
Gaussian Process priors with Uncertain Inputs:
Multiple-Step-Ahead Prediction∗

Agathe Girard

Dept. of Computing Science

University of Glasgow

Glasgow, UK

agathe@dcs.gla.ac.uk

Carl Edward Rasmussen

Gatsby Unit

University College London

London, UK

edward@gatsby.ucl.ac.uk

Roderick Murray-Smith

Dept. of Computing Science

University of Glasgow

& Hamilton Institute

National University of Ireland

Maynooth, Ireland

rod@dcs.gla.ac.uk

Abstract

We consider the problem of multi-step ahead prediction in time series analysis using the
non-parametric Gaussian process model.k-step ahead forecasting of a discrete-time non-
linear dynamic system can be performed by doing repeated one-step ahead predictions. For
a state-space model of the formyt = f(yt−1, . . . , yt−L), the prediction ofy at timet + k
is based on the estimatesŷt+k−1, . . . , ŷt+k−L of the previous outputs. We show how, using
an analytical Gaussian approximation, we can formally incorporate the uncertainty about
intermediate regressor values, thus updating the uncertainty on the current prediction. In this
framework, the problem is that of predicting responses at a random input and we compare
the Gaussian approximation to the Monte-Carlo numerical approximation of the predictive
distribution. The approach is illustrated on a simulated non-linear dynamic example, as well
as on a simple one-dimensional static example.

∗Technical Report TR-2002-119, Department of Computing Science, University of Glasgow, October, 2002.

1

1 Introduction

One of the main objectives in time series analysis is forecasting and in many real life prob-
lems, one has to predict ahead in time, up to a certain time horizon (sometimes calledlead
time or prediction horizon). Furthermore, knowledge of the uncertainty of the prediction is
important. Currently, the multiple-step ahead prediction task of a discrete-time non-linear
dynamic system is achieved by either explicitly training adirect model to predictk steps
ahead, or by doing repeated one-step ahead predictions up to the desired horizon, which we
call theiterative method.

There are a number of reasons why the iterative method might be preferred to the ‘direct’
one. Firstly, the direct method makes predictions for a fixed horizon only, making it com-
putationally demanding if one is interested in different horizons. Furthermore, the largerk,
the more training data we need in order to achieve a good predictive performance, because
of the larger number of ‘missing’ data betweent andt + k. On the other hand, the iterated
method provides anyk-step ahead forecast, up to the desired horizon, as well as the joint
probability distribution of the intermediate points.

In the Gaussian process modelling approach, one computes predictive distributions whose
means serve as output estimates. (O’Hagan, 1978) was one of the first to introduce the Gaus-
sian process (GP) for regression but it really started being a popular non-parametric mod-
elling approach after the publication of (Neal, 1995). In (Rasmussen, 1996), it is shown
that GPs can achieve a predictive performance comparable to (if not better than) other mod-
elling approaches like neural networks or local learning methods. We will show that for a
k-step ahead prediction which ignores the accumulating prediction variance, the model is
not conservative enough, with unrealistically small uncertainty attached to the forecast. An
alternative solution is presented for iterativek-step ahead prediction, with propagation of the
prediction uncertainty.

This report is organised as follows. First, we recall the main equations used in Gaussian
Process modelling. Then, we derive the expressions of the predictive mean and variance
when predicting at an uncertain input and show how we can use these results for the itera-
tive multiple-step ahead forecasting of time-series. We illustrate the approach on static and
dynamic examples and we finish with some conclusions.

2 Modelling with Gaussian Processes

For a comprehensive introduction to Gaussian Process modelling, please refer to (Mackay,
1997), (Williams and Rasmussen, 1996), or the more recent review (Williams, 2002).

2.1 The GP prior model

Formally, the random function or stochastic processf(x) is a Gaussian process with mean
m(x) and covariance functionC(xp, xq), if its values at a finite number of pointsf(x1), . . . , f(xn)
are seen as the components of a random vector normally distributed. That is, for eachn:

f(x1), . . . , f(xn) ∼ N (0, Σ) , (1)

2

whereΣ is ann×n covariance matrix whose entries give the covariances between each pair
of points and which is a function of the corresponding inputs,Σpq = Cov(f(xp), f(xq)) =
C(xp, xq).

2.1.1 Role of the covariance function

The choice of the covariance function is of great importance and, as much as possible, should
reflect one’s prior knowledge or assumption about the underlying function (e.g. smoothness,
continuity assumptions). Here, as a special case, we assume that the process is stationary:
the mean is constant (chosen to be zero) and the covariance function only depends on the
distance between the inputsx. A common choice is

C(xp, xq) = v1 exp

[
−1

2

D∑
d=1

(xp
d − xq

d)
2

w2
d

]
, (2)

whereD is the input dimension. Figure 1 shows an example (in1-D) of the covariance
matrix corresponding to this function.v1 andwd are hyperparameters of the covariance
function.

−10

−5

0

5

10

−10

−5

0

5

10
−0.05

0

0.05

0.1

0.15

0.2

x

Gaussian covariance matrix

x

K

Figure 1:1-D example of a data covariance ma-
trix K = Σ + v0I whereΣ has been computed
using the Gaussian covariance function given by
(2) andv0 is the white noise variance. The ma-
trix plotted is100 × 100, for x ∈ [−10, 10], but
the learning was based onN = 20 data points
(black dots, here divided by a factor of10 so
as to be at the same scale as the covariance).
The corresponding hyperparameters arev1 =
0.1906, w = 1.9288, andv0 = 0.0073 (found
by Maximum Likelihood, see section 2.2).

This particular choice of Gaussian (squared exponential) covariance function corresponds
to a prior assumption that the underlying functionf is smoothandcontinuous(figure 2 shows
samples from a GP with such a covariance function). It accounts for a high correlation be-
tween the outputs of cases with nearby inputs. The parameterv1 gives the overall scale of
correlations and thew parameters allow a different distance measure for each input dimen-
siond (correlation length in directiond). For a given problem, these parameters are adjusted
to the data at hand and, for irrelevant inputs, the correspondingwd will tend to zero.1

It can be noted that the covariance function in the GP framework is very similar to the
kernelused in the Support Vector Machines community. In theory, the only restriction on
the choice of covariance function is that it has to generate a non-negative definite covariance
matrix (more discussion about alternative choices of covariance functions can be found in
(Mackay, 1997)).

1Automatic Relevance Determination idea developed by MacKay and Neal (Neal, 1995)

3

2.2 Gaussian Process for regression

We assume a statistical modely = f(x) + ε with an additive uncorrelated Gaussian white
noise with variancev0, ε ∼ N (0, v0). Given a set ofN data pairsD = {yi, xi}N

i=1 and a GP
prior onf(x), with zero-mean and Gaussian covariance function such as (2), our aim is to
get the predictive distribution of the function valuef(x∗) at a new (given) inputx∗.

2.2.1 Learning by Maximum Likelihood

The likelihood of the data is simply

y ∼ N (0, K) , (3)

wherey is theN × 1 vector of targets andK is theN × N ‘data covariance matrix’, such
thatKpq = Σpq + v0δpq whereδpq is non-zero only whenp = q.

In a Maximum Likelihood framework, we then adjust the vector of hyperparameters
Θ = [w1 . . . wD v1 v0]T so as to maximise the log-likelihood

L(Θ) = log p(y) = −1
2

log |K| − 1
2
yT K−1y − 1

2
N log(2π) , (4)

which requires the calculation of the derivative ofL(Θ) with respect to each hyperparameter
Θj , given by

∂L(Θ)
∂Θj

= −1
2
Tr
[
K−1 ∂K

∂Θj

]
+

1
2
yT K−1 ∂K

∂Θj
K−1y , (5)

whereTr denotes the trace.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

Samples from the GP(0,Σ) prior (dashed lines)
and posterior the data

data points

Figure 2: Realisations from a GP with0-mean
and training covariance matrixK = Σ + v0I
(see figure 1). Dashed lines: Samples from the
a priori GP (not taking account of the data).
Solid lines: Samples from the posterior, i.e. con-
ditioned on the training points. Also shown
(black), the true functionf(x) = sin x/x with
training data (true noise level of0.01).

2.2.2 Prediction atx∗

For a givenx∗, the predictive distribution off(x∗), or equivalently ofy∗, is simply obtained
by conditioning on the training data to obtainp(f(x∗)|x∗,D).

4

The joint distribution of the variables being Gaussian, this conditional distribution is also
Gaussian with mean and variance

µ(x∗) = k(x∗)T K−1y (6)

σ2(x∗) = k(x∗) − k(x∗)T K−1k(x∗) (7)

wherek(x∗) = [C(x1, x∗), . . . , C(xN , x∗)]T is theN × 1 vector of covariances between
the new point and the training targets andk(x∗) = C(x∗, x∗).

The predicted meanµ(x∗) serves as an estimate of the function output,f̂(x∗), with
uncertaintyσ(x∗). It is also a point estimate for the corresponding noisy targetŷ∗, with
varianceσ2(x∗) + v0. Figure 3 shows the predictions at four new inputs. We see that the
prediction atx∗ far away from the data, or near the edges, leads to a predicted point with a
variance larger than that atx∗ nearby the training inputs. This is becausek(x∗) decreases as
the distance betweenx∗ and the training points increases (see figure 9), thus decreasing the
k(x∗)T K−1k(x∗) term and therefore increasing the variance.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Mean predictions at x*=−8 −3 2 7 with 2σ error bars

x

Figure 3: Mean predictions atx∗ =
−8,−3, 2, 7 with their 2σ error-bars, com-
puted using equations (6) and (7) resp.
For x∗ far away from the data, or near
the edges, the corresponding uncertainty is
large. Also plotted, the true function and
the20 training points (black crosses).

It is worth noting that the predictive meanµ(x∗) can be seen as a weighted sum of the
training data

µ(x∗) = sTy , with sT = k(x∗)T K−1 (8)

wheres is called thesmoothingor effectivekernel.
Alternatively, one can see it as a linear combination of the covariance between the new

x∗ and the training points (Williams, 2002):

µ(x∗) = k(x∗)T α , with α = K−1y . (9)

Either the smoothing kernels or the alpha-coefficients depend on the density of the points,
through the inverse of the covariance matrix. Figure 4 shows the smoothing kernels and
alpha-coefficients corresponding to the case when there are only20 training points and when
the number of training points is large (N = 100). For a large number of training points, the
value of the alpha-coefficients is higher than for a few points. On the contrary, the amplitude
of the smoothing kernels is smaller.

5

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.05

0

0.05

0.1

Smoothing kernels

−10 −8 −6 −4 −2 0 2 4 6 8 10
−40

−20

0

20

40
Alpha−coefficients

−8 −6 −4 −2 0 2 4 6 8 10

−1

0

1

−8 −6 −4 −2 0 2 4 6 8 10
−20

0

20

Figure 4: First two plots: Smoothing kernels
sT = k(x∗)T K−1 for a large (top) and a small
(bottom) number of training points (N). The
solid line and crosses correspond tox∗ = −8,
for N = 100 and N = 20 resp., the dashed
line and circles tox∗ = −3, the dotted line and
asterisks tox∗ = 2 and the dash-dot line and
points tox∗ = 7. The last two plots show the
alpha-coefficientsα = K−1y for N = 100 and
N = 20 (the points are not joined whenN = 20
due to the sparse nature of the training set).

3 Prediction at a random input

If we now wish to predict the distribution of the function value,p(f(x∗)), at the random
variablex∗, with x∗ ∼ N (µx∗ , Σx∗), the predictive distribution is obtained by integrating
over the input distribution

p(f(x∗)|µx∗ , Σx∗ ,D)) =
∫

p(f(x∗)|x∗,D))p(x∗)dx∗ , (10)

wherep(f(x∗)|x∗,D)) = 1
σ(x∗)

√
2π

exp
[
−1

2
(f(x∗)−µ(x∗))2

σ2(x∗)

]
with meanµ(x∗) and variance

σ2(x∗) as given by equations (6) and (7) respectively.

3.1 Numerical approximation

Given that the integral (10) is analytically intractable (p(f(x∗)|x∗) is a complicated function
of x∗), one possibility is to perform a numerical approximation of the integral by a simple
Monte-Carlo approach:

p(f(x∗)|µx∗ , Σx∗ ,D)) =
∫

p(f(x∗)|x∗,D))p(x∗)dx∗ ' 1
T

T∑
t=1

p(f(x∗)|x∗t,D)) , (11)

wherex∗t are (independent) samples fromp(x∗), which are, in this Gaussian case, readily
obtained.

Figure 5 illustrates the Monte-Carlo approximation for the1D static case. We can also
use this approach to assess the goodness of the Gaussian approximation, i.e. if the error-bars
of the Gaussian approximation encompass all the samples up to stepk, we can conclude
that the approximation is valid up to that step. Figure 6 shows the histogram of the mean
predictions corresponding to100 samples fromp(x∗), for Σx∗ = 1 (left) andΣx∗ = 0.5
(right).

6

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

20 MC samples with 2σ error bars

x

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

x

when Σ
x

*=1

when Σ
x

*=0.5

Figure 5: Monte-Carlo approximation when
predicting atx∗ ∼ N (µx∗ , Σx∗), for µx∗ =
−8,−3, 2, 7, Σx∗ = 1 (top) andΣx∗ = 0.5
(bottom). For20 samplesx∗t from the differ-
entp(x∗), we plot the predicted means with their
2σ error-bar (dotted lines). Also plotted, the
sample-mean and sample-(2)standard deviation
at the mean of the sampledx∗t (thick solide
lines).

−0.1 −0.05 0 0.05 0.1 0.15
0

20

40

60
Histogram of predicted outputs (Σ

x
*=1)

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

10

20

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

20

40

mean = 0.1061

mean = 0.1607

mean = 0.5090

mean = 0.1115

−0.1 −0.05 0 0.05 0.1 0.15
0

50

100

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
0

20

40

Histogram of predicted outputs (Σ
x

*=0.5)

mean = 0.1173

mean = 0.1470

mean =
 0.5030

mean = 0.1296

Figure 6: Histograms of predicted means corresponding to100 samples fromx∗ ∼ N (µx∗ , Σx∗),
for µx∗ = −8,−3, 2, 7, (top to bottom),Σx∗ = 1 (left) andΣx∗ = 0.5 (right). Also given, the
value of the sample-mean.

7

3.2 Gaussian approximation

The analytical Gaussian approximation consists in only computing the mean and variance
of f(x∗)|µx∗ , Σx∗ ,D). They are obtained using respectively the law of iterated expectations
and law of conditional variances:

m(x∗) = Ex∗ [Ef(x∗)[f(x∗)|x∗]] = Ex∗ [µ(x∗)] (12)

v(x∗) = Ex∗ [varf(x∗)(f(x∗)|x∗)] + varx∗(Ef(x∗)[f(x∗)|x∗])

= Ex∗ [σ2(x∗)] + varx∗(µ(x∗)) (13)

whereEx∗ indicates the expectation underx∗.
Now, µ(x∗) andσ2(x∗), as given by equations (6) and (7), are functions of the random

argumentx∗ and we need further approximations to be able to compute these moments.

3.3 Predictive meanm(x∗)
We approximateµ(x∗) by its first order Taylor expansion aroundµx∗ :

µ(x∗) = µ(µx∗) +
∂µ(x∗)

∂x∗

∣∣∣∣
T

x∗=µx∗
(x∗ − µx∗) + O(||x∗ − µx∗ ||2) (14)

with µ(µx∗) = k(µx∗)T K−1y and where||x∗ − µx∗ ||2 = (x∗ − µx∗)T (x∗ − µx∗).
Then, according to equation (12), we have

Ex∗ [µ(x∗)] ≈ Ex∗

[
µ(µx∗) +

∂µ(x∗)
∂x∗

∣∣∣∣
T

x∗=µx∗
(x∗ − µx∗)

]
= µ(µx∗) . (15)

Therefore, we see that, within a first order Taylor expansion, the mean prediction at a
randomx∗ does not provide any correction over the zeroth order, we have

m(x∗) = k(µx∗)T K−1y . (16)

Of course, the goodness of the first order approximation depends on the curvature of
µ(x∗), as well as on the variance ofx∗: in one dimension, it can easily be seen geometrically
that if µ(x∗) has high curvature atµx∗ , this approximation will not be valid, unlessΣx∗ is
very small (see figure 7). The test inputs were chosen so as to illustrate different features:
small function gradient and high density of training points atx = 7, small function gradient
but near the edge (few training points) atx = −8, high function gradient and high density
of training points atx = 2 and at last high function gradient with few training points for
x = −3.

3.4 Predictive variancev(x∗)
To compute the variance, we first need to calculateEx∗ [σ2(x∗)]. For this, we need to ap-
proximateσ2(x∗) and a natural choice is its second order Taylor expansion aroundµx∗ :

σ2(x∗) = σ2(µx∗) +
∂σ2(x∗)

∂x∗

∣∣∣∣
T

x∗=µx∗
(x∗ − µx∗)

+
1
2
(x∗ − µx∗)T ∂2σ2(x∗)

∂x∗∂x∗T

∣∣∣∣
x∗=µx∗

(x∗ − µx∗) + O(||x∗ − µx∗ ||3) (17)

8

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

x

Random inputs and corresponding targets

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

−0.5

0

0.5

1

1.5

x

Figure 7: Function outputs (dots) and tar-
gets (crosses) corresponding to10 different
inputs taken fromx∗ ∼ N (µx∗ , Σx∗), for
µx∗ = −8,−3, 2, 7 andΣx∗ = 1 (top) and
0.5 (bottom). Also plotted, the gradients at
the differentµx∗. If Σx∗ is large and the
gradient is steep, targets fromp(x∗) will be
quite far from the target atµx∗.

with σ2(µx∗) = k(µx∗) − k(µx∗)T K−1k(µx∗). Thus, we have

Ex∗ [σ2(x∗)] ≈ σ2(µx∗) + Ex∗

[
1
2
(x∗ − µx∗)T ∂2σ2(x∗)

∂x∗∂x∗T

∣∣∣∣
x∗=µx∗

(x∗ − µx∗)

]
, (18)

and using the formula giving the expectation of a quadratic form under a Gaussian,2 we
arrive at

Ex∗ [σ2(x∗)] ≈ σ2(µx∗) +
1
2
Tr

{
∂2σ2(x∗)
∂x∗∂x∗T

∣∣∣∣
x∗=µx∗

Σx∗

}
. (19)

Furthermore, using (14), we have

varx∗(µ(x∗)) ≈ varx∗

(
µ(µx∗) +

∂µ(x∗)
∂x∗

∣∣∣∣
T

x∗=µx∗
(x∗ − µx∗)

)

=
∂µ(x∗)

∂x∗

∣∣∣∣
T

x∗=µx∗
Σx∗

∂µ(x∗)
∂x∗

∣∣∣∣
x∗=µx∗

. (20)

This leads to

v(x∗) = σ2(µx∗) +
1
2
Tr

{
∂2σ2(x∗)
∂x∗∂x∗T

∣∣∣∣
x∗=µx∗

Σx∗

}
+

∂µ(x∗)
∂x∗

∣∣∣∣
T

x∗=µx∗
Σx∗

∂µ(x∗)
∂x∗

∣∣∣∣
x∗=µx∗

(21)

which we can also write

v(x∗) = σ2(µx∗) + Tr

{
Σx∗

(
1
2

∂2σ2(x∗)
∂x∗∂x∗T

∣∣∣∣
x∗=µx∗

+
∂µ(x∗)

∂x∗

∣∣∣∣
x∗=µx∗

∂µ(x∗)
∂x∗

∣∣∣∣
T

x∗=µx∗

)}
(22)

2 ∫
(x − µ)T Σ−1(x − µ)N (m,S)dx = (µ − m)T Σ−1(µ − m) + Tr[Σ−1S]

9

with

∂µ(x∗)
∂x∗

d

=
∂k(x∗)T

∂x∗
d

K−1 y (23)

∂2σ2(x∗)
∂x∗

d∂x∗
e

=
∂2k(x∗)
∂x∗

d∂x∗
e

− 2
∂k(x∗)T

∂x∗
d

K−1 ∂k(x∗)
∂x∗

e

− 2
∂2k(x∗)T

∂x∗
d∂x∗

e

K−1k(x∗) (24)

for d, e = 1 . . . D (input dimension) and partial derivatives evaluated atx∗ = µx∗ .
Compared to the predicted variance obtained in the ‘non-random’ input case, we now

have a correction term of the zeroth order which involves the computation of the first and
second derivatives of the covariance function (2).

Figure 8 illustrates the Gaussian approximation when predicting at a randomx∗.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

GP approximation: Mean predictions with σ error bars

x

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

x

Figure 8: Gaussian approximation when pre-
dicting at x∗ ∼ N (µx∗ , Σx∗), for µx∗ =
−8,−3, 2, 7, Σx∗ = 1 (top) andΣx∗ = 0.5 (bot-
tom). Plot of the predicted means with their2σ
error-bars.

3.4.1 Computing the derivatives

We need to compute the first and second derivatives of the covariance between the new points
and the training points, with respect to changes in the components of those points. We have

ki(x∗) = C(xi, x∗) = v1 exp

[
−1

2

D∑
d=1

wd(xi
d − x∗

d)
2

]
(25)

whereki(x∗) is theith component ofk(x∗). The first and second derivatives evaluated at
x∗ = µx∗ are then given by


∂ki(x∗)

∂x∗
d

∣∣∣
x∗=µx∗

= wd(xi
d − µx∗d)ki(µx∗)

∂2ki(x∗)
∂x∗

d∂x∗
e

∣∣∣
x∗=µx∗

= wd[−δde + (xi
d − µx∗d)we(xi

e − µx∗e)]ki(µx∗) .
(26)

Figure 9 showsk, dk/dx andd2k/dx2 in the one dimensional case. It is straightforward

that we have∂k(x∗)
∂x∗

d
= ∂2k(x∗)

∂x∗
d∂x∗

e
= 0 sincek(x∗) = C(x∗, x∗) = v1.

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

Covariance between test and training points
 and derivatives

k(
x*)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.1

−0.05

0

0.05

0.1

−10 −8 −6 −4 −2 0 2 4 6 8 10

−0.05

0

0.05

x

dk
(x

*)/
dx

d2 k(
x*)/

dx
2

Figure 9: Covariance between test (x∗) and
training points (top) with first (middle) and sec-
ond (bottom) derivatives. The functions are plot-
ted for 100 training points and also marked at
the20 training points previously used. The solid
lines and crosses correspond tox∗ = −8, dashed
lines and circles tox∗ = −3, dotted lines and as-
terisks tox∗ = 2 and finally dash-dot lines and
points tox∗ = 7. Close to the training points,
the term∂k(x∗)/∂x∗ is close to zero, implying
a very small contribution to the variance from
the term∂µ(x∗)/∂x∗.

Replacing in (23) we obtain

∂µ(x∗)
∂x∗

d

∣∣∣∣
x∗=µx∗

= [wd(xd − µx∗d).k(µx∗)]T K−1 y , (27)

for the derivative of the mean, and in (24), we get for the second derivative of the variance

∂2σ2(x∗)
∂x∗

d∂x∗
e

∣∣∣∣
x∗=µx∗

= −2wdwe{[(xd − µx∗d).k(µx∗)]T K−1[(xe − µx∗e).k(µx∗)]

+[(xd − µx∗d).(xe − µx∗e).k(µx∗)]T K−1k(µx∗)} (28)

+2wdk(µx∗)T K−1k(µx∗)δde (29)

wherexd is theN × 1 vector of input data in thedth dimension anda.b denotes the compo-
nentwise product of vectorsa andb. Note that

2wdk(µx∗)T K−1k(µx∗)δde = 2wd(k(µx∗) − σ2(µx∗))δdewithk(µx∗) = v1. (30)

4 Application to the iterative k-step ahead prediction
of time series

We wish to apply these results to the multiple-step ahead prediction task of time series.
Currently, this can be achieved by either training the model to learn how to predictk steps
ahead (direct method) or by making repeated one-step ahead predictions (iterative method).
In what follows, we are concerned with the iterative approach and suggest to propagate the
uncertainty as we predict ahead in time.

4.1 ”Naive” iterative k-step ahead prediction

Consider the time seriesyt1 , . . . , yt and the state-space model{
xti = [yti−1, . . . , yti−L]T

yti = f(xti) + εti
(31)

11

where thestatex at timeti is composed of previous outputs, up to a given lag3 L and the
(white) noise has variancev0.

The iterativek-step ahead prediction method works as follows: it predicts only one time
step ahead, using the estimate of the output of the current prediction, as well as previous out-
puts (up to the lagL), as the input to the prediction of the next time step, until the prediction
k steps ahead is made.

Using the model (31) and assuming the data is known up to, say, time stept, the predic-
tion of y at t + k is computed via

xt+1 = [yt, yt−1, . . . , yt+1−L]T → f(xt+1) ∼ N (µ(xt+1), σ2(xt+1))
ŷt+1 = µ(xt+1)

xt+2 = [ŷt+1, yt, . . . , yt+2−L]T → f(xt+2) ∼ N (µ(xt+2), σ2(xt+2))
ŷt+2 = µ(xt+2)

...

xt+k = [ŷt+k−1, ŷt+k−2, . . . , ŷt+k−L]T → f(xt+k) ∼ N (µ(xt+k), σ2(xt+k))
ŷt+k = µ(xt+k)

where the point estimatesµ(xt+k−i) are computed using equation (6). This setup does not
account for the uncertainty induced by each successive prediction (varianceσ2(xt+k−i)+v0

associated to eacĥy, given by (7)).

4.2 Propagating the uncertainty

Using the results derived in the previous section, we propose to formally incorporate the
uncertainty information about the future regressor. That is, as we predict ahead in time, we
now view the lagged outputs as random variables.

In this framework, if, as before, data are known up to timet and we wish to predictk
steps ahead, we now have

• at t + 1,

xt+1 ∼ N



 yt

. . .
yt+1−L


 ,


 0 . . . 0

.
0 . . . 0






predictyt+1 ∼ N (m(xt+1), v(xt+1) + v0), using (16) and (22), withx∗ = xt+1

• at t + 2,

xt+2 ∼ N



 m(xt+1)

. . .
yt+2−L


 ,


 v(xt+1) + v0 . . . 0

.
0 . . . 0






predictyt+2 ∼ N (m(xt+2), v(xt+2) + v0)

...
3In this report, we are not concerned with the identification of the lag and assume it has a known, fixed value.

12

• at t + k,

xt+k ∼ N



 m(xt+k−1)

. . .
m(xt+k−L)


 ,


 v(xt+k−1) + v0 . . . cov(yt+k−1, yt+k−L)

.
cov(yt+k−L, yt+k−1) . . . v(xt+k−L + v0)






predictyt+k ∼ N (m(xt+k), v(xt+k) + v0).

Input distribution At time t+k, we have the random input vectorxt+k = [yt+k−1, . . . , yt+k−L]T

with mean formed by the predicted means of the lagged outputsyt+k−τ , τ = 1, . . . , L, given
by (16).

TheL × L input covariance matrix has the different predicted variances on its diagonal:
Σii

xt+k = v(xt+k−i), for i = 1 . . . L, computed with (22).
The cross-covariance terms are obtained as follows: at time stept + k, we predictyt+k

and then, for the next time step, we need to compute the covariance betweenyt+k and
[yt+k−1, . . . , yt+k+1−L]. That is, in general, we want to computecov(yt+k, xt+k):

cov(yt+k, xt+k) = E[yt+kxt+k] − E[yt+k]E[xt+k] (32)

with E[yt+k] given by (16) andE[xt+k] = µxt+k . We have

E[yt+kxt+k] =
∫ ∫

yt+kxt+kp(yt+k|xt+k)p(xt+k)dyt+kdxt+k (33)

=
∫

xt+k

[
µ(µxt+k) +

∂µ(xt+k)
∂xt+k

∣∣∣∣
T

xt+k=µ
xt+k

(xt+k − µxt+k)

]
p(xt+k)dxt+k(34)

which givesE[yt+kxt+k] = µ(µxt+k)µxt+k + ∂µ(xt+k)
∂xt+k

∣∣∣T
xt+k=µ

xt+k

Σx∗ .

So that the cross-covariance terms are given by

cov(yt+k, xt+k) =
∂µ(xt+k)

∂xt+k

∣∣∣∣
T

xt+k=µ
xt+k

Σxt+k . (35)

5 Illustrative examples

The first example is intended to provide a basis for comparing our Gaussian approximation
to the Monte-Carlo sampling from the ‘true’ distribution (numerical approximation of the
integral (10)) when the uncertainty is propagated as we predict ahead in time. The second
one, inspired from real-life applications, enables us to analyse the difference between the
iterativek-step ahead prediction when propagating the uncertainty and when using only the
output estimates.

The predictive performance of the different methods is assessed computing the average
absolute error (AE), the average squared error (SE) and average minus log predictive den-
sity4 (mLPD).

4To evaluate these losses in the case of Monte-Carlo sampling, we use the sample mean and sample variance.

13

5.1 A 2D non-linear dynamic system

We present an example of a non-linear, second order, dynamic systemΩ, composed of a
blend of two affine models,Ω : ẋ = f1(x) + f2(x), wherefi(x) = φ(x)(Aix + di),

φ(x) = exp(− ‖ x − c ‖ /σ2
i) and ci = A−1

i di, with A1 = A2 =
[

2 5
−10 −3

]
,

d1 =
[

10
−10

]
, d2 = −d1, σ1 = 1, σ2 = 2. This system has two stable equilibrium points

and a stable limit cycle. Because the data was acquired by starting the simulation at a random
initial position, and simulating for a fixed period, we find a number of interesting features
which are typical of many real world examples when modelling from observed data.

The identification data consist of6 simulations (200 points per simulation) with different
starting points and the two test trajectories result from two different simulations.

Assuming a model of the typext+1 = f(xt), wherex is two-dimensional, we create the
input and target matrices corresponding to each trajectory. We then model each dimension
with a separate Gaussian process:xi

t+1 = f i(xt), for i = 1, 2. Figure 10 shows the pre-
dictions when predicting fromk = 1 to k = 10 steps ahead, when starting the simulation
at six different points. Figure 11 shows the true trajectory along with the mean predictions
with their 2σ uncertainties (crosses) when propagating the uncertainty with the Gaussian
approximation and30 samples from the true predictive distribution.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

(k=1) x
10

(k=10) x
11

x
20

x

21

x
30

x
95

x
104

Test trajectory 1: From 1 to 10 steps ahead at different starting points

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4
Test trajectory 2: From 1 to 10 steps ahead at different starting points

x
1

(k=1)

x
10

 (k=10)

x
11

x
20

x
21

x
30

x
95

x
104

Figure 10: Iterative method in action: simulation from1 to 10 steps ahead for different starting
points of the test trajectories. Mean predictions with2σ error bars (circles), along with30 sam-
ples from the true distribution, when propagating the uncertainty, for the two test trajectories.
Also shows (left) the training data (dots).

These figures clearly show that the Gaussian approximation is valid, with error bars
encompassing the samples from the true distribution. This is confirmed quantitatively by the
losses (see table 1).

14

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−5

−4

−3

−2

−1

0

1

2

3

4

5
Test trajectory 1: 10−step ahead predictions

mean prediction
with 2σ error bars

samples from the
true distribution

true trajectory

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4
Test trajectory 2: 10−step ahead pedictions

Figure 11:10-step ahead prediction for the two test trajectories (the first point here corresponds
to x10 in figure 10, etc). Same legend as figure 10.

Table 1: Losses for the Gaussian approximation (GP) and the sampling from the true distribution
(MC) on the two test trajectories. The losses are given for each of the two dimensions.

AE SE SE SE mLPD mLPD
dim. 1 dim. 2 dim. 1 dim. 2 dim. 1 dim. 2

Traj. 1 GP 0.037 0.071 0.016 0.061 −0.040 6.471
(Fig. 11, left) MC 0.037 0.072 0.016 0.061 3.059 3.474

Traj. 2 GP 0.003 0.003 0.282.10−4 0.337.10−4 −4.559 −3.656
(Fig. 11, right) MC 0.003 0.003 0.272.10−4 0.358.10−4 −3.745 −3.763

15

5.2 Prediction of a pH process simulation

We apply the method on a pH neutralisation process benchmark ([2]). The training and test
data consists of pH values (outputsy of the process) and a control input signal (u).

With a model of the formyt = f(yt−8, . . . , yt−1, ut−8, . . . , ut−1), we have a training
input matrix of size1228 × 16, with the corresponding vector of targets and a different set
of 15952 test data (all data had their mean removed). After maximization of the likelihood,
the ARD tool indicates that the lagged outputs contributing the most areyt−1,yt−2 andyt−3

whose hyperparameters are one order of magnitude larger than the those corresponding to
other outputs. In the same manner, moreweightis given tout−5.

Figure 12 shows the simulation from1 to 10 steps ahead starting at two different points
and figure 13 the plots the10-step ahead predicted points, at the beginning and at the end of
the validation set. On both figures, we plot the true data and the mean predictions with their
2σ uncertainties obtained when propagating the uncertainty (circles) or not (crosses). For
the10-step ahead predictions, we have the following losses. The average absolute error and
squared error are0.3255 and0.4090 respectively, whether one propagates the uncertainty
or not. On the other hand, the average minus log predictive density is much better when
propagating the uncertainty (0.6527 against2763.1!).

24 25 26 27 28 29 30 31 32 33
−10

−8

−6

−4

−2

0

2

4

6

8
From 1 to 10 steps ahead

k=1

k=10

true data

1.5915 1.5916 1.5917 1.5918 1.5919 1.592 1.5921 1.5922 1.5923 1.5924

x 10
4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
From 1 to 10 steps ahead

k=1

k=10

Figure 12: From1 to 10 steps ahead: two windows of predicted means with their2σ uncertainties
with (circles) and without (crosses) propagation of the uncertainty at different times within the
validation set.

As we predict ahead and propagate the uncertainty, the uncertainty does not necessarily
increase monotically withk, but is also affected by changes in the control signal, see figure
12. On the other hand, we see that when the uncertainty is not propagated, the model is too
confident with very small error bars. In this example, the important role of the control signal
has to be noted, partly explaining the big changes in uncertainties observed on the10-step
ahead predictions plot (figure 13).

16

10 20 30 40 50 60 70 80 90 100 110
−10

−5

0

5

10

15

time

pH
 v

al
ue

10−step ahead predictions of y
10

 up to y
110

1.586 1.587 1.588 1.589 1.59 1.591 1.592 1.593 1.594 1.595

x 10
4

−4

−2

0

2

4

6

8

10

time

pH
 v

al
ue

10−step ahead predictions of y
15860

 up to y
15942

Figure 13:10-step ahead mean predictions with their2σ error bars, when propagating the un-
certainty (circles) and when using the previous estimates only (crosses). These predictions are
taken at the beginning and at the end of the test set.

6 Conclusions

We have presented an approximation which allows us to use knowledge of the variance on
inputs to Gaussian process models to achieve more realistic prediction variance. This is
useful in its own right in the case of noisy model inputs.

Iterating this approach allows us to use it as a method for efficient propagation of un-
certainty in multi-step ahead time-series predictions. In experiments on simulated dynamic
systems, comparing our Gaussian approximation to Monte Carlo simulations, we found that
the propagation method is comparable to Monte Carlo simulations, and that both approaches
achieved more realistic error bars than a naive approach which ignores the uncertainty on
current state.

This method can help understanding the underlying dynamics of a system, as well as
being useful, for instance, in a model predictive control framework where knowledge of
the accuracy of the model predictions over the whole prediction horizon is required (see
(Murray-Smith and Sbarbaro-Hofer, 2002) for a model predictive control law based on Gaus-
sian processes taking account of the prediction uncertainty).

Work is currently in progress towards an exact solution within the Gaussian approxima-
tion, that is, without the Taylor expansions of the mean and variance but using their original
expressions and computing the integrals analytically.

Acknowledgements

Many thanks to Professor Mike Titterington for his useful comments and corrections. The
authors gratefully acknowledge the support of theMulti-Agent ControlResearch Training
Network - EC TMR grant HPRN-CT-1999-00107, and support from EPSRC grantModern

17

statistical approaches to off-equilibrium modelling for nonlinear system controlGR/M76379/01.

References

Henson, M. A. and Seborg, D. E. (1994). Adaptive nonlinear control of a ph neutralisation
process. InIEEE Trans Control System Technology, volume 2, pages 169–183.

Mackay, D. J. C. (1997). Gaussian Processes: A replacement for supervised Neural Net-
works? Technical report, Cavendish Laboratory, Cambridge University. Lecture notes
for a tutorial at NIPS 1997.

Murray-Smith, R. and Sbarbaro-Hofer, D. (2002). Nonlinear adaptive control using non-
parametric Gaussian Process prior models. In15th IFAC World Congress on Automatic
Control, Barcelona.

Neal, R. M. (1995).Bayesian Learning for Neural Networks. PhD thesis, Dept. of Computer
Science, University of Toronto.

O’Hagan, A. (1978). Curve fitting and optimal design for prediction.Journal of the Royal
Statistical Society B, 40:1–42.

Rasmussen, C. E. (1996).Evaluation of Gaussian Processes and other methods for non-
linear regresion. PhD thesis, Dept. of Computer Science, University of Toronto.

Williams, C. K. I. (2002). Gaussian Processes. To appear in The handbook of Brain Theory
and Neural Networks, Second edition, MIT Press.

Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian Processes for Regression. In
Advances in Neural Information Processing Systems 8, pages 514–520. MIT Press.

18

