by summarising measured data in theityiah equilibrium points by a derivative
observation. In conjunction with the results presentedherajpplication of GPs in a control context,
and the promising results of our experiments, we hope thlantbodel will be more widely used in
the engineering community. Also, we believe that our raesale general enough to be applicable
to other kernel models, as they do to Relevance Vector Mashj@uinonero-Candela et al., 2003;

Quinonero-Candela and Girard, 2002).

Ultimately, we want to invent and create mathematical t@wld concepts to explain the world
around us and mimic the way we understand our brain procés&emation and makes decisions.
In that respect, we would be inclined towards Bayesian agres, as we believe they reflect our
own way of thinking. Paraphrasing E.T. Jayn&¥hen confronted with a new situation, our brain is
forming plausible conclusions, based on prior informatenmd evidence about the situation we are
reasoning on, in order to ‘compute’ an updated state of infation, also called posterior, that re-
flects our new degree of beliefEven though we have not considered the Gaussian Procesd imod
a Bayesian setup, the simple form used in this thesis haggnaseful for the modelling of nonlinear
systems and has enabled the rather easy and elegant derivBthe ‘tools’ and extensions presented
here. Also, our preference for analytical approximatiomsramumerical ones has been motivated by
the fact they can sometimes be less computationally dem@riian numerical methods (although, in
our case, the numerical approximation is straightforwakif)re importantly, the analyticabaussian
approximationis easier to interpret than the numerical solution. As westeeen, the Monte-Carlo

approximation leads to hon-Gaussian distributions, whieghmore difficult to summarise; an aspect
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which is likely to slow its uptake in engineering contexts.

We hope the results presented in this thesis will encouragevativate further experiments and
research as we believe the potential of the GP model has haega fully explored. Future work
could include the incorporation of time in the model (eithgrallowing the parameters of the covari-
ance function to be time-dependent or the covariance fmaeti be itself a function of time), and the
extension to multiple outputs, thus enabling the modelbhgystems with time-varying dynamics

and correlated measured outputs.



Appendix A

Mathematical formulae

In the following, we recall some useful formulae and resufted throughout this thesis.

Law of iterated expectations and conditional variances

Let X be a random variable (RV). Fargiven, p(X|Y = y) has mearF[X|Y = y| and variance
Var[X]Y = y|. Now if Y is a RV, both the expectation and variance are a functidyi,dfence RVs

themselves. It can be shown that

E[X] = E[EX[Y]

Var[X] = E[Var[X|Y]] + Var[E[X|Y]].

Taylor series and approximation

Taylor’s formula

If f(x) has derivatives up to orderat the pointz = z, then the polynomial

ARIE)

n! (ZE - xO)n )

fo(z) = f(z0) + (z — 20) f'(z0) + -+ +

wheref (™) (z,) denotes the'" derivative off (z) evaluated a&: = z, is called then”-order Taylor

approximation tof atzg.
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Taylor's formula is
f(z) = fn(z) + Rn(z)

whereR,,(z) is called the remainder term.

Letf(”“)(x) exist and be continuous in an open interyand letzg € I. Then, givene € I,
there is a point betweenry, andz such that

(l‘ _ xo)nJrl

TR F ().

R,(x) =

This expression is called the Lagrange form of the remainder

If the (n + 1)*! derivative of f satisfies

m < fOH(z) < M

for all z in some interval about, then, for allz in this interval, we have

)n—i—l )n—i—l

(x — xo

(x — g
< Ry(z) < MW

T S

if (z —zo)"*! > 0 (otherwise the reverse inequalities hotd).

Product of Taylor series

Let f(z) = 2%, fu(z—a)", wheref, = L2 andg(z) = 30 gn(z—a)", whereg,, = L0,

n!

Then the Taylor series fof(z)g(x) is the product of the Taylor series f@(x) with that of g(z):2

f(z)g(x) = Zhn(x —a)" where h, = kagnfk .
n=0 k=0

For two second-order truncated serigs) = fo + fi(z — a) + fo(z — a)? andg(z) = go +

g1(z — a) + g2(z — a)?, we then have

f(z)g(z) ho + hi(z — a) + ho(z — a)?

= fogo + (fogi + fi190)(z — a) + (foga + f191 + fago)(z — a)?.

Although proof of these results could be found in any mathekbwe recommend the Calculus with ThedryLecture
o, of the MIT open course http://ocw.mit.edu/OcwWeb/Matlagios/index.htm.
2From http://www.math.pitt.edu/sparling/23014/23014convergence2/node8.html
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Operations on random functions

The following results are taken from (Pugachev, 1967).

Let X (¢) be a random process of argumentvith mean functionn,(¢) and covariance function
C,(t,t"). Similarly, letY (¢) be another process, with mean and covariance functiopg) and

Cy(t,t).
Addition of random processes
Let Z(t) = X (t) + Y (¢). It can be shown that the mean functien (¢) of Z(¢) is
m(t) = ma(t) + my(t) .
If X(¢) andY (¢) are correlated, the covariance function(t,t') of Z(t) is
C,(t, 1) = Cy(t,1') + Cy(t. ') + Coy(t,t') + Cya(t, 1)

whereC,, (t,t") andC,, (t, ') are the cross-covariance functions betwégit) andY (¢).

In general, for an arbitrary number of random functions, if

then the mean and covariance functionsZ¢f) are
N

my (t) = Z My (t)
n=1

N
Cz(tat’) = Z Cnn’(tatl)'
1

n,n'=
That is to say, the expected value 4ft) is equal to the sum of the expected values of the random

functions X, (¢), and the covariance function ¢&f(¢) is the sum of the covariance functions of the

different X, (¢) plus the sum of the cross-covariance functions of the tenntisd sum.
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Differentiation of a random function

LetY(t) = X'(t), the first derivative ofX (¢). Y;(¢) has meanmn,, (t) = m,(t)’ (i.e. the derivative
of m,(t)) and covariance functio@y, (t,t') = % (i.e. the second mixed partial derivative of

Cx(t,1").

In general, the meam,, (t) and covariance functioiy, (¢, t') of the derivative of ordep, Y, (t) =

X P)(t), for the random functiorX (t), are

my, (1) = mg(t)®
0?PCy(t, 1)
Cyp(t,t') = T

The cross-covariance functions for the derivatives, oiti@ty order, of X (¢) are given by

PHIC,(t, 1)
Cypyq (t’ t’) = T;th

Matrix identities

Given the matriced\, B andC:

Basic formulae
AB+C)=AB+AC (A+B)"=AT+B” (AB)" =BTA"T
(AB)71 — BflAfl (Afl)T — (AT)fl
1

|AB| = [A[B] A7 =

provided the inverses exigt|(denotes the determinant).

Matrix inversion lemma
(A+XBX") "' = AT - A'XB ! +XTA"IX)"IXTA!

whereA andB are square and invertible matrices, not necessarily ofaheeglimension.
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Gaussian identities

Let Nx(a, A) be aD-dimensional Gaussian density for

Ni(a, A) = (2) P2/ A2 exp —%(x ~a)TA L(x - a)

Marginal and conditional distributions
Letz ~ N (d, D). If we splitz into two vectorsx (of size Ny) andy (of size N>), we can write the
joint normal distribution as

X a A C
zZ = ~N ,
y b c” B

whereC is the N1 x N, matrix of cross-covariances betweemndy.

The marginal distributions are then
x~N(a,A) and y~N(b,B),
and the conditional distributions
xly ~ N(a+CB '(y-b),A-CB'C’)

ylx ~ N(b+C'A '(x—a),B-C"A~'C).

Product of Gaussians

Nx(a, A)Nx(b,B) = zNy(c, C)

where
c=C(A'a+B7'b), C=(A1+B !
and with the constart usually found expressed as
z = (2r) " P/2|C|V2|A|72 B /2 exp [—%(aTAla +b'B b - cTCIC)] .
Using the above matrix identities, we can verify that thiaglifies into

z = (2r) P2|A + B|7 2 exp [—%(a - b)T(A+B) (a— b)} .

Thatisz = Na(b, A + B) orz = Np(a, A + B).
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Expectation of a quadratic form under a Gaussian

Letx ~ NM(a, A). Then

/(x —b)"B7'(x — b)Nx(a,A)dx = (b—a)"B~ (b —a) + Tt[B~'A] .

Gaussian covariance function and derivatives

LetC;; = C(xi,%xj) = vp exp (—% S wt(ad - x?)2) , whereD is the input dimension.

First derivative

The first derivativd};j = %ii? isaD x 1 vector whosei!" component can be written
gad — W )0 = o
Second derivatives
The(d, e) entry of the second derivative with respecito 32-2(;3% is given by
Cy 0 dod  d d dod -y 9Ci
= —w(z¢ — 29 Cyii | = —wCijdge — w(zd — 29) =2
83:2483:;3 0z ¢ 3= ty-ae i e
that is
0°Cyj d d(.d_ .d 0*Cy;
= [—w4e + w*(z — 24w (zf — 29)]|C;; = J
8:17;18:1726 [ de ( i ]) ( i ])} 1) 833;18]726

ford,e=1...D, and where;, = 1if d = e, §4. = 0 otherwise.

Also, the(d, e) entry of C}; = 6fj£:jT is given by
0°Cij 9 di,d _ d
Oxlozs —  Oaf —wi(w — 25)Cy

= w'Cijdge — w(xf — 2%)
= [wddde — wd(aczd — zf)w(z7 — x5)]Cy;

2070, .
ford,e =1...D. Ford = e we simply have% = [w? — w? (z¢ — 29)2]Cy;.
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Note on the Taylor approximation

In Chapter 3 we have shown how, when predicting at a noisytjmpel could compute the mean and
variance of thenoisy non-Gaussian predictive distributioGdussian approximatignexactly, in the
case of the Gaussian and the linear covariance functiopprogimately, within a Taylor approxima-
tion of the covariance function. We are now going to look mdoesely at the Taylor approximation

and the associated error.

For the sake of simplicity, the following discussion is dam¢he case of one-dimensional inputs.
Let the new test input be ~ A (u,v;). As seen in Chapter 3, the computation of the medn, v,,)
and the variance(u, v,) of the corresponding output requires the evaluation éf= E,[C(x, z)],

l; = Ex|C(z,2;)] andl; = E,[C(z,z;)C(z, z;)]. For the time being, considés, where

+oo
l; = C(z,z;)p(z)dz.

—0o0

ProvidedC(., .) is such that the integral is not analytically tractable, egort to a second-order

Taylor approximation t&@(z, ;). Forz in some intervall aroundu, we can write (see Appendix A)
C(z,z;) = CP(z,z;) + Ro(z, ;) ,
whereC?(z, x;) is the second-order polynomial around the meanf x,

CP(x,x;) = Clu,z;) + (x — u)C'(u, z;) + %(3: —u)2C" (u, z;)
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and Ry (z, x;) is the remainder, written in its Lagrange form as

Rola,ai) = (o~ w00 (e,m)

for somec betweenr anduw.

Let I = [a,b]. We then have
+00 +00
L= [ Cwmpade= [ €7 (w.m) + Ralo,m)p(o)ds
— o0 —0o0
Although the Taylor approximation is valid only iy if that interval is chosen so as to be in the region
wherez lies most of the time (say = [u — 3,/v;, u + 3,/v;]), and provided”(., .) is well behaved,

we can write

+o0
I, = lfp —I-/ Ro(z, z;)p(z)dz ,

—0o0

wherel[” = C(u) + % C" (u).

The error induced by the approximation is then

400
u—w:{/ Ry (o, 50)p(s)ds

—0o0

+00 1
= [T e mptada
—oo O
wherec depends om. Therefore, a lower bound on the error is
1 [t M
L=t < g [ o= uPIoO e ) ple)ds <
6 /_ s 6

whereM = max,{|z — u|?|C?®)(¢(z), z;)|}, emphasising the dependence:ain z.

Similar bounds could be derived féand/;;. Nevertheless, we do not investigate this point any
further (refer to (Evans and Swartz, 1997) for the derivatibexact error-bounds when approximating
integrands by a Taylor polynomial). Note that the above m&suthat the functiod’ is such that the
approximation holds. We have not defined the correspondingly of ‘valid’ covariance functions
but we speculate that covariance functions with compagbatii.e. vanishing when the distance

between the inputs is larger than a certain cut-off distaneeild be good candidates.
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Appendix to Chapter 6

This appendix provides the detailed calculations of thaltepresented in Chapter 6. The first section
deals with the mixed GP, formed of function and derivativsaybations and Section C.2 with the

control of a MISO system.

C.1 Mixed training set: Prediction at a noisy input

In the case where the training data is formed of derivativeelsas function observations (presented
in Section 6.1), we now derive the expressions for the medwariance (hereafter referred torassy
mean anchoisyvariance), when predicting at a noisy input- Ny (u, X, ), assuming the covariance
function is Gaussian.

The last subsection (C.1.3) also provides the details ®ictmputation of the cross-covariance
terms of the input covariance matrix when thigxedset is used in an iterative multiple-step ahead

prediction framework with propagation of the uncertainty.

Recall that thanoisypredictive mean and variance we want to compute are givebgfter 6.1,

Section 6.1.3)

D
m(u,X,) = my(u,Ex)—i—Zmyd(u,Ex)
d=1
D D
v(u, ;) = vy(u, ;) + Z Vyaye (0, Bg) +220yyd(u,2x)
d,e=1 d=1
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wherem,, (u, ;) = Ex[py(x)], mya(u,B;) = Ex[p,q(x)] and

vy (0. Be) = Exlog(x)] + Bx[py(x)°] — Bxlpuy (x)*
Vyiye (W, B0) = Ex[oga,. (%)] + Bxlieya (x)pye (x)] = Bx[pya ()] Ex paye (%))
vyt (0.80) = Ex[0] 4(x)] + Exlpy (3)1ya (x)] = Ex|py(x)] Bx [t (x)]

In the case of the Gaussian covariance function, we already the expressions fai, (u, X;)

andwy,(u, X, ), which were derived in Chapter 3, Section 3.4.2. We have

N
my(uazm) = ZB’iCG(uaxi)Ccorr(uaxi) s (Cl)

i=1
whereC¢(., .) is the Gaussian kernel anid,,,, (u, x;) is as given by (3.40), and

N

Uy(ua 23:) = CG(ua u) - Z (K,;l - ,BZ,B])CG(H, Xi)CG(u’ Xj)CCOrrg (ua 5() - my(ua 23:)2 s (CZ)
ij—1

with Ceorr, (1, X) given by (3.41) and where = X17%2.

In the case of the Gaussian covariance function, the cox@ifunction of the derivative process

in directiond is given by (see Appendix A)

0?Cy(x;,x;
Oyl y) = L)y, — wiat — a0, i)
zi

the cross-covariance betweghandy is

00y (x;,%x;
nyd(xiaxj) = % = wd(xzd - x]d)cy(x’“xﬂ) ’

J

and that between the derivatives in directibande is

820 Xi, Xj e e
Cydye (Xz‘,Xj) = W = [wedge — wdwe(fﬁg - 95?)(%‘ - ﬂfj)}cy(xiaxj) )
el

whereCy (x;,x;) = Ca(xi,x;), which, as in Chapter 3 Section 3.4.2, we denote Ny, (x;, W),

whereW ! = diag[w; ... wp] andc = (27r)D/2|W|1/21)0.

We can now turn to the computation @f, . (u, X;), v,a,e (1, Bz) andv,,q.(u, Ey).
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C.1.1 Noisymean

We first need to computer,a(u, X;) = Ex[u,q(x)] where, in the case of the Gaussian covariance

function, we have (see Section 6.1.2, omitting the limitthef summation)

Py (X) = Z,Bicyyd (x,%;) = cwy Z Bi(x? — z3) Ny (x;, W) .

We then need to compute
myp( B) = cwa 36 [ @ = ) Nl Wp(x)x
= cwg» B (/ " Ny (i, W)p(x)dx — ﬂﬁg/Nx(Xi,W)P(X)dX>
= deiﬂi [112 —ﬂfglﬂ :

Using the product of Gaussiafg, (x;, W)Nx(u, 2;) = z;Nx(c;, C), with

¢ =CWx,+%,'u), C=(W'+21)7" 2 =N(x;,W+E,), (C3)
we have
L = / Ny (i, W) Ny (0, Bz ) dx = 2; / Ni(ci, C)dx = 2, , (C.4)
and
2= [ N, Wip(x)dx = 2 [ 0Nstei, C)x = el (C5)

wherec? is thed' component ot;. Replacing}, 12 andz; by their expressions, we finally have
mya(u,Bz) = cwy Z BiNu(xi, W + E;)[cf — z]
or, usingcNy (x;, W 4+ £,) = C(u, x;)Ceorr (1, x;) (as found in Chapter 3, Section 3.4.2),
mya(u,8;) = wq Z Bi(cd — 2 Cq(u, %;) Ceprr (0, %;) (C.6)
i
wherec? is thed"” component of W' + 271~/ (W !x; + 27 'u).

We can then computer(u, X;) = my(u, ;) + ZdD:1 m,a(u,¥;). Replacingm, (u,¥;) and

mya(u,Xz) by their expressions finally gives

m(u,8y) = 3, BiCa(, x;) Coopr (1, X;) (1 + 2D wg(cd - xg)) (C.7)
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C.1.2 Noisyvariance

To compute the variancg(u, ¥ ), we need, i, (u, X;) andv,,q (u, Ey).

Computing v,a,. (u, X;)

We have

vy (0E0) = Bxlo%, (%)] + Bxlpys(x)nye (x)] — Bxlptye ()] B [y (x)]
= B[, (] + Exlpya (x) 1y ()] — mya (u, B )mye (0,8, |

wherem,q(u, %;) andm,(u, %) are given by (C.6).

For the Gaussian covariance function, we have
02y . (x) = —ZK 1C (x,%;) Cyye (%, %)
= —c wdweZK ¢ — a: )Nx(xi, W)(z° — z5) Nx(x;, W) ,
and also

Py (X) prye (%) = wqw, Z Biﬂj(fbd — 23 Ny (%, W) (2° — 75) Nx (x5, W) .
(2%
We can then write
Vyaye (0, 8;) = Awgw, Z(,BZ,BJ — Kigl)Ex[(fEd — 2 Ny (%, W) (€ — 75) Nx (x5, W)

Y]

—mya(u, By)mye (1, 8,) ,
or

Vyaye (U, B;) = wgw, Z(ﬁzﬂj— i h L2 — 26034 — adeSE + 2dxtLl | - mya (U, By )mye (u, By)

J*ij A
(2%
with
Lz'lj = EX[NX(XiaW)NX(Xj’W)]
L}, = BEy[z"2°Ny(x;, W) Ny (x;, W)]

L} = Ex[z°Nx(xi, W)Ny(x;, W)] ,
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with ij’.i same ad.}f, albeit ind. Using the product of Gaussians, we have

/Nx(xi,W)Nx(xj,W)p(x)dx _ in(xj,2W)/Nx (Xi ;Xﬂ', g) p(x)dx

‘ 2

-1
w\ ! i T X _ w) ! -
Cij = C ((7) % + leu) , C= ((7) + 23:1) : (C8)

We can then writd;; = Ny, (x;, 2W)N, (x";"f Y+ Ex) ,and we have*Lj; = Cg(u, %;)Ca(u, ;) Ceprr, (1, X)

i+x; W
= Nx (Xj,QW)Nu <X +X]’7+EI> /NX(Cij,C)dX

with

(from Chapter 3, Section 3.4.2). This leads to

cQL?j = CG(u,xi)Cg(u,xj)C’corr2(u,X)/xdxeNx(cij,C)dx

= Cg(u,%x;)Cq(u,x;)Ceorr, (1, %) (Cye + c%cfj) (C.9)
and

213 = Co(u,%i)0 (%) Coorra (1, %) / 2N (cs;, C)dx

= Cg(u,x;)Cq(u, xj)Cwm (u,i)cfj (C.10)

and similarly forL?¢, wherecy; is thed'" component ot;; and Cy, the (d, e) entry of theD x D
matrix C, as given by (C.8).
We can then write
vyaye (W, 8q) = wawe Y _(Bifj — K;;')Car(1,%;)Ca (0, %) Coorry (W, %) | Ce + i
i\j (C.11)

—asjcfj — xfcfj + mfzpj — mya(u,By)mye (u,8;) .

Computing vy, (u, X;)

The last element we need to compute tiogsyvariance is

Vyyd (ua 22:) = FBx [Uiyd (X)] + Ex [My(x):uyd (X)] — Ex [My(x)]Ex [:uyd (X)}

= Ex|oy,(x)] + Bx[py (%) 10 (x)] = my(u, Bg)mya(u, Ty) |
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wherem,, (u, ;) andm,.q(u, X;) are given by (C.1) and (C.6) respectively, and with

ora(x) = =Y K 'Cy(x,%i)Cypa(x,%;) (C.12)
i
= —Pwg Y K" Nu(xi, W)(2? — 2) N (xj, W) (C.13)
(2%
and
py (%) ( —cde@ (i, W) B; (27 — 2) Nie(x, W) . (C.14)

We then have
gyt (W, B5) = ¢ wdz BiBj — Kij") Bx[Nx(xi, W) (2 — 2) Nx (), W)] = my (u, By )mya (u, By)
= ¢ wdz BiB; — L3d — x;lelj} my(u, Xz)mya(u,B;) .
Using the previous results, we can directly write
Uyt (W, 85) = wa Y (BiB—K;;") Ca (0, %) Cr (0, %) Ceorry (0, %) [ — 2] =y (0, Ty )mya (0, By)

i,J
(C.15)

where agairef; is thed"" element ofC ((%)_1 Xd% 4 2;1u> , with C = ((%)_1 + 2;1) o
Finally. ..

We can now compute(u, £,) = v, (u, EI)+Z£e:1 Vydye (U0, By) +2 Dy vy, (1, B;). Replacing

the different terms by their expressions, we finally have

D
v(u,B,) = Calw,u) + > (BiB — Kj;') |1+ Y wawe(Cae + cfic§; — afcy — zic§; + afaf)
.:j d,e:l

)| Ca(u,x;:)Caq (1, %) Ceorry (1, X) — my (1, B)?

+
[\
[]=
§

d=1

D D

Z my (uazm) - 2my(u,21,) Zmyd (u,X;)
d,e=1 d=1

(C.16)

C.1.3 Cross-covariance terms for the iterative multi-stepahead forecasting

Suppose we now wish to apply the multiple-step-ahead iterédrecasting algorithm presented in

Chapter 4, Section 4.2.1. With this model formednukedobservations, nothing is changed apart
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from the input covariance matrix.

Fort + k, atxyy, ~ N (i, Bpqk), we computeyps, ~ N(m(pk, Beik), v(Wegn, Bir)),
wherem(.) andv(.) correspond to the abovmisymean and variance. At that time-step, the mean of
the random statay,. x, is composed of the delayed previously predicted meansttendovariance
matrix¥, , ; has the corresponding variances on its diagonal. As in@eétR.1, the cross-covariance

terms of¥,, , are given by
COV[?JH»la Xt+l] = E[?Jt+lxt+l] - E[ytH}E[XHl] (C.17)

with E[x; ] = sy, Elyen] = m(uir, i), andEly i) = [ Xeg0p(Xe40)p(Xe 1) dXp 4.

We now haveu(x;1;) = gy (X¢41) + ZdD:1 fyd (X¢41), SO that we need to compute

D
Elyrpxi] = /Xt+l#y(xt+l)P(Xt+l)dXt+l +Z/Xt+lﬂyd(Xt+l)P(Xt+l)dXt+l
d=1

= CZ,Bi [/ Xy 41 Nx, ., (Xis W)p(xp40)dx; 1

D
+) wy / xi41(2? — o) Ny, (%4, W)p(XtJrl)dXtH] :
=1

Denotingx;,; by x for notational convenience, we hade= [ xNx(x;, W)p(x)dx and I =

[ x(z? — 2¢) Ny (x;, W)p(x)dx. As before, usingVy(x;, W)p(x) = Nu(x;, W + ;) Nx(c;, C),

7

with
C=W'l4s H7l ¢=CWlx;+2, ), (C.18)
we have
I; = Nu(Xi,W + EI) /XNX(Ci, C) = Nu(Xi, W + EI)CZ
and

If = Nu(xi, W+5,) </xdex(ci,C)dx—w?/xNx(ci,C)dX>

= Nu(Xi,W + 23;) (C[d} + CZ'C? — xflcz) ,

whereCl is thed™ column of the matrixC andc{ is thed" element ofc;.
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We therefore have

Elyx] = CZ BiNu(xi, W + X,)

D
c; + de (C[d} + cicf — wflci)] . (C.19)
d=1

Finally, we can write the cross-covariance terms as

D
¢ + Z wq (C[d} + ciczd - xzdci>
d=1

Covlyesss Xert] = Y BiCa (i1 Xi) Ceorr (U 41, X;)
; (C.20)

= m (U, Biqg)ugyy

with ¢; = C(W 'x;+ 3, uyyy), C = (W L+ %, ), whereC¥ is thed"" column ofC andc!

is thed'" element ofc;.

C.2 GP modelling of an affine MISO system
Consider the affine nonlinear system

Yir1 = f(xe) + 9(xe)ug +epq1 (C.21)

where the state vector at timés x; = [y, ..., Yt n, Ut 1,--.Us_m] , ys+1 IS the one-step-ahead
system'’s outputy, is the current control signat, . is a white noise with variance, and f(.) and

g(.) are two smooth nonlinear functions.

Following (Sbharbaro and Murray-Smith, 2003), we can moldisl $ystem using a Gaussian Pro-
cess with zero-mean and a covariance function reflectinguhetional’ part, f (x;), and the ‘control’

part, as an affine function, just as in (C.21):
C([xi wil, [x5 us]) = Co(xi, x5) + i Cu(xi, %5)uy - (C.22)
For simplicity, we use the same ‘Gaussian structure’ fohldgt andC,,:
Ca(xi, X;) = vg €xp _%(Xi — ;)W (xi — %) | (C.23)

fora = z,u andW;! = diag[wa1, ..., w.p], therefore allowing different parameters for the two

covariance functions.
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C.2.1 Predictive distribution of 3,

Assuming we have observes, . .., y;, the predictive distribution of,,; is readily obtained. We can

write the predictive mean and variance in such a way to lighlihe ‘control input’ and ‘state’ parts:

M([Xtiut]) = Z/BZ Xt,XZ +UtC (Xtaxz)uz}

o2([xpw)) = vy + utvu - ZKZ'EI[OI(X“Xi) + u Oy (x4, %) 4]
ij
[CI(Xta Xj) + utC’u(xta X])U’J] 3
using C'([x¢, ue], [xi, ui]) = Cu(xy,xi) + uCy(xe, xi)u; and C([xy, uel, [x¢,we]) = Cr(xy,x¢) +
u?Cy (x4, %), where, according to equation (C.28),(x;,x;) = v, and Cy(xs,%;) = v,. More

simply, we have

([, wi]) = pro(xe) + wepen(x4) (C.24)

with
pa(xy) = Zﬁz (x4, %;) (C.25)
fu(Xt) = Z/Bz (¢, %) (C.26)

and
o?([xe,ue)) = 05(%t) + ujos (%) — 2us0; , (%1) (C.27)

with
o) = va— D Ky Colxrxi) Co(x1, %)) (C.28)

ij

oulxe) = vu— YK Culxe xi)uiCu (X %) (C.29)
oo (%) = ZKiglcm(xt,xi)cu(xt,x]')u]'. (C.30)

C.2.2 Predictingy;

As in Chapter 3, we can compute the predictive mean and \@iantimet + &, accounting for the
uncertainty on the previous points and the ‘mixed’ (funcéiband control) form of the covariance

function.



140 APPENDIX C. APPENDIX TO CHAPTER 6
Letx(t +k — 1) ~ N (u,X,) be the input corresponding idt + k). The meann(u,X,) and
variancev(u, X,) of y(¢ + k) are given by
m(w,%,) = Blu(x(t+k— 1)) (C.31)
v(w,B,) = Bxlo?(x(t+k—1)] + Exlp(x(t +k—1))* —m(u, =), (C.32)
wherep(x(t+k — 1)) ando?(x(t + k — 1)) are given by (C.24) and (C.27) computeckét + % — 1).
We therefore need to evaluate
m(u,X;) = Exlp.(x(t+k—1))+ult+k— Dpu(x(t+k—1))]
= FEx[p.(x(t+k—1)] +ult+k—1)Ex[pa(x(t + &k —1))]
= Z BiBx[Cu(x(t),%;)] + u(t +k — 1) Z Biui Ex[Cy(x(t), ;)] -
From Chapter 3, we ::an directly write l
18 = By [Co(x(t),x)] = T + W;'S,|/2 exp [—%(xz- —u)’ (W, +Z,)7 (% —u)|
wherea = {z, u}, leading to
m(n,5,) = > Bilf +ult+k — Dugly) . (C.33)
For the variance, replacing? (x(¢ + k — 1)) by its expression, we have
v(u,B;) = EBx[oa(x(t+k—1)] +u(t+k—1)>Ex[ol(x(t + k — 1))]
—2u(t +k — 1) Ex[on ,(x(t + k — 1))] + Ex[u(x(t + k — 1))*] — m(u,£,)*

which requiresFy o2 (x(t+k—1))] = va—¥;; K;' Li andEy[o? , (x(t+k—1))] = ¥; K wy LT,

where
L = Bx[Co(x(t+k — 1), xi)Ca(x(t +k — 1), ;)]

L;.Ej“ = EX[CI(x(t + k- 1),xi)0u(X(t +k— 1)7Xj)} )

for a = {z,u}. The computation of.{s" and L{}" is very similar to what we have done before. We

arrive at

1
L8 =T + OW; '8, |72 exp —§(xi —x;)T(2W,) 7 (x; — Xj)]
1 (C.34)
exp —5(}_( - u)T(Wa/2 + EI)_l(i - u):| ’
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for @ = {x,u} and withx = X% and

_ _ _ 1 _
I = T (W5 W )2 exp | =50 = )T (W, o+ W) o= )

1 (C.35)
€xp _E(Xmu - u)T(Wmu + Em)il(xmu - ll):| ;

whereW,, = (W31 + W, )~ andx,, = W,,(W7!x; + W 'x;). Also, we haveFy [u(x(t +
k—1))?% = Ex[(ue(x(t +k —1)) +u(t + k — )y (x(t + k — 1)))?]. Expanding the square and

replacingu, andu, by their expressions gives

Ex[u(x(t +k—=1))% = Ex[us(x(t +k—1)°] 4+ 2u(t + k — 1) Bx[ua (x(t + k — 1)) (x(t + k — 1))]
+u(t+k — 1)2Ex[uu(x(t + k- 1))2}]

= 3" BBy (LEF + 2u(t + k — Duy L + u(t + k — 1)2uu; L))
ij

We can then write
v(u,B;) = vy +u(t+k—1)%v, — Z(Ki}l - BiB) [Lif +u(t + &k —1)°L{}"
i (C.36)
+2u(t + k — 1)u]'ij“] - m(u,X,)?,

with Or, replacingm(u, £,)? by its expression and after simplification,
v(w,B,) = of(u) + D K (Coluw,x;)Co(u,x;) — LEF) + > Bij (LEF — I71)
] ]

F2ut + k= 1) Y wy[BiB (L) — 1Y) + K5 (Co(w, %) Cy (1, %) — L]
i,J

Fult + k= 1)°> wu[BiBy (L — 1114) + K5 (Cu (1, %) Cu(w, %5) — L] -
i,J

In these equations, the firstelements ofx, mean ok (t +k —1) = [y(t +k—1),...,.y(t + k —
1—n),u(t+k—2),...,u(t+k—m—1)]T, correspond to the delayed predictive means. AZfar
its first n diagonal elements are the corresponding predictive veg&rnwhile the cross-covariance

terms are given by
Cov(y(t + k), x(t +k —1)) = 1" "B+ u(t + k — 1) (w.l*c") "B — m(u,T,)u (C.37)

wherem(u,X,) is given by (C.33) an@d? = C*(W, 'x; + ,u) ') whereC® = (W, ! + 5,) 1,

fora = {x,u}.
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