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Abstract

This paper presents analysis of the standing—up manoeogaraple-

gia considering the body supportive forces as a potentallfack source
in FES-assisted standing—up. The analysis investigagesigimificance
of particular feedback signals to the human body centrerags (COM)

trajectory reconstruction. Two nonlinear empirical manigimethods
are implemented (Gaussian process priors (GP) and muéi-{aercep-
tron neural networks (ANN)) and their performance compaeggarding

the different amount of input information required. The GBvyided a

better fit to the data, at higher computational cost. The robjective

of the study was to compare the different sensory configumatitrading
off modelling performance for variables chosen, whichwllease-of-
use in everyday application. In this manner, the resultsigeoguidance
for the design of user-friendly sensory-supported FESesysiproviding
standing and standing-up in spinal cord injured persons.

1 Introduction?

Rising from a sitting to a standing position is a common daitjivity in human living.
Individuals experiencing rising difficulties have probletiving independently, while their
prolonged immobilization results in physiological praile Spinal cord injury patients
have particular difficulties in standing-up, due to theivéw limb paralysis. To alleviate
this, paraplegic patients are trained how to stand—up amgheasate for the missing action
of their lower extremities during the rehabilitation prese The lifting and stabilizing
forces are provided by the arm support requiring an abledmiz upper body. For support,
a walker frame, parallel bars, simple stationary standiamé or even chair arm rests are
normally used. However, people practicing a fully arm supgmb standing—up risk later
complications of the upper limb joints [1].
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In addition to the arm support, standing-up in paraplegialmafacilitated by Functional
Electrical Stimulation (FES). FES is a method of elicitihg taction potential in the nerves
innervating the paralyzed muscles. This way, the musclaactions are artificially evoked
and motor functions recovered [2]. Bajd with coworkers regd a simple approach to the
FES supported standing-up of paraplegic subjects [3]. iWithis strategy, today widely
used in home and clinical praxis, the stimulation is basedmopen loop surface stim-
ulation of the knee extensors. The paraplegic subject irpthparation phase brings his
body to an initial pose with the upper body leaning forwamhsa almost fully flexed at
the elbows and supported by the walker frame, while the higgaesting at the chair are
pulled forward toward the edge of chair as much as possildefest brought backward.
For the start of rising the stimulation is voluntarily trigggd by the subject and the body
is lifted upward from the initial to the extended upright piios. As the stimulation of the
knee extensors is open-loop and on/off triggered with theimal stimulation amplitudes
throughout the rising process, the current way of standpnig mot optimal in terms of the
applied forces and torques in the upper and lower extresnifie On the other side, at
the end of the standing-up, when knees are almost fully éegérthe excessive knee joint
torques cause high terminal velocities in the knee jointatwhn result in ligament injuries

[5].

These disadvantages of the traditional approach have ldtetdevelopment of new ap-
proaches to the stimulation control, principally basedrendlosed-loop control theory. In
the first place, the simple control algorithms have been gseg as “bang — bang” con-
trollers tracking the reference trajectory in the phase@laf variables. As state variables,
the knee joint angle and angle velocity were used in [5, 6]ilenin [8] the relationship
between the knee and hip joint angle velocities was coetlollin some of these stud-
ies, the process of the standing—up was divided into phawmksh@ constant stimulation
output provided during the particular phase. The tasks efptase start event detection
and the stimulation amplitude alteration were accomptishye the finite state controller
[6, 7]. The linear PID and the nonlinear fuzzy controllersirolling the knee joint angle
have also been proposed [9, 10]. Common to these solutidhatishe reference values
to the controller were determined corresponding to thedstapup of healthy subjects.
More advanced proposals, incorporating the paraplegifstib volition into the stimu-
lation control during rising, have been given in [11, 12]. both studies the stimulation
sequences were determined on the basis of known subject fmsitjon and arm reac-
tions. Algorithms have been evaluated only in the simutatio laboratory environment.
None has been implemented in home or clinical praxis. Thenrddficulty is that the
information fed back to the stimulator control system isgged to be provided by the
sensors, normally goniometers and accelerometers, attdotthe subject’s body. Mount-
ing, dismounting and wiring of the sensors is a tedious jab @nsuch considered as not
convenient for practical use.

For this reason, we are proposing a method for assessingitiects body state during
rising based on feedback information acquired in a moretigalananner. We have cho-
sen the supportive forces acting at the interaction poiitts tive paraplegic’s environment
as an alternative feedback source. Seat, foot, and armaesaan be far more easily
measured than joint angles, for example. The assessmérd séat and arm supports can
readily be accomplished using multidimensional force loalls mounted on the arm sup-
portive frame and seat. Besides, as an even more practiead&ive to instrumenting the
subject’s environment, the wearable assessment of foctioea is feasible using commer-
cially available shoe insole sensors. Furthermore, thel@mpent of the natural sensory
nerve signals from the foot is expected to be functional efthiure [13]. As an objective
characterizing the body state during rising we have chadsendtal body center of mass
(COM) motion trajectory. The COM trajectory as a feedbacktsresting for continu-
ous and for finite state control approaches. It charactetime position of the human body
and/or the phase of the standing—up process in which in #t@fiase body segments accel-
erate anteriorly, in the transition phase decelerate imntgand accelerate vertically, and
in the third phase achieve standing pose by deceleratioartical direction [16, 17, 18].
According to Newton’s second law, the external forces gctin the body are directly re-



lated to the body COM acceleration. Hence, the COM displaeerim human transient
activities can be estimated by a second time integral ofuhe &f interaction forces. This
method is, however, prone to cumulative integration erlicgsdrift [14, 15]. To overcome

this problem, two nonlinear modeling techniques are imgletad in this paper. An ANN

model and a GP mixture model were designed for the purposepping the interaction

forces to the COM trajectory. In the paper, the model inputde selection, the structure,
and the performance evaluation are presented and compared.

2 Methods

A concept of the sensory driven FES supported standing-ppeisented in Figure 1. The
amplitude and frequency of the knee extensors FES are aor®sivaried according to the
COM position during rising transfer. From the perspectivethe supportive force signals
exploitation, the model capable of mapping the reactiondsrto the COM trajectory is
vital. The objective of this study was to build a model forgicting the COM vertical and

horizontal displacements on a basis of a limited number pdiirsignals provided by the
artificial force sensors.
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Figure 1: Sensory driven control concept in the FES supdatending—up of paraplegic
patient

2.1 Data Set

To provide the representative data set for modeling, thedstg up maneuver of eight
paraplegic patients with different levels of spinal corpiig and different experiences in
FES usage was analyzed. The kinematic and kinetic variablssanding up trials were
assessed with a specially built measurement setup. Theadgtdared were used in the
model design and evaluation.

2.1.1 Measurement Instrumentation

The measuring setup used in the standing-up analysis ioatga two systems, first aimed
for determining the forces acting to the human body and sté@nmeasuring the body
motion trajectory. For assessing the reaction forces, twasuring frames were built as
copies of a wheelchair seat and a conventional walker. Tétingeframe was instrumented
by the use of six axis AMTI force plate (AMTI, Inc., Massackatts, USA), while the
force and torque vectors on the arm support frame were a&skbgthe six axis JR3 sensor
(JR3, Inc., Woodland, USA) usually utilized as wrist serisaobotics. Additional AMTI
force plate was used for measuring the ground reaction$amder a foot.



The motion kinematics of the body segments was assessed BPMOTRAK optical sys-
tem (Northern Digital Inc., Waterloo, Canada) measurirgg3D positions of active mark-
ers (infrared LEDs). Markers, about 1 cm in diameter, wetached to the human body
anatomical landmarks with double-sided tape. Human bochnsgtry during standing-up
task was presumed. Hence, measurements were accomplisiggfdrathe patient’s right
side and were calculated for the left side. Figure 2 pregbptstanding up manoeuvre of
paraplegic patient performed in the measuring setup. @Xafptical markers attached to
the knee, elbow and shoulder joints are well seen in the figure

Figure 2: Standing—up of paraplegic patient and a measuriesetup

2.1.2 Measurement Protocol

The subject was seated on the instrumented seat with therastirsg on the arm support
frame. The height of the seat coincided with the height of @ellthair, while the arm
support frame height was adjusted according to the patigméferences. Prior to mea-
surements three testing standing-up trials were accohgaligvith certain amount of FES
assisted standing afterwards. This exercise enabled tijecsto get used to the measuring
equipment and relieved the spasticity in paralyzed extiemi No further consideration
of spasticity effects was encountered since there was mifis@nt evidence of spasticity
during standing-up measurements in all subjects.

The functional electrical stimulation used in analysis lgs surface stimulation of the
M.quadriceps muscle group. The knee extensors were stigaulgith an open-loop ap-
proach with constant stimulation amplitude throughoutrtbi@g process. The stimulation
intensity level was determined as the level which bringdefye to fully extended position
during sitting. The stimulation was voluntarily triggered/off by the subject via the push-
button mounted at the walker handle. In measurement tttedssubject was asked to take
the initial pose and after approximately two seconds fraartisty the data collection, he or
she was asked to stand up in a suitable manner and speedisitigetrials were recorded
for each participant with a 50 Hz sampling rate, each measeme lasting for about 10
seconds. By taking into consideration only five succesdi@ading up trials a good re-
peatability of the results for particular subject was aehiewhich excluded the influence



of muscle fatigue.

2.1.3 Measured Data Analysis

The signals were collected from active markers, force platel wrist sensors. The signals
were interpolated and low pass filtered using a 4th ordet,ghss, Butterworth filter with

5 Hz cut-off frequency. The coordinate systems of all seha@re transformed to coincide
with the reference coordinate system placed on the floomrtéimter of the arm supportive
frame. The signal derivatives were calculated by diffdegimg the data and additional fil-
tering afterwards. On the basis of measurement data, admesnsional, thirteen segment
model of the human body was developed, embodying feet, shalmighs, pelvis, trunk,
head, upper arms, lower arms and hands. Each segment of diyehbd six degrees of
freedom and was considered as a rigid body. Each body joistrejaresented as a per-
fect ball-and-socket joint with no translation. From therkeat positions, the joint center
locations were determined and the vector was defined alengahment longitudinal axis
connecting the centers of proximal and distal joints. Segaienasses and centers of mass
locations were estimated using anthropometric relatipsdhom the De Leva’s study [19].
Masses were expressed as percentages of total body masksea®@M, lying on the seg-
ment’s longitudinal axis, were estimated as percentagheflistance between proximal
and distal joints. The total body COM location in each timstamt was determined as a
weighted sum of individual COM positions of all body segnserithe horizontal and ver-
tical components of the body COM location in sagittal plargerdetermined according to
equations (1). In equationsy is the mass, whilg; andz are the horizontal and vertical
displacements of particular segment.
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Eight paraplegic patients participated in the study, fivex@med three women. Their ages
ranged from 17 to 57 years, weights from 58 to 95 kilogramstaights from 159 to 185
centimeters. Sample group included patients with diffel@rels of spinal cord injury and
different experience of FES usage as summarized in Table 1.

In order to achieve comparability of the measured data arpangplegic patients the body
COM trajectory assessed in the inertial coordinates wastoamed to the COM relative
displacement according to subject’s initial position. |Re&sg trajectories of the lower
extremity joints, the upper trunk inclination, and lowedarpper body supportive forces
are shown in Figure 3 representing sample rising trials gifitgbaraplegic subjects. From
the figure it is evident that the duration of the sit-to-stahdse, rising speed, initial pose
and the upper and lower extremity action varied considgrainlong the subjects.

Figure 4 presents the COM displacements in sagittal platie respect to the subject’s
initial position. Again, considerable variation in the apgch to the sit-to-stand transfer can
be observed among the subjects. Some of the patients trahefapper body forward in
the preparation phase and then rise vertically, while iri&la dynamic horizontal transfer
of the trunk before the vertical lift is present.

¢ From the measured data three data sets were formed. Faofehetparaplegic patients,
the data set incorporating three standing-up trials wasddras a representative data set.
From this set, one half of the data points was randomly etd¢dadorming aprimary data

set intended to be used in the model training procedure. The bdiléof those data points
formed avalidation data set. Besides, théest data set, for use in model evaluation, was
formed of the remaining data, two standing—up trials thateweot used in the training
process.



Patient || Sex | Age | Height | Weight | Lesion | Postinjury | FESusage
initials [years]| [cm] [kg] level time[years]| [years]
AK M 44 180 74 T10-11 15 0.5
MK M 23 168 58 T9 15 0.2
SB M 31 183 64 T10-12 1 0.9
ZB M 22 184 94 T3-4 3 2
ZJ F 57 159 53 T11 4.5 3
BJ M 23 185 85 T9 1.2 0.5
MT F 28 171 75 T4-5 7 5
™ F 19 178 59 T3-4 5 3.5

Table 1: Data of paraplegic patients participating in thuglgt

2.2 Input Variable Selection

In order to meet the usability requirements for everydaygasthe sensory supported FES
system needs to employ as few feedback channels as pogsiely.feedback channel con-
tributes to the complexity of the sensory device and to thengriand mounting difficulties.
Therefore, the question what amount of feedback informasieninimal but still sufficient
for successful recognition of the body state - in our case,btbdy COM trajectory - is
crucial for employing the force feedback into the FES syst¥e investigated the mini-
mal requirements, in terms of feedback information. Theptal feedback sources were
divided into ten empirical groups, each group incorpogatifferent numbers of feedback
variables.

The empirical input variable groups are listed in TableGoup 1 incorporates all the
possible signals acquired in the measurement setup, in, s&at and foot reactions to-
gether with their derivatives. In the case of foot reactjdeside the three components of
the reaction force, the position of foot center of press@®R) was also assessed under
the foot. The position is expressed in the coordinates ofdbéesole and normalized to
the foot length. The components are denotedagx andcopy. The seat reaction force,
assessed by the force plate, is a three dimensional vedtde the arm reactions, when
assessed by the JR3 force sensor, consists of three forddraedmoment components.
Group 2 excludes the derivatives of the signals in order to showr ighificance to the
output. Group 3 excludes the seat reaction force signals since sensocbettéo the seat
or wheelchair are less practical for implementati@noup 4 incorporates only the vertical
component of the foot reactions, since this is a case wheshbe insole sensors can be
used instead of the force plat&roup 5 investigates the usage of more simple and less
expensive force sensor for measuring the arm support. Gerhjcal and horizontal arm



Group 1 || FOOT (copy,copy, Fx, Fy, Fz, Fx, Fy, Fy), SEAT (Fy, Fy, Fz, Fx, Fy, F2),
ARM (K, Fy, Fz, My, My, Mz, Fx, Ry, F2, My, My, M)
Group 2 FOOT (copx, copy, Fx, Fy, F,), SEAT F, Ry, F),
ARM (F, Fy, Fz, My, My, M)
Group3 | FOOT (opx,copy, Fx, Fy, Fo, F, Fy, ),
ARM (Fx, Fy, Fz, My, My, My, Fy, Ry, F7, My, My, M)
Group4 || FOOT opy, copy, Fs, Fz), ARM (Fx, Fy, Fz, My, My, My, By, By, Fz, My, My, M)
Group 5 || FOOT (copx,copy, Fz,F;), ARM (Fy, F,, Fy,Fy)
Group 6 || FOOT (copy, copy, Fz, Fy)
Group 7 FOOT (copy, copy, F», liz), ANKLE JOINT ANGLE (@akie, épank|e)
Group8 | FOOT (copx, copy, Fz, Fz), KNEE JOINT ANGLE (@nee, Pknee)
Group 9 FOOT (copy, copy, F», liz), TRUNK INCLINATION ANGLE ((grunk,énrunk)
Group 10 || FOOT (copx, copy, F, F,), TRUNK ACCELERATION (ay,az)

Table 2: Feedback signals in ten input groups
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Figure 3: Motion trajectories and supporting actions ofubper and lower extremities in
sample trials of eight paraplegic subjects. The portiohefdata between the dotted lines
belongs to sample standing-up of one subject

reaction components were used in this case in combinatitintive shoe insole sensory
signals. Group 6 investigates the usage of only the shoe insole sensor. idddily, the
possible combinations of the shoe insole sensor with thégueters, inclinometer or ac-
celerometers were investigated. Thus, the ankle jointeangls incorporated iGroup 7
and the knee joint angle iGroup 8. Group 9 verifies the combination with inclinometer
mounted at the upper body, whi&oup 10 verifies the shoe insole combination with the
accelerometers attached to the trunk.

The significance of each group was evaluated using a modafipgpach. Two different
nonlinear models were used to predict the body COM trajgatarthe basis of the input
signals of particular group. The root mean square error (RM&tween the actual COM
trajectory and the model predicted output were calculatedacterizing the model perfor-
mance. RMSE values were calculated separately for thedrdgkand vertical component
of the COM trajectory as:

N
RMSEy = \/ % 3 (COMY, —COME,)2 )
k=1

1 N
RMSE; = \/ Y (COMZ, —Comg, )2
k=1

where superscrifd stands for actual anch for modeled value of the COM trajectory in a
samplek. In (2), parameter N represents a number of data points ticpkar test data set.
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Figure 4: Sample COM displacements in sagittal plane fdntggraplegic subjects

2.3 Artificial Neural Network (ANN) Model

As an example of a well-established approach, a moderaesidti-layer perceptron ar-
tificial neural network (ANN) was trained and the network fpemance characteristics
examined [20]. The size of the network was kept constant tkersare that the compari-
son is valid. The neural network was built in the Mathworkstlsla software environment
as a two-layer feed-forward network. The first layer incogted sixtansig neurons, while
the second layer consisted of tywarelin neurons. Theérainlm Matlab function was used
implementing the back propagation method for training téevork. In training, the error
cost on the validation set was used to stop training earlyrther training on the primary
training set would hurt generalization to the validatioh 3de network was trained for up
to 300 epochs to an error goal of 0 The test set performance was then used to measure
how well the network generalizes beyond primary and valdedets.

2.4 Gaussian Process Prior (GP) for Regression and Hieraratal Mixture Models

As an alternative to neural networks, we also used a GP rggresiodel. An introduction
to this approach is given in reviews by [21] and [22]. An erigait comparison in [24]
showed that GPs were usually as good as or better than neivednks in test compar-
isons. GPs tend to have a clearer advantage in problemswiles data sets. The major
difference is that the training data are retained by the hadeé predictions are inferred
from those data, rather than the parametric approach ofheatworks, where the data
points are represented by a finite number of parameters, iandrded. This means that
prediction uncertainty in GPs can be made to increase as e pradictions further from
the training data (in terms of the input space), but it alspdtarage and computational is-
sues, compared to neural networks, as training set sizesaige. It also means that models
can include new data points relatively easily, without magraining.

If we are givenN data points of training datéyn,x,,n = 1,---,N}, wherex is a Q-
dimensional vector oinputs, andy is theoutput. A Gaussian process is defined in such
a way thaty(x) has a Gaussian prior distribution with zero mean and cowvegifunction



C(xi,Xj) =Cov(Y(x),Y(xj)). An example of such a covariance function is
C(Xivxj) = C(X@,Xj;e)

19 Q
= voexp<§ z wq(xiqqu)2> +agt+a Z XigXjq + 8102, (3)
g=1 g=1

whereb = (wy, - - ,WQ,vo,ao,al,o\%), anddij =1if i = j and O otherwise. This covariance
function is often used in practice. More discussion aboeittoice of covariance function
and the details of the implemention of the model can be foar{d2]. The parameters of
the covariance function can be optimised by maximisingiketihood, or you can integrate
over them using numerical methods such as Markov-Chain &@airlo methods.

GPs allow a ‘soft model-structure selection’, where the plaxity of the model, as mea-
sured by theffective degrees of freedom [25] can vary automatically with the hyperparam-
eters. It also provides an automatic relevance detect®thelength-scale parametevg
associated with inpud give an indication of how important any given input is — if da-e
ment of input vector does not help predict outputs accurgtawg will tend to go towards
zero, as likelihood is maximised [22].

To illustrate the prediction of uncertainty provided by GPdels, we use an example
of prediction ofCOMy andCOMy, for 5 separate standing-up trajectories of patient ZJ.
Figure 5 shows the mean aae? standard deviation uncertainty bands from a single GP.
The GP included some data from each of the first three trajestin the training set,
and the second two were test data. Note that the uncertaitdyion the predictions on
data close to the training data, but increases for the dataspfurther from the training
data. The uncertainty also varies within individual bat;hgepending on the input state,
reflecting variations in model complexity, and trainingaddéensity. The implementation of
GP regression model requires the inversion of a covariamtexmnthe dimension of which

is the sample size of training data. It becomes computdtioegpensive for large sample
sizes N > 1000), because the computational cost scaléd(hs). For the data discussed
in this paper, if we consider a single standing-up, a singReré€gression model is not
computationally problematic. However, if we want to contbthe data collected from the
different standings-up and from the different patients,shmple size may be as large as a
few thousand data points, and the use of a hierarchical neixtwdel, as proposed in [23]
is recomended. This model also allows for the heterogefi@itthe data-set combining
from the different sources, which is a particularly nicegedy for data acquired in human
motion, as is the case in our study.

A proposed hierarchical GP regression model has the fatigvivo-level structure: a

lower-level single GP regression model defined around (B)s&d to fit the data corre-
sponding to each replication (different standing-up) satgdy, and the structures of the
basic models are similar but with some mutual heterogenaibigher-level model is de-

fined to model the heterogeneity among different replicetioSpecifically, suppose that
there areM different replications. In thenth group,Ny, observations are collected. Let
the observation bgy,,, m=1,--- M, n=1--- Np. In a hierarchical mixture model of
Gaussian processes for regression we have that

wherez, is an unobservable latent indicator variable.z}f= k is given, the model for

groupmis a GP regression mod&P(6y), as defined around (3). The association among
the different groups is introduced by the latent variaglgfor which

Pzn=k) =1%, k=1,--- K, (5)

for eachm. K is the number of components of the mixture model. We assuai&thas a
fixed given value. For the details of the theory and impleragon refer to [23].



5 10 15 20 25 30 35 40
Time [s]

400 -

0 5 10 15 20 25 30 35 40
Time [s]

Figure 5: Example of GP prediction, showing mean and 2 stdiatiens for 5 separate
standing-up trajectories of patient BJ. The x-axis indisatme. The first three sets were
included in the training set, and the second two were test dattual COM trajectory is
represented by bold solid line, the GP model response igsepted by solid line and its
95% confidence interval is represented by dotted line
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Figure 6: Comparison of resulting ANN model predictions &inel COM displacements
measured in the fourth (testing) trial of real standing-opdight paraplegic subjects and
ten different groups of input variables

3 Modelling Results

In the following section, the prediction results from thenhioear models are presented.
The performances of the proposed ANN and GP regression siadelerified on predic-
tion of the body COM position. For each subject and for eagluirgroup an individual
model was built and verified with the subject’s test dataBké model structure depended
on the specific subset sensors used to provide the inputrvéldte input variables were
organized as described in section 2.2.

3.1 Model predictions compared to test data

Figures 6 and 7 present the resulting model predictionsfa@€OM displacements mea-
sured in the fourth (testing) trial of real standing-up. e tfigures, the results for the
horizontal and vertical component of the COM trajectory stiewn separately in the left
and right column, respectively. Each graph in the figurev&eéid into eight sections, suc-
cessively demonstrating the results for eight subjects pdrticipated in the study. The
sections are divided with the vertical dotted lines and deshavith the subject’s initials on
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Figure 7: Comparison of resulting GP model predictions ard2OM displacements mea-
sured in the fourth (testing) trial of real standing-up faghe¢ paraplegic subjects and ten
different groups of input variables

top of the figure. Figure 6 outlines the results of ANN modglpproach, while the results
of GP modeling approach are given in Figure 7. For exampéefitst section in the second
row in the right of Figure 6 compares the ANN model output vifie real COM vertical
displacement in the fourth standing-up of subject AK whalizirig the model input vari-
ables from Group 2. In Figures 6 and 7 the deterioration ofntioelel performance as a
consequence of decreasing the number of model input chaocaelbe observed.

To objectively evaluate the performances of the models RWSE values between the
modeled and actual COM trajectories were calculated agugtd (2). Other model evalu-
ation measures such as the 95 % confidence interval or ciorefaoduced similar results.
Therefore, only the RMSE was used for evaluation of the nsdalFigure 8, the RMSE
values characterizing the testing trials from Figures 6 Aagde presented. The values are
presented by means of bar graphs. The arrangement of bdrsgrtapresponds to the ar-
rangement of graphs in Figures 6 and 7. Figure 8 is dividenl tiwb columns and ten
rows. The left and right column demonstrates the RMSE vadfigdNN and GP modeling
approaches, respectively. Performance of each model iacteaized with two RMSE val-
ues describing the matching of the horizontal and verti@MIcomponents to the model
responses. Ten rows evaluate ten different input configunsit



¢From Figures 6 to 8 we can see that both approaches givegguiteresults, although GP
modelling seems to provide a more accurate model. An exacoilae of these subplots
with 20 uncertainty bounds was given in Figure 5. The bar graphsmomur assump-
tions about the information importance of the input groufise degradation of the model
performances with respect to the number of input channeleaoticed.

It is interesting that pattern of variability among subgeid not similar in ANN and GP
results. For example, the worst results for COMY in ANN maagwere achieved with
the subject ZJ who was standing-up, according to Figure # thie extensive forward
excursion before rising. On the other hand, the worst regulEP modeling were achieved
with the subject MK who was standing-up primarily vertigalThe GP tends to be worse
in the vertical rather than the horizontal component, whitdly be because of a zero-
mean assumption in the standardisation used. This seemsuwited to the horizontal
component, but more information about the patient, suckeaghh for example, is needed
to improve on the vertical component.

3.2 Relative importance of input signal groups

To get a better insight into the significance of particulangr of input signals to the model
output all the testing RMSE values of all the subjects wesrayed and compared in two
bar graphs presented in Figure 9. The bar graphs illustnateteraged ANN modeling
results on the left and the averaged GP modeling results emight side of the figure.

Again, the results are presented separately for the hdedfand vertical component of the
COM trajectory.

The overall modeling results presented in Figure 9 illusttiae information significance of
input groups defined in Table 2. The peak of RMSE values isnailavhen only the instru-
mented foot insole information is used for the feedbactioup 6. Observing the results
for particular input group it is firstly interesting that theodels exhibit better performance
when the signal derivatives are excluded from the input {iseeesults for theGroup 2).
This phenomenon can be attributed to the numerical diffeton of noisy force signals,
which can be improved on by appropriate filtering. Seconttilg, results for the&Sroups

4 and 5, representing the results of the most practically realealstems, demonstrate
comparable performance to the other groups. The third findirthat the best modeling
results in the vertical direction are attained in both apphes when information about the
knee joint angle is incorporated. However, the results efitiput Group 8 also exhibit
poor performance in the horizontal direction. Finally, #veraged results indicate that the
incorporation of information about the ankle joint angteyik inclination angle, and trunk
acceleration at the input is only a comparable alternatiertce reactions.
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Figure 8: RMSE model evaluation values of ANN and GP modeadimgroach of the fourth
(testing) trial of real standing-up for eight paraplegibjgets and ten different groups of
input variables
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4 Conclusions

The analysis of feedback information in a standing—up o&pkeagic patients has been pre-
sented in this paper. The analysis focused on the explmitafithe supportive force signals
for the purposes of the body state estimation. In this matimebody COM trajectory has
been estimated utilizing two different nonlinear modelagproaches. The results of the
study proved that the force-feedback-based FES systeralievand realistic. Regardless
of the fact that the study was accomplished with data acduiren laboratory environ-
ment with sophisticated measurement equipment, conclssian be drawn for practical
portable systems. On this basis, the minimal requiremenmtthe number and complex-
ity of force sensors have been searched with the method opanson among different
sets of feedback. Results show that both the foot and arnioeaare vital for the COM
trajectory reconstruction, while the sensory complexityrGber of channels) depends on
reconstruction accuracy requirements. However, it wagheéyhe scope of this study to
search for the optimal feedback set for a particular sesgpported FES system.

4.1 Summary of sensor group investigation

The sensor set proposals are practical for an implementatithh a smaller number of in-
put channels and consequently slight decrease of perfamesare visible in the results for
Group 3, Group 4, andGroup 5. In Group 3 a sophisticated force sensor under a foot is
required, while the need for the seat force sensor is elitha-urthermore, these results
are almost fully comparable with the results@roup 4 which introduces the utilization of
a commercially available shoe insole sensor with only COS$itijpm and vertical support
outputs instead of a sophisticated multichannel devicee fBEsults ofGroup 5 demon-
strate that the introduction of the arm support force semsthr fewer channels does not
significantly influence the model performance. However, @we see in th&roup 6 re-
sults that the further reduction of the feedback infornratia this case characterizing the
upper body action, introduces considerable error into theets output. As side com-
parison, we investigated the significance of kinematic ip&tars to the COM trajectory
reconstruction and showed that information about kneé gigle is most descriptive. We
also demonstrated that the joint angle, trunk inclinatiogle and trunk acceleration could
be substituted, at no cost to performance, with force fegldbignals, which are far less
cumbersome for practical everyday usage.

4.2 Comparison of GP and ANN approaches

The study on the first hand provided knowledge on feedbacikfgignce and will thus ease
the design of sensory supported FES systems. On the othéy tharstudy can also serve
as a practical comparison between the ANN and GP nonlinedelmy methods. The
modeling performance suggests that although GPs are catignally more expensive,
they provided a better fit to the data, and also have the aagarthat they provide an
estimate of the conditional density for predictions, ratirn just the conditional mean,
as provided by the neural network. The hierarchical GP waspetationally much more
efficient than a single GP, and also coped well with the hgemeity among patients. Since
we observed great variability in standing-up among pagiplsubjects (subjects differed
in sex, age, weight, height and the level of spinal cord injuhile data even varied in the
same subject due to variance in initial position and musaigte), results suggest that the
models used in this paper should be further calibrated todimidual subject.

In terms of computational requirements, the neural netwiaska very small memory foot-
print, requiring storage only of the network weights whishthie product of the number
of inputs x number of hidden unitsx number of outputs, while the GP might be storing
several thousand training examples, and inference to néwsgavolves multiplication of
the inverse covariance matrix (which can be calculatedi;-prior to use), by the covari-
ance with the test point, which for a single test point wounlbive N2 + N floating-point
multiplication and addition operations fbrtraining points. For the hierarchical model we



haveyM(N? +N,), operations wherby are the sizes of the subsets.
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