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Abstract

We consider the problem of multi-step ahead prediction in time series analysis using the
non-parametric Gaussian process modebktep ahead forecasting of a discrete-time non-
linear dynamic system can be performed by doing repeated one-step ahead predictions. For
a state-space model of the fomn = f(yi—1,...,y:—1), the prediction ofy at timet + k
is based on the estimatés, 1, - - ., yr+r—z Of the previous outputs. We show how, using
an analytical Gaussian approximation, we can formally incorporate the uncertainty about
intermediate regressor values, thus updating the uncertainty on the current prediction. In this
framework, the problem is that of predicting responses at a random input and we compare
the Gaussian approximation to the Monte-Carlo numerical approximation of the predictive
distribution. The approach is illustrated on a simulated non-linear dynamic example, as well
as on a simple one-dimensional static example.

*Technical Report TR-2002-119, Department of Computing Science, University of Glasgow, October, 2002.
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1 Introduction

One of the main objectives in time series analysis is forecasting and in many real life prob-
lems, one has to predict ahead in time, up to a certain time horizon (sometimeseatied

time or prediction horizon). Furthermore, knowledge of the uncertainty of the prediction is
important. Currently, the multiple-step ahead prediction task of a discrete-time non-linear
dynamic system is achieved by either explicitly trainingisect model to predict: steps

ahead, or by doing repeated one-step ahead predictions up to the desired horizon, which we
call theiterative method

There are a number of reasons why the iterative method might be preferred to the ‘direct’
one. Firstly, the direct method makes predictions for a fixed horizon only, making it com-
putationally demanding if one is interested in different horizons. Furthermore, the karger
the more training data we need in order to achieve a good predictive performance, because
of the larger number of ‘missing’ data betweeandt + k. On the other hand, the iterated
method provides ang-step ahead forecast, up to the desired horizon, as well as the joint
probability distribution of the intermediate points.

In the Gaussian process modelling approach, one computes predictive distributions whose
means serve as output estimates. (O’Hagan, 1978) was one of the first to introduce the Gaus-
sian process (GP) for regression but it really started being a popular non-parametric mod-
elling approach after the publication of (Neal, 1995). In (Rasmussen, 1996), it is shown
that GPs can achieve a predictive performance comparable to (if not better than) other mod-
elling approaches like neural networks or local learning methods. We will show that for a
k-step ahead prediction which ignores the accumulating prediction variance, the model is
not conservative enough, with unrealistically small uncertainty attached to the forecast. An
alternative solution is presented for iteratistep ahead prediction, with propagation of the
prediction uncertainty.

This report is organised as follows. First, we recall the main equations used in Gaussian
Process modelling. Then, we derive the expressions of the predictive mean and variance
when predicting at an uncertain input and show how we can use these results for the itera-
tive multiple-step ahead forecasting of time-series. We illustrate the approach on static and
dynamic examples and we finish with some conclusions.

2 Modelling with Gaussian Processes

For a comprehensive introduction to Gaussian Process modelling, please refer to (Mackay,
1997), (Williams and Rasmussen, 1996), or the more recent review (Williams, 2002).

2.1 The GP prior model

Formally, the random function or stochastic procggs) is a Gaussian process with mean
m(x) and covariance functiofi (z?, 24), if its values at a finite number of poinfgz!), ..., f(z™)
are seen as the components of a random vector normally distributed. That is, fer. each

Fl@), . f@™) ~ N(0,3) (1)
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whereY is ann x n covariance matrix whose entries give the covariances between each pair
of points and which is a function of the corresponding inpkits, = Cov(f(z?), f(z?)) =
C(aP, x?).

2.1.1 Role of the covariance function

The choice of the covariance function is of great importance and, as much as possible, should
reflect one’s prior knowledge or assumption about the underlying function (e.g. smoothness,
continuity assumptions). Here, as a special case, we assume that the process is stationary:
the mean is constant (chosen to be zero) and the covariance function only depends on the
distance between the inputs A common choice is

D
C(xP,z%) = vy exp [—% Z M] , (2)

d=1

where D is the input dimension. Figure 1 shows an examplelfD) of the covariance
matrix corresponding to this functionv; andw, are hyperparameters of the covariance
function.

Gaussian covariance matrix Figure 1:1-D example of a data covariance ma-
trix K = X + vl whereX has been computed
using the Gaussian covariance function given by
(2) andwy is the white noise variance. The ma-
trix plotted is100 x 100, for z € [—10, 10], but
the learning was based av = 20 data points
(black dots, here divided by a factor o6 so

as to be at the same scale as the covariance).
The corresponding hyperparameters aye=
0.1906, w = 1.9288, andv, = 0.0073 (found

by Maximum Likelihood, see section 2.2).

This particular choice of Gaussian (squared exponential) covariance function corresponds
to a prior assumption that the underlying functipis smoothandcontinuougfigure 2 shows
samples from a GP with such a covariance function). It accounts for a high correlation be-
tween the outputs of cases with nearby inputs. The parametgives the overall scale of
correlations and the parameters allow a different distance measure for each input dimen-
siond (correlation length in directiod). For a given problem, these parameters are adjusted
to the data at hand and, for irrelevant inputs, the correspondingill tend to zerot

It can be noted that the covariance function in the GP framework is very similar to the
kernelused in the Support Vector Machines community. In theory, the only restriction on
the choice of covariance function is that it has to generate a non-negative definite covariance
matrix (more discussion about alternative choices of covariance functions can be found in
(Mackay, 1997)).

1Automatic Relevance Determination idea developed by MacKay and Neal (Neal, 1995)
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2.2 Gaussian Process for regression

We assume a statistical model= f(z) + e with an additive uncorrelated Gaussian white
noise with variancey, ¢ ~ N'(0, vg). Given a set ofV data paird = {y’, 2"}, and a GP

prior on f(x), with zero-mean and Gaussian covariance function such as (2), our aim is to
get the predictive distribution of the function valfiex*) at a new (given) input*.

2.2.1 Learning by Maximum Likelihood
The likelihood of the data is simply

yNN(OvK)ﬂ (3)

wherey is the N x 1 vector of targets an& is the N x N ‘data covariance matrix’, such
that K, = X, + vodpq Whered,, is non-zero only whep = gq.

In a Maximum Likelihood framework, we then adjust the vector of hyperparameters
© = [wy ... wp v vo]T S0 as to maximise the log-likelihood

1 1. 1
£(8) = logp(y) = —5 log| K| - §yTK ly — 5V log(2m) , 4

which requires the calculation of the derivativei©) with respect to each hyperparameter
©;, given by

0L(®) _ oy [K— K 'y, (5)

00, 2

whereTr denotes the trace.

K| 1 oK
198 LT 198
a@j] 2y 90,

Samples from the GP(0,%) prior (dashed lines)

and posterior the data

data points

Figure 2: Realisations from a GP withmean
and training covariance matrik = > + vol
(see figure 1). Dashed lines: Samples from the
a priori GP (not taking account of the data).
Solid lines: Samples from the posterior, i.e. con-
ditioned on the training points. Also shown
' / o \ (black), the true functiorf(z) = sinx/x with

\\ s - o training data (true noise level 6f01).

2.2.2 Prediction atz*

For a givenz*, the predictive distribution of (z*), or equivalently ofy*, is simply obtained
by conditioning on the training data to obtai(f (z*)|z*, D).
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The joint distribution of the variables being Gaussian, this conditional distribution is also
Gaussian with mean and variance

pla*) = k(@) Ky (6)
o*(a*) = k(2") — k(z*) T K~ 'k(z") @)
wherek(z*) = [C(z',2%),...,C(zN,z*)]T is the N x 1 vector of covariances between

the new point and the training targets ard*) = C(z*, z*).

The predicted meap(z*) serves as an estimate of the function outpift*), with
uncertaintyo (z*). It is also a point estimate for the corresponding noisy taggetwith
varianceo?(x*) + vg. Figure 3 shows the predictions at four new inputs. We see that the
prediction atz* far away from the data, or near the edges, leads to a predicted point with a
variance larger than that at nearby the training inputs. This is becalge*) decreases as
the distance betweeri and the training points increases (see figure 9), thus decreasing the
k(z*)T K~'k(z*) term and therefore increasing the variance.

n Mean predictions at X'=-8 -3 2 7 with 20 error bars

Figure 3: Mean predictions at* =
—8, —3,2,7 with their 20 error-bars, com-
puted using equations (6) and (7) resp.
For z* far away from the data, or near
the edges, the corresponding uncertainty is
large. Also plotted, the true function and
the 20 training points (black crosses).

It is worth noting that the predictive mear{z*) can be seen as a weighted sum of the
training data
wa*) =sly, with s’ =k(z")TK™! (8)

wheres is called thesmoothingor effectivekernel.
Alternatively, one can see it as a linear combination of the covariance between the new
2* and the training points (Williams, 2002):

wa®) =k(z)a, with a=Kly. 9)

Either the smoothing kernels or the alpha-coefficients depend on the density of the points,
through the inverse of the covariance matrix. Figure 4 shows the smoothing kernels and
alpha-coefficients corresponding to the case when there ar@@irgining points and when
the number of training points is largé&/(= 100). For a large number of training points, the
value of the alpha-coefficients is higher than for a few points. On the contrary, the amplitude
of the smoothing kernels is smaller.
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Figure 4: First two plots: Smoothing kernels
s’ = k(z*)TK~! for a large (top) and a small
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- b ope s ce s @ solid line and crosses correspondato = —8,
| for N = 100 and N = 20 resp., the dashed
line and circles tac* = —3, the dotted line and
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asterisks tar* = 2 and the dash-dot line and
points tox* = 7. The last two plots show the

-40

alpha-coefficientsr = K 'y for N = 100 and
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e ] N = 20 (the points are not joined whe¥ = 20
due to the sparse nature of the training set).
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3 Prediction at a random input

If we now wish to predict the distribution of the function valy€f(z*)), at the random
variablex*, with x* ~ N (u.+,3.+), the predictive distribution is obtained by integrating
over the input distribution

p(f(@")|pax, Xo=, D)) = /p(f(x*)lx*»D))p(x*)dﬂﬁ* ; (10)

%) — * 2 . % .
wherep(f(z*)|z*, D)) = m exp [—%%} with meanu(z*) and variance
o?(x*) as given by equations (6) and (7) respectively.

3.1 Numerical approximation

Given that the integral (10) is analytically intractabi¢ (z*)|=*) is a complicated function
of *), one possibility is to perform a numerical approximation of the integral by a simple
Monte-Carlo approach:

T

p(f(z")|pa+, Eav, D)) = /p(f(x*)lx*,D))p(ﬂf*)dﬂf* = %Zp(f(fﬂ*)\fc*tﬂ)) , (11)

t=1

wherez*" are (independent) samples frartw*), which are, in this Gaussian case, readily
obtained.

Figure 5 illustrates the Monte-Carlo approximation for iHe static case. We can also
use this approach to assess the goodness of the Gaussian approximation, i.e. if the error-bars
of the Gaussian approximation encompass all the samples up té&,step can conclude
that the approximation is valid up to that step. Figure 6 shows the histogram of the mean
predictions corresponding t0 samples fronp(z*), for ¥,- = 1 (left) andX,« = 0.5

(right).



20 MC samples with 20 error bars

when Z =1
X

Histogram of predicted outputs (Zx*=l)

“or mean = 0.1061 l 1
20+ —
. ‘

I
-0.1 -0.05 0 0.05 0.1 0.15

mean = 0.1607

ol
-02 -01 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mean = 0.5090
0
-03 -0.2 -0.1 0 01 02 03 04 05 06 07 08 09 1 11 12

mean = 0.1115 I
20+ 4
o .

-0.3 -0.2 -0.1 0 0.1 0.2 03

Figure 5: Monte-Carlo approximation when
predicting atz* ~ N (g, Xy ), fOr g =
-8,-3,2,7, ¥, = 1 (top) andX,- = 0.5
(bottom). For20 samplesz** from the differ-
entp(z*), we plot the predicted means with their
20 error-bar (dotted lines). Also plotted, the
sample-mean and sample-(2)standard deviation
at the mean of the sampled® (thick solide
lines).

Histogram of predicted outputs (ZX*ZO.S)
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Figure 6: Histograms of predicted means correspondingsamples from:* ~ N (ji,«, ¥+ ),
for u,» = —8,-3,2,7, (top to bottom) Y- = 1 (left) andX,- = 0.5 (right). Also given, the

value of the sample-mean.



3.2 Gaussian approximation

The analytical Gaussian approximation consists in only computing the mean and variance
of f(z*)|ps=, X+, D). They are obtained using respectively the law of iterated expectations
and law of conditional variances:

m(2%) = Ege [Byn)[f (27)]a"]) = Epe [u(a) (12)
0(@") = By [var e (F(@")|e")] + v, (Bjm [ (@) |e"))
— By [o®(2")] + var,- (n(a")) (13)

whereL,.- indicates the expectation undet.
Now, u(z*) anda?(z*), as given by equations (6) and (7), are functions of the random
argument:* and we need further approximations to be able to compute these moments.

3.3 Predictive meanm(z*)
We approximate:(z*) by its first order Taylor expansion aroupg-:

aﬂ(x*) 4 * * 2
G| (@ =) + Ol — pae ) (14)
T CC*:;J,I*
with M(Mﬂc*) = k(ﬂx*)TK_ly and Wherq’w* - Mz*”2 = (Jj* - N:v*)T(x* - Nw*)'
Then, according to equation (12), we have

Op(x™)

w(@*) = ppe) +

T

(z" — ux*)] = ppa) - (15)
CE*:;L‘,):*

Therefore, we see that, within a first order Taylor expansion, the mean prediction at a
randomz* does not provide any correction over the Z&rrder, we have

m(z*) = k()" Ky . (16)

Of course, the goodness of the first order approximation depends on the curvature of
wu(z*), as well as on the variance of: in one dimension, it can easily be seen geometrically
that if u(x*) has high curvature at,-, this approximation will not be valid, unless,- is
very small (see figure 7). The test inputs were chosen so as to illustrate different features:
small function gradient and high density of training points at 7, small function gradient
but near the edge (few training points)aat= —8, high function gradient and high density
of training points atr = 2 and at last high function gradient with few training points for
T = —3.

3.4 Predictive variancev(x*)

To compute the variance, we first need to calculdte[o?(x*)]. For this, we need to ap-
proximates?(z*) and a natural choice is its second order Taylor expansion areund

. do2(z*)|* .
02(x ) = 02(/%*)‘1‘ 83(7* ) (2% — pig+)
I*:/J,I*
1 * T 8202(3:*) * * 3
+ gl ) G| @ )+ Ol — el @)
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Random inputs and corresponding targets

| Figure 7: Function outputs (dots) and tar-
gets (crosses) correspondingltodifferent

L~ | inputs taken fromz* ~ N(p-, S-), for
o T T e Y = —8,-3,2,7andy,. = 1 (top) and
- 0.5 (bottom). Also plotted, the gradients at

1 the differentyu,-. If X, is large and the
| gradient is steep, targets frgm*) will be
| quite far from the target at,.-.

with 02 (pz+) = k(pe) — k(e )T K~ k(je+). Thus, we have

7 02 (a*)

20 %\ ~0 ~2
By [0%(2)]  0*(jta=) + By 0T

1 *
5@ — figr)

T* =L, *

(z* — ,ux*)] , (18)

and using the formula giving the expectation of a quadratic form under a Gadssian,

arrive at
2/ K\ o 2 } 3202(95*)
Furthermore, using (14), we have
. opa) [t .
varg-(u(z”)) =~ varg (:“(:“J»‘*) + g( * ) (" — Mx*)>
T IE*:/LZ*
* T *
_ a’é(“i s, 8‘5(%; ) (20)
€z I*Zuz* T x*:uz*
This leads to
o 2 1. J 9% (") op) " o Opla)
U(.fE ) =0 (/’Lz*) -+ 2Tr 8;1;*833*T x*zzui: + 81‘* x*zzucz: aﬂf* _— (21)
which we can also write
1 9%0%(z*) op*)|  ou(a) |
M) =02 (pg) + Tr{ o | = 22
'U(x ) o (,LL )+ r{ <2 aﬂj‘*ax*T w*:‘uw* ax* x*zﬂgx* x*:“;r/* ( )

[ =S @ = )N, S)de = (0= m) TS - m) + TES)



with
ou®) ok,

= — K 23
oz, o, Y (23)
0?02 (x*) 0%k (x*) ok(z*)T | Ok(z*) ’k(z)"
— = -2 K~ -2 K k(z*) (24
0,0z 00z oz, ox}t 00z (@7) (24

ford,e =1... D (input dimension) and partial derivatives evaluatead*at 1.~ .

Compared to the predicted variance obtained in the ‘non-random’ input case, we now

have a correction term of the z&rder which involves the computation of the first and
second derivatives of the covariance function (2).
Figure 8 illustrates the Gaussian approximation when predicting at a rantlom

GP approximation: Mean predictions with o error bars

8w dicting at 2* ~ N (g, Xpr), for pi,-
—8,-3,2,7, ¥+ = 1 (top) andx,- = 0.5 (bot-

S ) ] tom). Plot of the predicted means with their
ool “ ] error-bars.

ok Y ’4’\%
L N N

3.4.1 Computing the derivatives

o , ] Figure 8: Gaussian approximation when pre-

We need to compute the first and second derivatives of the covariance between the new points
and the training points, with respect to changes in the components of those points. We have

D
k‘l(;p*) = C'(;z:i7 x*) = vy exp [—% Z wd(xil — xZ)QI (25)
d=1

wherek?(z*) is theit” component ok(z*). The first and second derivatives evaluated at
x* = ug+ are then given by

W = wgll) — pra ) K ()
T - . . (26)
Oz} 0x} x*:uj Wa[—0de + (Tq = o= g)We(Te — pare) K" (Ha) -

Figure 9 showsk, dk/dx andd?k/dz? in the one dimensional case. Itis straightforward

that we haveagg) = gilz(gx) = 0 sincek(z*) = C'(z*, %) = v;.
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dk(x)/dx k()

d?k(x")dx?

Covariance between test and training points Figure 9: Covariance between tegt*x and
and derivatives .. . . . .
— training points (top) with first (middle) and sec-

0.1F

\\b\ S0 ond (bottom) derivatives. The functions are plot-
: ted for 100 training points and also marked at

SosTA AT RS TS the 90 training points previously used. The solid

lines and crosses correspondto= —8, dashed
lines and circles te* = —3, dotted lines and as-
terisks tor* = 2 and finally dash-dot lines and

-0.05

points tox* = 7. Close to the training points,

“‘*‘v the termok(z*)/0z* is close to zero, implying
L e, e et a very small contribution to the variance from
* the termdu(z*)/ox*.
Replacing in (23) we obtain
ou(x* _
M) — o — o) el ) Ky @7)
for the derivative of the mean, and in (24), we get for the second derivative of the variance
9?o?(z* _
T~ gt — e Kl )T e — e ) el
LaOTe TF =[x
+[(xa — par g)-(xe — l‘x*e)k(ﬂm*)]TK_lk(Mx*)} (28)
+2wak (prpe )T K R (0 )8 (29)

wherex, is the N x 1 vector of input data in thé"” dimension and..b denotes the compo-
nentwise product of vectorsandb. Note that

2wk (e )T K " k(g ) g0 = 2wa(k(pta ) — 02 (iar))dgewithk (pue+) = v1. (30)

4  Application to the iterative k-step ahead prediction
of time series

We wish to apply these results to the multiple-step ahead prediction task of time series.
Currently, this can be achieved by either training the model to learn how to pfedieps

ahead (direct method) or by making repeated one-step ahead predictions (iterative method).
In what follows, we are concerned with the iterative approach and suggest to propagate the
uncertainty as we predict ahead in time.

4.1 ’Naive” iterative k-step ahead prediction

Consider the time serigg!, . .., y' and the state-space model
xti - [yti717 e 7ytliL]T (31)
y' = fa") + €



where thestatex at timet; is composed of previous outputs, up to a giver? lagand the
(white) noise has varianeg.

The iterativek-step ahead prediction method works as follows: it predicts only one time
step ahead, using the estimate of the output of the current prediction, as well as previous out-
puts (up to the lad.), as the input to the prediction of the next time step, until the prediction
k steps ahead is made.

Using the model (31) and assuming the data is known up to, say, time, steppredic-
tion of y att + k is computed via

xtJrl — [yt7 yt717 o yt+1fL]T N f(wt+1) ~ ./\/’(,U/(I't+1), 02($t+1))
yt-&-l — ,u,(l'H_l)
xt+2 _ [gt—i-l, yt’ e yt+2—L]T N f($t+2) ~ N(u(l’t+2), 02($t+2))
§2 = p(a"*?)
xt—l—k — [gt—i-k—l’ 3Qt—&-k—27 o 7yt—i—k—L]T _ f(:CH_k) ~ N(M(xt+k), 02 (.’L‘t+k))

yt+k — M(xt+k)

where the point estimatesx!**~%) are computed using equation (6). This setup does not
account for the uncertainty induced by each successive prediction (vasiapdée ) 4 v,
associated to eaa) given by (7)).

4.2 Propagating the uncertainty

Using the results derived in the previous section, we propose to formally incorporate the
uncertainty information about the future regressor. That is, as we predict ahead in time, we
now view the lagged outputs as random variables.

In this framework, if, as before, data are known up to titvend we wish to predick
steps ahead, we now have

e att+1,

yt 0 ... 0

AN I

ytti-r 0 ... 0
predicty’*! ~ N (m(z'*1), v(z*1) + vg), using (16) and (22), with* = z'+!

e att + 2,
m(ztt1) vt 4w ... 0

2o N
ytt2-L 0 .0

predicty’™ ~ N (m(z*2), v(z"2) + v)

3In this report, we are not concerned with the identification of the lag and assume it has a known, fixed value.
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o att + k,

m(xtJrkfl) ,U(xtJrkfl) + v . cov(y”k*l, yt+k—L)
xt+k ~N 7

m(le*k*L) cov(ytJrk*L, yt+k71) . v(xt+k—L + UO)

predicty! ™% ~ N (m(z!F), v(z!F) + vp).

Input distribution  Attime¢-+k, we have the random input vectdr* = [ytF=1 ot+h=LT
with mean formed by the predicted means of the lagged outptts ™, = 1,..., L, given
by (16).

The L x L input covariance matrix has the different predicted variances on its diagonal:
S0, = v, fori = 1... L, computed with (22).

The cross-covariance terms are obtained as follows: at time step we predicty‘t*
and then, for the next time step, we need to compute the covariance bejivéeand
[yt TF=1 Lyt TRHI=L] That s, in general, we want to computey (y!+*, 2t+):

COV(yt+k, xtJrk) — E[ytJrkxtJrk] . E[ytJrk]E[xtJrk} (32)

with E[y'*+*] given by (16) andZ[z!**] = ji,++1. We have

Elytthatth] = / / R (R R Y g g (33)

t+ky | T
= [ [muﬁﬂcw% <xt+’“uwt+k>] plat ) duf3)

atth=p

. . h T
which givesE [y FzTF] = (e ) pgeer + %g% : bk, T
o

=H t+k

So that the cross-covariance terms are given by

Ozt T
t+k’$t+k) p(z'Tr)

= St - (35)

wtth=p 4

cov(y

5 lllustrative examples

The first example is intended to provide a basis for comparing our Gaussian approximation
to the Monte-Carlo sampling from the ‘true’ distribution (numerical approximation of the
integral (10)) when the uncertainty is propagated as we predict ahead in time. The second
one, inspired from real-life applications, enables us to analyse the difference between the
iterative k-step ahead prediction when propagating the uncertainty and when using only the
output estimates.

The predictive performance of the different methods is assessed computing the average
absolute error4 E), the average squared err¢ff) and average minus log predictive den-
sity* (mLPD).

4To evaluate these losses in the case of Monte-Carlo sampling, we use the sample mean and sample variance.
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5.1 A2D non-linear dynamic system

We present an example of a non-linear, second order, dynamic systemmposed of a
blend of two affine models2 : x = f1(x) + f2(x), where f;(x) = ¢(x)(4;x + d;),

¢(x) = exp(— || x —c || /o?) andc; = A;7'd;, with A; = Ay = [ _210 _53 )
dy = _1§)0 ,do = —dy, 01 = 1, 09 = 2. This system has two stable equilibrium points

and a stable limit cycle. Because the data was acquired by starting the simulation at a random
initial position, and simulating for a fixed period, we find a number of interesting features
which are typical of many real world examples when modelling from observed data.

The identification data consist 6fsimulations 200 points per simulation) with different
starting points and the two test trajectories result from two different simulations.

Assuming a model of the type,; = f(x;), wherex is two-dimensional, we create the
input and target matrices corresponding to each trajectory. We then model each dimension
with a separate Gaussian proceﬁg;1 = fi(xy), fori = 1,2. Figure 10 shows the pre-
dictions when predicting fromt = 1 to £ = 10 steps ahead, when starting the simulation
at six different points. Figure 11 shows the true trajectory along with the mean predictions
with their 20 uncertainties (crosses) when propagating the uncertainty with the Gaussian
approximation an@0 samples from the true predictive distribution.

Test trajectory 1: From 1 to 10 steps ahead at different starting points . Test trajectory 2: From 1 to 10 steps ahead at different starting points
5r -

Figure 10: Iterative method in action: simulation frdnto 10 steps ahead for different starting
points of the test trajectories. Mean predictions véitherror bars (circles), along wits0 sam-

ples from the true distribution, when propagating the uncertainty, for the two test trajectories.
Also shows (left) the training data (dots).

These figures clearly show that the Gaussian approximation is valid, with error bars
encompassing the samples from the true distribution. This is confirmed quantitatively by the
losses (see table 1).
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Test trajectory 1: 10-step ahead predictions Test trajectory 2: 10-step ahead pedictions
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Figure 11:10-step ahead prediction for the two test trajectories (the first point here corresponds
to zqo in figure 10, etc). Same legend as figure 10.

Table 1: Losses for the Gaussian approximation (GP) and the sampling from the true distribution
(MC) on the two test trajectories. The losses are given for each of the two dimensions.

AE SE SE SE mLPD mLPD
dim.1 dim.2 dim. 1 dim. 2 dim.1 dim.2
Traj. 1 GP | 0.037 0.071 0.016 0.061 —0.040 6.471
(Fig. 11, left) MC| 0.037 0.072 0.016 0.061 3.059 3.474
Traj. 2 GP || 0.003 0.003 | 0.282.10=* 0.337.10~* || —4.559 —3.656
(Fig. 11, right) MC| 0.003 0.003 | 0.272.10~* 0.358.107% || —3.745 —3.763
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5.2 Prediction of a pH process simulation

We apply the method on a pH neutralisation process benchmark ([2]). The training and test
data consists of pH values (outpuytsf the process) and a control input signa).(

With a model of the formy, = f(yi—s,. .., yt—1,u—s,...,u—1), we have a training
input matrix of sizel228 x 16, with the corresponding vector of targets and a different set
of 15952 test data (all data had their mean removed). After maximization of the likelihood,
the ARD tool indicates that the lagged outputs contributing the mosj:aiey; > andy; 3
whose hyperparameters are one order of magnitude larger than the those corresponding to
other outputs. In the same manner, maegghtis given tou;_s.

Figure 12 shows the simulation frotto 10 steps ahead starting at two different points
and figure 13 the plots thi®-step ahead predicted points, at the beginning and at the end of
the validation set. On both figures, we plot the true data and the mean predictions with their
20 uncertainties obtained when propagating the uncertainty (circles) or not (crosses). For
the 10-step ahead predictions, we have the following losses. The average absolute error and
squared error ar@.3255 and 0.4090 respectively, whether one propagates the uncertainty
or not. On the other hand, the average minus log predictive density is much better when
propagating the uncertaint§.6527 against2763.1!).

From 1 to 10 steps ahead . l‘:rom 1 t? 10 SlePS aheat‘i
: : : : : :

true data

k=10

k=1

-05 L L L L L I I I
15915 15916 15917  1.5918  1.5919 1.592 15921 15922 15923  1.5924

-10 L L L L L I I I
24 25 26 27 28 29 30 31 32 33 x10*

Figure 12: From to 10 steps ahead: two windows of predicted means with theuncertainties
with (circles) and without (crosses) propagation of the uncertainty at different times within the
validation set.

As we predict ahead and propagate the uncertainty, the uncertainty does not necessarily
increase monotically witl, but is also affected by changes in the control signal, see figure
12. On the other hand, we see that when the uncertainty is not propagated, the model is too
confident with very small error bars. In this example, the important role of the control signal
has to be noted, partly explaining the big changes in uncertainties observed lihstep
ahead predictions plot (figure 13).
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10-step ahead predictions of ¥, UP 10 Vit 10-step ahead predictions of Yis860 UP 10 Yicoan
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Figure 13:10-step ahead mean predictions with th#ir error bars, when propagating the un-
certainty (circles) and when using the previous estimates only (crosses). These predictions are
taken at the beginning and at the end of the test set.

6 Conclusions

We have presented an approximation which allows us to use knowledge of the variance on
inputs to Gaussian process models to achieve more realistic prediction variance. This is
useful in its own right in the case of noisy model inputs.

Iterating this approach allows us to use it as a method for efficient propagation of un-
certainty in multi-step ahead time-series predictions. In experiments on simulated dynamic
systems, comparing our Gaussian approximation to Monte Carlo simulations, we found that
the propagation method is comparable to Monte Carlo simulations, and that both approaches
achieved more realistic error bars than a naive approach which ignores the uncertainty on
current state.

This method can help understanding the underlying dynamics of a system, as well as
being useful, for instance, in a model predictive control framework where knowledge of
the accuracy of the model predictions over the whole prediction horizon is required (see
(Murray-Smith and Sbarbaro-Hofer, 2002) for a model predictive control law based on Gaus-
sian processes taking account of the prediction uncertainty).

Work is currently in progress towards an exact solution within the Gaussian approxima-
tion, that is, without the Taylor expansions of the mean and variance but using their original
expressions and computing the integrals analytically.
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