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Abstract— Gaussian process models provide a probabilistic
non-parametric modelling approach for black-box identifica-
tion of non-linear dynamic systems. The Gaussian processes
can highlight areas of the input space where prediction quality
is poor, due to the lack of data or its complexity, by indicating
the higher variance around the predicted mean. Gaussian
process models contain noticeably less coefficients to be opti-
mised. This paper illustrates possible application of Gaussian
process models within model-based predictive control. The
extra information provided within Gaussian process model is
used in predictive control, where optimisation of control signal
takes the variance information into account. The predictive
control principle is demonstrated on control of pH process
benchmark.

I. INTRODUCTION

Model Predictive Control (MPC) is a common name for
computer control algorithms that use an explicit process
model to predict the future plant response. According to this
prediction in the chosen period, also known as the prediction
horizon, the MPC algorithm optimises the manipulated vari-
able to obtain an optimal future plant response. The input
of chosen length, also known as control horizon, is sent into
the plant and then the entire sequence is repeated again in
the next time period. The popularity of MPC is to a great
extent owed to the ability of MPC algorithms to deal with
constraints that are frequently met in control practice and
are often not well addressed with other approaches. MPC
algorithms can handle hard state and rate constraints on in-
puts and states that are usually, but not always incorporated
in the algorithms via an optimisation method. Linear model
based predictive control approaches [12] started appearing
in the early eighties and are well-established in control
practice (e.g. overview in [17]). Nonlinear model based
predictive control (NMPC) approaches [1] start to appear
about ten years later and have also found their way into
control practice (e.g. [18], [22]) though its popularity can
not be compared to linear model based predictive control.
This fact is very likely connected with difficulty in nonlinear
model construction and with lack of necessary trust in this
model. There were a number of contributions in the field of
nonlinear model based predictive control dealing with issues
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like stability, efficient computation, optimisation, constraints
and others. Some recent work in this field can be found in
[2], [11]. NMPC algorithms are based on various nonlinear
models. Often these models are developed as first principles
models, but other approaches, like black-box identification
approaches are also popular. Various predictive control
algorithms are based on neural networks model e.g. [16],
fuzzy models e.g. [7] or local model networks e.g. [5].
The quality of control depends on quality of model. New
developments in NMPC approaches are coming from re-
solving various issues: from faster optimisation methods
to different process model. The contribution of this paper
is to describe a NMPC principle with a Gaussian process
model. The Gaussian process model is an example of a
probabilistic non-parametric model that also provides in-
formation about prediction uncertainties which are difficult
to evaluate appropriately in nonlinear parametric models.
The majority of work on Gaussian processes shown up to
now considers modelling of static non-linearities. The use
of Gaussian processes in modelling dynamic systems is a
recent development e.g. [14], [13], [3], [20], [9], [10] and
some control algorithms based on such are described in
[15], [4].

The paper is organised as follows. Dynamic Gaussian
process models are described in the next section. The
control algorithm principle is described in Section III and
illustrated with the benchmark pH process control in Section
IV. Conclusions are stated at the end of the paper.

II. MODELLING OF DYNAMIC SYSTEMS WITH
GAUSSIAN PROCESSES

A Gaussian process is an example of the use of a flexible,
probabilistic, non-parametric model with uncertainty predic-
tions. Its use and properties for modelling are reviewed in
[21].

A Gaussian process is a collection of random variables
which have a joint multivariate Gaussian distribution. As-
suming a relationship of the formy = f(x) between an
inputx and outputy, we havey1, . . . , yn ∼ N (0, Σ), where
Σpq = Cov(yp, yq) = C(xp,xq) gives the covariance
between output points corresponding to input pointsxp and
xq. Thus, the meanµ(x) (usually assumed to be zero)
and the covariance functionC(xp,xq) fully specify the
Gaussian process. Note that the covariance functionC(., .)
can be any function with the property that it generates a
positive definite covariance matrix.
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whereΘΘΘ = [w1 . . . wD v0 v1]T are the ‘hyperparameters’
of the covariance functions andD the input dimension.
Other forms of covariance functions suitable for different
applications can be found in [19]. For a given problem,
the parameters are learned (identified) using the data at
hand. After the learning, one can use thew parameters
as indicators of ‘how important’ the corresponding input
components (dimensions) are: ifwd is zero or near zero
it means that the inputs in dimensiond contain little
information and could possibly be removed.

Consider a set ofN D-dimensional input vectors
X = [x1,x2, . . . ,xN ] and a vector of output datay =
[y1, y2, . . . , yN ]T . Based on the data(X,y), and given
a new input vectorx∗, we wish to find the predictive
distribution of the corresponding outputy∗. Unlike other
models, there is no model parameter determination as such,
within a fixed model structure. With this model, most of the
effort consists intuning the parameters of the covariance
function. This is done by maximizing the log-likelihood of
the parameters, which is computationally relatively demand-
ing since the inverse of the data covariance matrix (N×N )
has to be calculated at every iteration.

The described approach can be easily utilised for re-
gression calculation. Based on training setX a covari-
ance matrixK of size N × N is determined. As already
mentioned before the aim is to find the distribution of
the corresponding outputy∗ at some new input vector
x∗ = [x1(N + 1), x2(N + 1), . . . , xD(N + 1)]T .

For a new test inputx∗, the predictive distribution of the
corresponding output isy∗|x∗, (X,y) and is Gaussian, with
mean and variance

µ(x∗) = k(x∗)T K−1 y (2)

σ2(x∗) = k(x∗) − k(x∗)T K−1 k(x∗) + v0 (3)

wherek(x∗) = [C(x1,x∗), . . . , C(xN ,x∗)]T is theN × 1
vector of covariances between the test and training cases
andk(x∗) = C(x∗,x∗) is the covariance between the test
input and itself.

For multi-step ahead prediction we have to take account
of the uncertainty of future predictions which provide the
‘inputs’ for estimating further means and uncertainties.

If we now consider a new random input,x∗ ∼
N (µx∗ ,Σx∗), Girard et. al. [3], have shown that, within
a Gaussian approximation and a Taylor expansionµ(x∗)
andσ2(x∗) aroundµx∗ , the predictive distribution is again
Gaussian with mean and variance

m(x∗) = Ex∗ [µ(x∗)]
≈ k(µ(x∗)T K−1y (4)

v(x∗) = Ex∗ [σ2(x∗)] + varx∗(µ(x∗))
≈ σ2(µ(x∗))
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For a more detailed derivation see [3]. Equations (4)
and (5) can be applied to calculation of multi-step ahead
prediction with propagation of uncertainty.

Gaussian processes can, like neural networks, be used to
model static nonlinearities and can therefore be used for
modelling of dynamic systems if delayed input and output
signals are fed back and used as regressors. In such cases
an autoregressive model is considered, such that the current
output depends on previous outputs, as well as on previous
control inputs.

x(k) = [ŷ(k − 1), ŷ(k − 2), . . . , ŷ(k − L), u(k − 1),
u(k − 2), . . . , u(k − L)]T

ŷ(k) = f(x(k)) + ε (6)

Wherek denotes consecutive number of data sample. Let
x denote the state vector composed of the previous outputs
y and inputsu up to a given lagL and ε is white noise.

It is worthwhile noting that the derivatives of means and
variances can be calculated in straightforward manner. For
more details see [20] or [3].

As can be seen from the presented relations the obtained
model describes both the dynamic characteristics of non-
linear system, and at the same time provides information
about the confidence in these predictions. The Gaussian
process can highlight areas of the input space where
prediction quality is poor, due to the lack of data, by
indicating the higher variance around the predicted mean.

III. NONLINEAR MODEL PREDICTIVE CONTROL

Nonlinear model predictive control as it was applied with
the Gaussian process model can be in general described with
a block diagram, as depicted in Figure 1. The model used
is fixed, identified off-line, which means that used control
algorithm is not an adaptive one. The structure of the entire
control loop is therefore less complex as in the case where
used model changes with time. The following items describe
the basic idea of predictive:
• Prediction of system output signaly(k+j) is calculated

for each discrete samplek for a large horizon in
future (j = N1, . . . , N2). Predictions are denoted
as ŷ(k + j|k) and representj-step ahead prediction,
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Fig. 1. Block diagram of model predictive control system

while N1 and N2 determine lower and upper bound
of prediction horizon. Lower and upper bound of
output signal prediction horizon determine coincidence
horizon, within which a match between output and
reference signal is expected. Output signal prediction
is calculated from process model. Predictions are de-
pendent also on the control scenario in the future
u(k+ j|k), j = 0, . . . , Nu−1, which is intended to be
applied from a momentk onwards.

• The reference trajectory is determinedr(k + j|k), j =
N1, . . . , N2, which determines reference process re-
sponse from present valuey(k) to the setpoint trajec-
tory w(k).

• The vector of future control signals (u(k + j|k), j =
0, . . . , Nu−1) is calculated by minimisation of objec-
tive function such that predicted error betweenr(k +
j|k) and ŷ(k + j|k), j = N1, . . . , N2. Structuring of
future control samples can be used in some approaches.

• Only the first elementu(k|k) of the optimal control
signal vectoru(k + j|k), j = 0, . . . , Nu−1 is applied.

In the next sample a new measured output sample is
available and the entire described procedure is repeated.
This principle is called receding horizon strategy.

A moving-horizon minimisation problem of the special
form [12]

min
U(k)

[r(k + P )− ŷ(k + P )]2 (7)

subject to:

var ŷ(k + P ) ≤ kv (8)

| U(k) | ≤ kih (9)

| U̇(k) | ≤ kir (10)

| x(k) | ≤ ksh (11)

| ẋ(k) | ≤ ksr (12)

is used in our case, whereU(k) = [u(k) . . . u(k + P )] is
input signal,P is the coincidence point (the point where a
match between output and reference value is expected) and
inequalities from (8) to (12) represent constraint on output
variancekv, input hard constraintkih, input rate constraint
kir, state hard constraintksh and state rate constraintksr

respectively. The process model is a Gaussian process.
The optimisation algorithm, which is constrained non-

linear programming, is solved at each sample time over
a prediction horizon of lengthP , for a series of moves

which equals to control horizon. In our case control horizon
was chosen to be one and to demonstrate constraint on
variance the rest of constraints was not taken into the
account. Nevertheless, all this modifications do not change
the generality of solution, but they do affect the numerical
solution itself.

Alternative ways of how NMPC with Gaussian process
models can be realised are as follows.
• Different objective function: The objective function

used (7) is just one of many possible ones. It is well
known that selection of the objective function has a
major impact on the amount of computation.

• Optimisation problem for∆∆∆U(k) instead ofU(k)]:
This is not just a change of formalism, but also
enables other forms of MPC. One possibility is a DMC
controller with nonlinear model, e.g. [7] - a frequently
used principle, that together with appropriate objective
function enables problem representation as a least
squares problem that can be solved in one iteration
in which an explicit solution is found. This is, as in
the case with other special case simplifications, not a
general case solution.

• Soft constraints: Using constraint optimisation algo-
rithms is very demanding for computation and soft
constrains, namely weights on constrained variables in
objective function, can be used to decrease the amount
of computation. More on this topic can be found in [8],
[23].

• Linear MPC: It is worth to remark that even though
this is a constrained nonlinear MPC problem it can be
used in its specialised form as a robust linear MPC.

There are several issues of interest for applied NMPC. Let
us mention some of them. One of them is efficient numerical
solution. Nonlinear programming optimisation algorithm is
very demanding for computation. Various approximations
and other approaches (e.g. approximation of explicit so-
lution) exist to decrease computational load, mainly for
special cases, like linear process models or special objective
functions.

One possibility to decrease the computational load neces-
sary for optimisation is with the incorporation of prediction
derivation (and variance) into optimisation algorithm. When
using Gaussian process models the prediction and variance
derivation can be calculated in a straightforward manner.

Stability of the closed-loop systems is next issue. At
present no stability conditions have been derived for Gaus-
sian processes as a representative of probabilistic non-
parametric models.

Applied control can not avoid issue of control system
robustness. This issue has a major impact on the applica-
bility of the algorithm in practice. The fact that the process
model contains the information about the model confidence
enables controller to optimise the manipulative variable to
“avoid” regions where the confidence in model is not high
enough. This possibility itself makes the controller robust
if applied properly. MPC robustness in the case of other



algorithms is usually not some specially built feature of the
MPC algorithms, but was more an issue of assessment for
particular MPC algorithms.

IV. EXAMPLE

A. pH process

A simplified schematic diagram of the pH neutralization
process taken from [6] is given in Figure 2. The process
consists of an acid stream (Q1), buffer stream (Q2) and
base stream (Q3) that are mixed in a tank T1. Prior to
mixing, the acid stream enters the tank T2 which introduces
additional flow dynamics. The acid and base flow rates are
controlled with flow control valves, while the buffer flow
rate is controlled manually with a rotameter. The effluent
pH (pH) is the measured variable. Since the pH probe is
located downstream from the tank T1, a time delay (Td) is
introduced in the pH measurement. In this study, the pH
is controlled by manipulating the base flow rate. A more
detailed description of the process with mathematical model
and necessary parameters is presented in [6].

The dynamic model of the pH neutralization system
shown in Fig. 2 is derived using the conservation equations
and equilibrium relations. The model also includes valve
and transmitter dynamics as well as hydraulic relationships
for the tank outlet flows. Modelling assumptions include
perfect mixing, constant density, and complete solubility of
the ions involved. The simulation model of pH process,
which was used for necessary data generation contains
therefore various non-linear elements as well as implicitly
calculated function which is value of highly non-linear
titration curve.

B. Model identification

Based on responses and iterative cut-and-try procedure a
sampling time of 25 seconds was selected. The sampling
time was so large that the dead-time mentioned in the
previous section disappeared.
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Fig. 2. The pH neutralization system scheme

The chosen identification signal of 400 samples was
generated from a uniform random distribution and rate of
50 seconds.

Obtained hyperparameters of the third order Gaussian
process model were:

ΘΘΘ = [w1, w2, w3, w4, w5, w6, v0, v1]
= [−6.0505,−2.0823,−0.4785,−5.3388,−3.4206,

−8.7080, 0.8754,−5.4164] (13)

where hyperparameters fromw1 to w3 denote a weight for
each output regressor, fromw4 to w6 denote a weight for
each input regressor,v0 is estimated noise variance andv1

is the estimate of the vertical variance.
The region in which the model was obtained can be seen

from Figure 3. A very good fit can be observed for the
identification input signal which was used for optimization.
However, the obtained model contains information mainly
in the region below pH=7 as can be concluded from the
response in Figure 3. The validation signal had lower
magnitude and frequency components than the identification
signal. The rationale behind this is that if the identified
model was excited with a richer signal, than it has to
respond well to the signal with less components. The
validation signal was obtained with generator of random
noise with uniform distribution and rate of 500 seconds.
Response of the model to validation signal and comparison
with process response is depicted in Figure 4. Fitting of the
response for validation signal:

• average absolute test error

AE = 0.1276 (14)

• average squared test error

SE = 0.0373 (15)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2

3

4

5

6

7

8

9

10

11
Model identification

pH

Time [sec]

proces
GP model
mean+2*std
mean−2*std

Fig. 3. Response of GP model on excitation signal used for identification
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Fig. 4. Response of GP model on excitation signal used for validation

• log density error

LD = 1.9889 (16)

After model validation the model was utilised for control
design. See [10] for more issues on pH process modelling.

C. Control

The control algorithm described above was tested for the
pH process with simulation. The reference trajectoryr is
defined so that it approaches the set-point exponentially
from the current output value. The coincidence point was
chosen to be 8 samples and, as already mentioned, the
control horizon is one sample. The results of unconstrained
control are given in Figures 5 and 6.
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Fig. 5. Non-constrained case: response of GP model based control (upper
figure) and control signal (bottom figure)
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Fig. 6. Non-constrained case: standard deviation corresponding to the
previous figure

It can be seen from different set-point responses that
the model differs from the process in different regions. It
can be clearly seen that the variance increases as output
signal approaches regions which were not populated with
enough identification data. It should be noted however
that variances are sum of variances that correspond to
information about regions where model is more or less to be
trusted depending upon available identification data and of
output response variances that indicate model quality. When
variances increase too much, the response can be optimised
with constrained control. Results can be seen in Figures 7
and 8.

It can be seen from Figs. 7 and 8 that the closed-loop
system response avoids region with large variance at the
cost of steady-state error. This could be interpreted also as
trade-off between designed performance and safety.

V. CONCLUSIONS

The principle of Model Predictive Control based on a
Gaussian process model was presented in the paper and
illustrated with pH process control example. In the example,
a constraint on model variance was included. This can be
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Fig. 7. Constrained case (σmax = 0.15): response of GP model based
control (upper figure) and control signal (bottom figure)
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complimented also with other constraints when necessary.
The use of Gaussian process models makes it possible to
include information about the trust in the model depending
on the region. Incorporating this information enables a de-
sign of robust controller that will optimise action according
to the validity of model. The paper indicates that using
Gaussian process models offers an attractive possibility for
control design that results in a controller with a higher
level of robustness due to information contained in the
model. It is necessary to stress that the presented control
strategy represents only a feasibility test for Gaussian pro-
cess application for model predictive control and additional
efforts are necessary before this approach will be applicable
in engineering practice. The principle shown in the paper
is quite general and several modifications that accelerate
computation can be used and are planned to be derived in
the future.
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