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Abstract

This paper investigates new ways of inferring nonlinear dependence from measured data. The existence of unique linear and nonlinear sub-
spaces which are structural invariants of general nonlinear mappings is established and necessary and sufficient conditions determining these
sub-spaces are derived. The importance of these invariants in an identification context is that they provide a tractable framework for minimising
the dimensionality of the nonlinear modelling task. Specifically, once the linear/nonlinear sub-spaces are known, by definition the explanatory
variables may be transformed to form two disjoint sub-sets spanning, respectively, the linear and nonlinear sub-spaces. The nonlinear modelling
task is confined to the latter sub-set, which will typically have a smaller number of elements than the original set of explanatory variables.
Constructive algorithms are proposed for inferring the linear and nonlinear sub-spaces from noisy data.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Methods for inferring nonlinear dependence from measured
data are presently almost entirely confined to analysis of the
dependence with respect to explanatory variables selected a pri-
ori. Inference of nonlinear dependence is usually out with the
scope of principal components and analysis of variance tech-
niques. Relevant methods include series expansion approaches
whereby the coefficients of the first few terms in some se-
ries expansion are estimated, perhaps in a stepwise manner
(e.g., Korenberg, Billings, Liu, & Mcilroy, 1988, Sjoberg et al.,
1995). The linearity or non-linearity with respect to each ex-
planatory variable may then be inferred by inspection of the
estimated coefficients. Alternatively, when the model has the
additive form,

∑
i �i (zi) (where zi denotes the ith element
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of the explanatory variable vector and �i is an associated non-
linear, possibly vector, function), back-fitting methods can be
used to directly estimate the �i , and thereby linearity or non-
linearity with respect to each explanatory variable, zi , with-
out necessarily postulating a particular series expansion (e.g.,
Hastie & Tibshirani, 1990; Young, 2000). Similar considera-
tions apply to automatic relevance determination methods in
the context of probabilistic neural network and non-parametric
Gaussian process prior models (e.g., Neal, 1996, Juditsky et al.,
1995). In the case of blended multiple model representations
based on decomposition of the operating space into a num-
ber of operating regions (Murray-Smith et al., 1999, Leith &
Leithead, 1998a, b, 2000), similar considerations again apply
when the local models associated with each operating region
are sufficiently rich that they can directly embody any linear
component (although this excludes the constant local models
employed in standard radial basis function networks). In situa-
tions such as these, algorithms to search for appropriate oper-
ating region decompositions (e.g., Johansen & Foss, 1995) can
indirectly detect linearity with respect to particular explanatory
variables.
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The effectiveness of such methods in inferring a parsi-
monious dependence is generally strongly dependent on the
choice of co-ordinate axes. For example, when the nonlin-
earity is dependent on some scalar function of all the chosen
explanatory variables, the nonlinear dependence may be in-
ferred to involve every explanatory variable, and thus be far
from parsimonious, yet with a different choice of coordinate
axes the true scalar nature of the dependence would become
apparent. In principle, it is, of course, possible to extend the
foregoing methods to incorporate estimation of, for example, a
coordinate transformation and thereby automatically adjust the
choice of explanatory variables as indicated by the data. How-
ever, such an approach is generally unattractive. Even a simple
linear transformation matrix involves m2 parameters, where
m is the number of explanatory variables, and so estimation
can be expected to quickly become unwieldy and intractable
introducing, for example, an additional 100 parameters into an
estimation problem involving 10 explanatory variables. Any
attempt, furthermore, to nest current model fitting algorithms,
which may already be rather complex and computationally in-
tensive, within an outer axes-estimation iteration which is itself
non-trivial are likely to be subject to local minima issues and
similar associated difficulties quite apart from computational
considerations.

The objective of the present paper is to investigate new ways
of inferring the specifically nonlinear dependence (as opposed
to linear dependence) from measured data.

Notation. The notation used is essentially standard. For a ma-
trix M ∈ Rqxp, null(M) denotes the null space of M, i.e.
null(M) = {v ∈ Rp : Mv = 0}, and comp(M) denotes the or-
thogonal complement of M , a sub-space of Rqxp. For a twice
differentiable vector mapping F : D ⊆ Rp → R ⊆ Rq , HF (z)

denotes the Hessian HF(z) = [∇(∇F1(z))T . . . ∇(∇Fq(z))T]T

with Fi denoting the ith element of the vector mapping F . The
derivative of a vector or matrix function, �(z), in direction v is
defined as (vT.∇)�(z) = limh→o �(z + hv) − �(z)/h. The di-
rectional derivative of ∇F=[(∇F1)

T . . . (∇Fq)T]T in direction
v can be expressed as HF(z)v.

2. Structural decomposition

The nonlinear mappings, F : � → P , with open domain,
� ⊆ Rn+m, open range, P ⊆ Rn, and F continuously twice
differentiable, are considered. While this setting is general,
the particular interest here (and reflected in the examples cho-
sen) is in dynamic systems applications where the nonlinear
mapping might typically be the right-hand side of a differen-
tial/difference equation

�x(t) = F([xT(t) rT(t)]T), (1)

where the input is r ∈ �r ⊆ Rm, the state x ∈ �x ⊆ Rn and
� denotes an appropriate operator; for example, the derivative
operator d/dt (corresponding to continuous-time dynamics),
the shift operator q (corresponding to discrete-time dynamics)
or perhaps some combination of these.

The nonlinear dependence of the right-hand side of (1) can
be made explicit by reformulating as

F(z) = Az + f(Mz) (2)

with z = [xT rT]T and where A ∈ Rn×(n+m), M ∈ Rq×(n+m),
and f(•) is a continuously twice differentiable nonlinear func-
tion. The decomposition (2), as it stands, is, of course, not
unique but uniqueness of the linear term can be imposed with-
out loss of generality, for example, by requiring ∇fT(Mz0)=0
for some z0 ∈ �. Note, the decomposition (2) can always be
trivially achieved by choosing A to be any matrix and M the
identity. However, what is of interest here is to determine a
decomposition, or class of decompositions, that is minimal.

Definition (minimality). Let a decomposition for F on D ⊆ �,
with D non-empty and open, be defined by

F(z) = Az + f(Mz) ∀z ∈ D, (3)

where M is some matrix. M is said to be of minimal degree
for F on D when M is of full rank and an alternative choice
of lower rank satisfying the decomposition for some A and f
does not exist.

This definition of minimality corresponds to the intuitive
idea that we would like to choose the rank of M to be as
small as possible. In order to be useful, a testable condition for
minimality is required. It is readily verified that the Hessian of
a linear or affine mapping is identically zero. Indeed, this is the
basis for common regularisation schemes and Bayesian priors.
Building on this observation, the following Lemma is obtained.

Lemma (Minimal decomposition). Let M be of full rank and
the decomposition (3) exist then M is of minimal degree for F
on D if and only if ∩z∈Dnull(HF(z)) = null(M).

Proof. Note that HF(z)v = 0 whenever Mv = 0. Suppose
∩z∈Dnull(HF(z)) �= null(M), then there exists a v0 such that
Mv0 �= 0 and HF(z0)v0 = 0 ∀z0 ∈ D. Since the Hessian
HF is zero in direction v0 on an open set, all higher deriva-
tives in this direction also vanish on D. Hence, ∀z0 ∈ D,
∃� > 0 : z0 + �v0 ∈ D and

F(z0 + �v0) = F(z0) + �(vT
0 · ∇)F(z0) ∀� ∈ [0, �].

Let D̂ = {z ∈ Rn+m : z = z0 + �v0, z0 ∈ D, � ∈ R}. The
domains of F(•) and f(•) are extended to D̂ ⊇ D. ∀z ∈ D̂,
define F(z) = F(z0) + �(vT

0 .∇)F(z0) and f(Mz) = F(z) − Az
where z=z0 +�v0 with z0 ∈ D and � ∈ R. With this extension
to the domain of f , f(M̄z) is defined ∀z ∈ D, where

M̄ = M(I − v0(vT
0 v0)

−1vT
0 ).

Furthermore,

G(z) = f(Mz) − f(M̄z)

= ((vT
0 .z)(vT

0 .∇)F(z) − (A.v0)(vT
0 .z))(vT

0 .v)−1

is affine in z, ∀z ∈ D, since

(vT
0 v0)HGi

(z) = (HFi
(z)v0)vT

0 + v0(HFi
(z)v0)

T

+ (vT
0 z)∇(HFi

(z)v0)
T = 0.
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Hence, there exists a decomposition (3) for M̄ but rank(M̄) <

rank(M). Consequently, when ∩z∈D null(HF(z)) �= null(M),
M must be non-minimal. Now, suppose M is non-minimal, i.e.
∃M̄ such that (3) is satisfied for some A and f and rank(M̄) <

rank(M), then dim(null(M̄)) > dim(null(M)). Hence, ∃v0 :
Mv0 �= 0, M̄v0 = 0 and so HF(z)v0 = 0, ∀z. Consequently,
when M is non-minimal, ∩z∈D null(HF(z)) �= null(M). It fol-
lows immediately that M is of minimal degree for F on D if
and only if ∩z∈D null(HF(z)) = null(M). �

This lemma enables it to be immediately determined whether
a given matrix M is minimal by inspecting the Hessian HF of the
mapping F. Further observe that the minimality test is in terms
of the sub-space null(M) rather than the matrix M itself. This is
important. Since a non-singular linear transformation applied
to M can be absorbed into the nonlinear function, the mapping
f : z ∈ D → P , embodied by a nonlinear function f(Mz),
can be realised by any function fT(MTz) with MT = TM and
fT=f◦T−1. Hence, there does not exist a single, unique M that is
minimal for mapping F. The sub-space null(M) is invariant with
respect to such transformations. Developing this line of reason-
ing further, let �l denote null(M) and �nl denote comp(M).
It follows from (2) that on the domain �l ∩ D the mapping is
linear and, conversely, when M is minimal the mapping F is
nonlinear on the domain �nl ∩ D; that is, Rn+m��l ⊕ �nl
and F(z)�F̃(u, v), with z ∈ Rn+m ∩ D, u ∈ �l ∩ D and v ∈
�nl ∩ D, such that F̃(u1 + u2, v) = F̃(u1, v) + F̃(u2, v) when
u1, u2, u1 + u2 ∈ �l ∩ D. The sub-spaces, �l and �nl, of M
embody the linear and nonlinear dependence of the mapping
F. It follows from the minimality lemma that these sub-spaces
are identical for all minimal M and are structural invariants of
the mapping F. This is formalised by the following corollary.

Corollary (Subspace partitioning). Consider the class of de-
compositions (3) with M minimal for F on D. Let M0 and M1
denote any two choices of M, then comp(M0)=comp(M1); that
is, there exists a unique sub-space �nl such that comp(M)=�nl
for any M which is minimal for F.

Proof. From the minimal decomposition lemma, M minimal
implies that null(M)=∩z∈D null(HF(z)); that is, all minimal M
possess the same null space. Since comp(M) is the orthogonal
complement of null(M), it follows that this is also identical for
all minimal M. �

Consider a set, {zi}, i = 1, . . . , K , of values of the explana-
tory variable, z, sufficiently large and disparate that rank(HK

F )=
dim(�l), where HK

F = [HF(z1), . . . , HF(zK)]T. The minimal-
ity condition is equivalent to HK

F v̂i = 0, ∀v̂i ∈ basis{�l}. To
determine �l, assuming r = dim(�l) is known, it is sufficient
to determine a value of � such that VK

F (�) = 0 where

VK
F (�) = [(HF(z1)v̂1(�))T · · · (HF(z1)v̂r (�))T,

(HF(z2)v̂1(�))T · · · (HF(zK)v̂r (�))T]T

and {v̂i (�), i = 1, . . . , r} is an explicit parameterisation of all
the sets of r orthonormal vectors. The non-uniqueness of � is

immaterial as it is the unique invariant subspace �l which is
of interest.

3. Nonlinear structure identification

The structural decomposition analysis in Section 2 is deter-
ministic. In this section, the extension to the probabilistic case
with noisy data is considered. Matrices are generically full rank
and so under noisy conditions the null space of HF(z) will al-
most always consist simply of the zero vector. Instead, the re-
quirement must be to determine the largest sub-space within
which the range of the estimated Hessian is, in some appropri-
ate sense, close to zero (rather than precisely equal to zero as
in the noise-free case).

It is assumed that the joint probability distribution is available
for VK

F �) (for any �). In the identification context, this proba-
bility distribution is inferred from a data set, X=[x1, . . . , xN ]T,
and so is conditional on the data set. The objective is to use this
probabilistic description to derive relevant information pertain-
ing to the structural decomposition into linear and nonlinear
components.

Remarks. (i) An appropriate choice of representation for F(z)
could be by means of a stochastic process model from which
is derived a stochastic process model for HF(z)v, for all v,
and, thereby, the joint probability distribution for VK

F (�). (For
example, in the case of Gaussian stochastic process models,
the mean and covariance of the Gaussian process model for
HF(z)v are appropriate derivatives of the mean and covariances
of the Gaussian process model for F(z)—see Appendix). It is
perhaps worth emphasising that this certainly does not require
differentiation of the raw, noisy data. The latter is, of course,
highly inadvisable.

(ii) It is important to note that stochastic process descrip-
tions do not necessarily require the imposition of a paramet-
ric model structure. Non-parametric descriptions (e.g., Green
& Silverman, 1994; Neal, 1996; Williams, 1998) are charac-
terised by drawing inferences directly from the measured data
using smoothness information but without assuming an under-
lying parameterisation. (Various forms of smoothness assump-
tion are typically employed: any specific assumption may of
course be more or less appropriate in a particular application
context). An example of a non-parametric nonlinear description
is a Gaussian process prior model: see the Appendix.

3.1. Summarising nonlinear dependence in a region

It is again assumed that r = dim(�l) is known. Let px(�) be
the probability density function for X and let pv(�|�, �) be the
probability density function for VK

F (�) conditional on � and �.
The joint probability density function for (VK

F (�), X) is

pv,x(�, �|�) = pv(�|�, �)px(�) (4)

and pv,x(0, X|�) is the likelihood of � with VK
F (�) = 0 and

X, a specific data set; that is, the likelihood that the v̂i (�),
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i=1, . . . , r , are a basis for �l. A maximum likelihood estimate
of the decomposition into linear and nonlinear sub-spaces, �l
and �nl, is thus provided by any �M for which the likelihood
pv,x(0, X|�) is maximal, or equivalently, since px(�) is inde-
pendent of �, pv(0|�, X) is maximal.

Remark. Suppose, as is the case for the Gaussian process prior
models of the Appendix, that the joint probability distribution
for VK

F (�) and X is Gaussian or, more specifically, N(0, �)

with

� =
[
��� ���
��� ���

]

then pv(�|�, X)=N(�̄, �) with �̄=����−1
�� X and �=���−

����−1
�� ���. Consider any two sets of orthonormal vectors,

v̂i (�1) and v̂i (�2), spanning the same sub-space. There exist tij
such that v̂i (�2)=∑r

j=1tij v̂j (�1) and, hence, VK
F (�2)= (IK ⊗

(T ⊗ Ir ))VK
F (�1) where the ij th element of T is tij . Since T

is clearly non-singular,

pv(0|�1, X) = pv(0|�2, X)

and the non-uniqueness of �M is again immaterial.

As the variance of the measurement noise increases, so do
the variances for the posterior probability distributions. It is im-
portant to test the statistical significance of any inference made
on the basis of the data. A suitable test statistic is discussed
below. Let px(�|�, �) be the probability density function for
the data set conditioned on � and �. The confidence in the es-
timated decomposition into �l and �nl can be assessed by the
generalised likelihood ratio test; specifically, with � = �M , the
relative tenability for the data set of the hypothesis � = 0 and
the hypothesis � �= 0 is compared. The test statistic is

	 = px(X|0, �M)/ max
�

px(X|�, �M)

= pv(0|�M, X)

pv(0|�M)
/ max

�

pv(�|�M, X)

pv(�|�M)
.

For data of reasonable quality, the variance of pv(�|�M, X) is
much less than the variance pv(�|�M) and, in the vicinity of its
maximum, its value is more variable. In these circumstances,

	̄ = pv(0|�M, X)/ max
�

pv(�|�M, X) ≈ 	

is a suitable alternative test statistic.

Remark. For the same situation as in the previous remark,
when dim(���)� dim(���),

−2 ln(	) = XT(��� − ����−1
�����)

−1X

= �̄T�−1���(����−1
�����)

−1���

× (����−1
�����)

−1����−1
���̄

and, when dim(���)� dim(���),

−2 ln(	) = XT(��� − ����−1
�����)

−1���

× (����
−1
�� ���)−1����

−1
�� X

= �̄T�−1���(����
−1
�� ���)−1�̄.

Clearly, in both cases, the test statistic, −2 ln(	), is the same for
all possible �M spanning �l. Since the means of the probability
distributions of the Gaussian process prior model considered
here are zero, max� pv(�|�M) = pv(0|�M) and −2 ln(	̄) =
�̄T�−1�̄ is a more conservative test statistic than −2 ln(	). For
data of reasonable quality, a rejection criterion with significance
level 
 for the hypothesis � = 0 is, thus,

−2 ln(	) ≈ −2 ln(	̄) > �2
rK(
).

Assuming that the dimension of �l is known, a set of or-
thonormal vectors for which the likelihood, p(0, X|�), is max-
imal provides an estimate of the basis for the linear sub-space,
�l. An estimate of the nonlinear sub-space �nl is obtained as
the orthogonal complement of �l. When the dimension of �l
is not known, the dimension of �l may be sequentially in-
creased and its basis re-estimated. Let �i

l denote the estimated
sub-space of dimension i and let �l and �nl denote the true
linear and nonlinear sub-spaces. It follows that the dimension
of �l is m + n − q, where q is the dimension of �nl. It must
be that �i

l ∩�nl �= {0} for i > m+n−q. Consequently, as i is
increased beyond the true dimension m + n − q, the value of 	
can be expected to abruptly decrease (since HF(z)v �= 0 ∀v ∈
basis{�nl}) and, consequently, the dimension can be inferred
from the data.

In the above sequential estimation approach the re-estimation
of �l at each step can be implemented efficiently by making
use of the previous estimate, �i−l

l , when estimating �i
l . The

procedure is the following: search for the direction within �i
l ,

the orthogonal complement of �i−l
l , along which HF(z)v is

most likely to be zero. Letting v̄i denote this direction, �i
l is

then obtained as �i
l ⊕ span(v̄i ). This leads to the following

algorithm (expressed in terms of matrices, Vi and Mi , whose
columns form orthonormal basis for �i

l and �i
nl, respectively,

such that �i
nl ∩ �i

l = {0}).
Iterative estimation procedure

1. Let i = 1, �i
nl =Rn+m.

2. Determine the most likely unit direction v̄i , lying within
the current estimate, �i

nl, of the nonlinear subspace; that is,
with VK

F (�) defined using v̂(�) an explicit parameterisation
of all unit vectors in �i

nl, the unit vector, v̂(�), which max-
imises the likelihood pv,x(0, X|�). Letting the columns of
Mi be an orthonormal basis spanning �i

nl, then v̂(�) may be
parameterised as Mi� and the maximisation of pv,x(0, X|�)

can be formulated as an optimisation in the elements of the
vector, �.

3. Let the columns of Vi be an orthonormal basis spanning
null(Mi ) and Vi+1=[Vi |v̄i]. Let the columns of Mi+1 be an
orthonormal basis spanning null(Vi+1), then the columns
of Mi+1 are also an orthonormal basis of �i+1

nl . A diag-
nostic for the validity of updating the sub-space,�i

nl, to
�i+1

nl is the test statistic, 	, evaluated with the orthonor-
mal set of vectors defining VK

F (�M) chosen to be the single
vector, v̄i .

4. If i < n + m then i = i + 1, go to 2.
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(i) Dimension of the minimal sub-space: In step (2), 	 can be
expected to abruptly decrease when the rank of Mi becomes
less than the dimension of the minimal nonlinear subspace.
Such a transition can be utilised to estimate the dimension, q,
of the minimal nonlinear subspace. Transitions can, of course,
be obscured by noise but the validity of a choice of dimen-
sion, q, can be further assessed/confirmed using the pointwise
estimation methods discussed in section 4 below.

(ii) Special case enabling simplified procedure: Assume that

E[(HF(zi )em − E[HF(zi )em])(HF(zj )en − E[HF(zj )en])T]
∝ I�mn

where the j th component of the vector, ei , is �ij . It follows that,
�, the covariance of hi

F = [(HF(z1)v̂i )
T · · · (HF(zK)v̂i )

T]T, is
independent of v̂i . Since � is, by definition, positive definite,
�−1 can be decomposed as RTR, and

− ln pv(0|�, X) ∝ E(hi
F)T�−1E(hi

F) + log |�|
= E(hi

F)TRTRE(hi
F) + log |�| (5)

Hence,

− ln pv(0|�, X) ∝ v̂T
i WTWv̂i + log |�| (6)

with W = RE[[HF(z1) · · · HF(zK)]T]. (This is available un-
der the assumption that the joint probability distribution for
VK

F (�M) is available for any �). Since log |�| is constant it
does not affect the minima of − ln pv(0|�, X). The minimum
under the constraint that v̂i ∈ basis{null(M)} can be expressed
in closed-form: letting the singular value decomposition of W
be W = UT�U, it follows immediately that (6) is minimised
with v̂i ∈ basis{null(M)} when M=Uq , where Uq is the matrix
consisting of the first n + m − q rows of U. This can be cal-
culated very efficiently. More generally, this value can be used
to initialise the optimisation in the iterative procedure above.

3.2. Examples

(i) Consider the nonlinear dynamic system

y(tn+1) = 0.5 G((tn)) (7)

where G()= tanh()+ 0.01 and = r − y. The plant output
in response to a Gaussian input with mean zero and variance 3
units is measured and 300 data points collected. Gaussian white
noise of standard deviation 0.1 units is added to the output
measurement (the underlying signal has a peak magnitude of
0.5, so this represents a substantial level of noise).

The measured data, together with the corresponding pre-
dicted fit from a non-parametric Gaussian process prior model
of this data, are illustrated in Fig. 1a (explanatory variables
are (r(tn), y(tn)) and model output is y(tn+1)). The change in
−2 ln(	̄) as the dimension of the nonlinear sub-space is reduced
is shown in Table 1. It can be seen that, as expected, the cost
rises abruptly when the dimension falls below unity; that is, the
dimension of the minimal nonlinear sub-space. The estimated
basis, M, of the minimal nonlinear subspace is [0.697–0.717];
that is,  is estimated to be 0.697r–0.717y. Subject to an ar-
bitrary normalisation factor, it is evident that the identification

-3 -2 -1 0 1 2 3

-3-2-10123
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4
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0.8

y

r

x1(tn)= 0.9184r(tn)
+0.3674r(tn-1)

y(tn)= x2(tn)
+0. 55x2(tn-2)

x2(tn)= 0.3x1(tn)3

r

y

x2x1

(a)

(b)

Fig. 1. (a) Measured data (+) and associated Gaussian Process model in
Example (i) of Section 3.3, (b) Block diagram representation of system
studied in Example (ii) of Section 3.3.

Table 1
−2 ln(	̄) vs. dimension of �nl in Example (i) of Section 3.2

Dimension of �nl −2 ln(	̂) �2
rK

(0.99)

2 1 –
1 99.92 360
0 5963.46 684

procedure successfully infers the nonlinear dependence of the
plant dynamics.

This example is, of course, simple having been selected to
be low order to enable results to be readily visualised. Nev-
ertheless, it should be noted that working directly in terms of
the explanatory variables r and y requires the development of
a model of the two dimensional mapping relating (r(tn), y(tn))

to y(tn+1); for example, a radial basis function (RBF) model
(e.g., see Bishop, 1995) with 10 centres per axes has 100 cen-
tres in total and 200 parameters. Inference of the scalar na-
ture of the nonlinear dependence during initial data exploration
allows the task to be simplified to modelling a one dimen-
sional mapping only: an RBF model with 10 centres per axes
now has 10 centres in total and 20 parameters. Hence, even
in the case of a simple system the benefits of dimensionality
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reduction stemming from the identification of the nonlinear
structure are potentially considerable.

(ii) Consider the Wiener–Hammerstein nonlinear system il-
lustrated in Fig. 1b. Reformulating the dynamics in terms of
the measured variables (input, r , and output, y) yields

y(tn) = 0.3r3
1 + 0.165r3

2 ,

where � = M[r(tn) r(tn−1) r(tn−2) r(tn−3)]T with

M =
[

0.9184 0.3674 0 0
0 0 0.9184 0.3674

]

and �i , i = 1, 2 denotes the ith element of vector �. The plant
output in response to a Gaussian input is measured: data is
collected for 15 s with a sampling interval of 0.1 s (150 data
points). A non-parametric Gaussian process prior model is used
with explanatory variables [r(tn)r(tn−1)r(tn−2)r(tn−3)]T and
model output y(tn). The change in the test statistic, −2 ln(	), as
the dimension of the nonlinear sub-space is varied indicates that
a minimal nonlinear subspace of dimension two. The associated
estimate of the nonlinear dependence is

M̂ =
[

0.9292 0.3694 −0.0008 0.0018
−0.0015 0.0040 0.9282 0.3719

]
.

The estimate evidently agrees well with the true nonlinear de-
pendence, particularly in view of the small number of data
points on which it is based (150 points from a four dimensional
mapping).

Remark. Wiener–Hammerstein systems form an important
class and the identification of such systems remains a chal-
lenging problem in its own right. Consider the transversal
Wiener–Hammerstein system

x1 = (anq
−n + · · · + a0)r ,

x2 = f (x1),

y = (bmq−m + · · · + b0)x2.

Reformulating the dynamics in terms of the input, r , and output,
y yields

y = bmf (�m+1) + · · · + b0f (�1)

where

� =

⎡
⎢⎢⎣

an · · · a0 0 · · · 0
0 an · · · a0 0 · · · 0

...

0 · · · 0 an · · · a0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q−n−mr

q−n−m−1r
...

r

⎤
⎥⎥⎦(8)

and �i , i = 1, . . . , m + 1 denotes the elements of vector �.
(Note, when a coefficients bi is zero, the corresponding row in
(8) is deleted and the dimension of � correspondingly reduced,
see above example). Using the delayed inputs as explanatory
variables, and assuming that the overall order of the system
is known (this might be inferred in an iterative manner), it
can be seen that the nonlinear dependence has a specific block
diagonal structure. By inspection, the coefficients, ai , of the
input filter and the delay taps of the output filter can be directly

inferred. As one of the main task with Wiener–Hammerstein
systems is identifying the partitioning into input and output
filters, identification of the remaining system elements is now
relatively straightforward. Specifically, once the input filter is
known, the output filter can be inferred from the transfer func-
tion of the linearisation about any equilibrium point and the
system nonlinearity then directly estimated.

4. Locally validating nonlinear dependence in a region

The foregoing methods developed for summarising the non-
linear dependence in a region can be immediately applied to
summarise the nonlinear dependence locally to a single point.
By studying the local nonlinear dependence at a number of
points drawn from a region of interest, D, the validity of the
regional estimate of the minimal nonlinear subspace can be as-
sessed in a fairly direct manner. Specifically, for any function
(3) we have that

(i) dim(null(HF(z)))� dim �l,
(ii) ∩z∈D null(HF(z)) = �l.

Typically (but not always), the dimension of the null space
of the Hessian HF(z) is greater than that of �l only for
a set of points of measure zero in D. Almost everywhere
the dim(null(HF(z))) is uniformly equal to dim(�l) with
null(HF(z)) necessarily equal to �l. Consequently, good
agreement between the local nonlinear dependencies and the
regional estimate provides a degree of confidence that the
nonlinear dependence is well summarised. Conversely, if, for
example, it appears that the domain can be decomposed into
sub-regions each exhibiting consistently different local nonlin-
ear dependence, this might indicate limitations in the use of a
single summary of the nonlinear dependence over the region.

Remark. It is important to note that the regional estimate for
the basis of �l is equivalent to the mean of the pointwise
estimates over the region of interest (owing to the correlation
that generally exists between the pointwise estimates).

4.1. Examples

(i) Returning to the system, (7), considered in Section 3.3
above, Fig. 2a shows the variation in pointwise test statistic,
−2 ln(	) with respect to the dimension of the nonlinear sub-
space at 50 operating points selected uniformly from the do-
main covered by the measured data. (In this case, the rejection
criterion, �2

rK(0.99), is 9.21 for the dimension of �nl being
0 and 6.63 for the dimension being 1). It can be seen that,
in accordance with the previous results, the test statistic rises
abruptly when the dimension falls below unity. The correspond-
ing estimates of M, a basis for the minimal nonlinear sub-space
estimated at each point are shown in Fig. 2b. Evidently, the
pointwise estimates are in good agreement with the overall re-
gional estimate of the nonlinear dependence, indicating that �
equals r−y, and this helps give some confidence in the regional
estimate.
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Fig. 2. (a) Pointwise −2 ln(	̄) vs. dimension of �nl in Example (i) of Section
4.2, (b) Point estimates of M (Example (i) of Section 4.2).

(ii) Consider a system also of the form (7) but with  equal
to r − sin (ay)/a, and a = 1. For values of y close to zero,
sin(ay)/a is nearly linear in y and this system accurately ap-
proximates the previous system for which = r − y. However,
when a wider region is considered, the distinction between the
two systems can be expected to become more noticeable as
the impact of the difference in dimension of the nonlinear sub-
spaces when  = r − y and  = r − sin (ay)/a (dimension one
and dimension two, respectively) becomes significant. A lower
level of measurement noise, with standard deviation 0.01 units,
is used in this example so as to avoid obscuring the fine de-
tail of the plots, particularly Fig. 3a. Applying the techniques
developed in Section 3, and using the domain considered in
Example (i), the estimate of the basis, M, of the minimal non-
linear subspace is [0.756 − 0.655]. When the input and initial
conditions are now constrained such that the data is confined
to a region close to the origin, the corresponding estimate of
M becomes [0.708 − 0.703]. The latter agrees well with the
results for Example (i), as expected. However, the results for
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Fig. 3. (a) Point estimates of M in Example (ii) of Section 4.2 with a = 1.
(b) point estimates of M in Example (ii) of Section 4.2 with a = 0.1.

the larger region provide little insight into the nature, or de-
gree, of the difference between the system in Example (i) and
that considered here.

With regard to gaining insight into the differences between
these systems, consider the pointwise estimates of the local
nonlinear sub-space as shown in Fig. 3a. This plot uses more
data points than the previous plots in order to reveal the detailed
structure of the variation in the pointwise estimates across the
domain. Measurement noise generally results in uncorrelated
variations in the pointwise estimates across the domain, while
a strong spatial correlation is evident between the estimates in
Fig. 3a. This structure is visually quite striking, particularly
when compared with the corresponding plot for the system in
Example (i). In the vicinity of the line y = 0, the pointwise
estimates of M agree well with those for the system of Example
(i); this is not unexpected since, as noted previously, sin(ay)/a
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is nearly linear for small y and so the nonlinear dependence is
locally similar near to this line. As the parameter, a, is decreased
the pointwise estimates of M become more like those observed
in Example (i); for example, the pointwise estimates obtained
for a = 0.1 are shown in Fig. 3b. This is in accordance with
the fact that sin(ay)/a → y as a → 0 and thus  → r − y

as in Example (i). Detailed diagnostic analysis of pointwise
estimates beyond the simple observations noted above is not
pursued further here as it is not essential in the present context.
That the correct dimension of � has been identified, or not,
is validated by the uniformity, or otherwise, of the pointwise
estimates and this example illustrates that pointwise estimates
thereby provide a useful tool for validation.

5. Conclusions

This paper investigates new ways of inferring nonlinear de-
pendence from measured data. The existence of unique lin-
ear and nonlinear sub-spaces, that are structural invariants of
general nonlinear mappings, is established and necessary and
sufficient conditions determining these sub-spaces are derived.
The importance of these invariants in an identification context
is that they provide a tractable framework for minimising the
dimensionality of the nonlinear modelling task. Specifically,
once the linear/nonlinear sub-spaces are known, by definition
the explanatory variables may be transformed to form two dis-
joint sub-sets spanning, respectively, the linear and nonlinear
sub-spaces. The nonlinear modelling task is confined to the
latter sub-set, which will typically have a smaller number of
elements than the original set of explanatory variables. A con-
structive algorithm is proposed for inferring the linear and non-
linear sub-spaces from noisy data and its application is illus-
trated in a number of simple examples (as the focus of the
present paper is on theoretical issues, large scale applications
are not pursued here). Algorithms for inferring pointwise sub-
space estimates are proposed and the use of pointwise estimates
for validating regional estimates of nonlinear dependence is
demonstrated.
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Appendix A. Non-parametric Gaussian process priors

Consider a smooth function f (.) dependent on the explana-
tory variable, z ∈ D ⊆ Rp. To avoid cumbersome notation, f

is scalar (the generalisation to vector functions is straightfor-
ward). Suppose N measurements, {(zi , yi)}Ni=1, of the value of
the function with additive Gaussian white measurement noise,
i.e. yi = f (zi ) + ni , are available and denote them by M . It
is of interest here to use this data to learn the mapping f (z)
or, more precisely, to determine a probabilistic description of

f (z) on the domain, D, containing the data. Note that this is
a regression formulation and it is assumed the input z is noise
free.1

The probabilistic description of the function, f (z), adopted
is the stochastic process, fz, with the E[fz], as z varies, inter-
preted to be a fit to f (z). By necessity, to define the stochastic
process, fz, the probability distributions of fz for every choice
of value of z ∈ D are required together with the joint prob-
ability distributions of fzi

for every choice of finite sample,
{z1, . . . , zk}, from D, for all k > 1. Of course, the joint probabil-
ity distributions of lower dimensionality must be the marginal
distributions of those of higher dimensionality. Given the joint
probability distribution for fzi

, i = 1, . . . , N , and the joint
probability distribution for ni , i = 1, . . . , N , the joint probabil-
ity distribution for yi , i = 1, . . . , N , is readily obtained since
the measurement noise, ni , and the f (zi ) (and so the fzi

) are
statistically independent. M is a single event belonging to the
joint probability distribution for yi, i = 1, . . . , N .

In the Bayesian probability context, the prior belief is placed
directly on the probability distributions describing fz which
are then conditioned on the information, M , to determine the
posterior probability distributions. In particular, in the Gaus-
sian Process prior model considered here, it is assumed that the
prior probability distributions for the fz are all Gaussian with
zero mean (in the absence of any evidence the value of f (z) is
as likely to be positive as negative). To complete the statistical
description, requires only a definition of the covariance func-
tion C(fzi

, fzj
) = E[fzi

, fzj
], for all zi and zj . The resulting

posterior probability distributions are also Gaussian. The Gaus-
sian assumption may seem strangely restrictive initially, but re-
call that this is simply a prior on the relevant stochastic process
space and so places few inherent restrictions on the class of non-
linear functions that can be modelled. Indeed, it can be shown
that the result is, in fact, a Bayesian form of kernel regression
model (Green & Silverman, 1994) subsuming, amongst oth-
ers, RBF, spline and many neural network models (Williams,
1998). The Gaussian process prior model is non-parametric in
the sense that the imposition of a specific parametric structure
is avoided. This model is used to carry out inference as follows.

Clearly p(fz|M) = p(fz, M)/p(M) where p(M) acts as a
normalising constant. Hence, with the Gaussian prior assump-
tion,

p(fz|M) ∝ exp

[
−1

2
[fz YT ]

[
�11 �T

21
�21 �22

]−1 [
fz
Y

]]

where Y = [y1, . . . , yN ]T, �11 is C(fz, fz), the ij th element
of the covariance matrix �22 is C(yi, yj ) and the ith element
of vector �21 is C(yi, fz). Both �11 and �21 depend on z.
Applying the partitioned matrix inversion lemma, it follows that

p(fz, |M) ∝ exp[− 1
2 (fz − f̂z)�

−1
z (fz − f̂z)]

1 No attempt to being made here to propagate a Gaussian or other
distribution through a nonlinear function.
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with f̂z = �T
21�

−1
22 Y, �z = �11 − �T

21�
−1
22 �21. Therefore, the

prediction from this model is that the most likely value of f (z)
is the mean, f̂z, with variance �z. Note that f̂z is simply a z-
dependent weighted linear combination of the measured data
points, Y, using weights �T

21�
−1
22 .

The measurement noise, ni , has covariance n�ij and is sta-
tistically independent of f (zi ). Hence, the covariances for the
measured output, yi , are simply

C(yi, yj ) = (C(fzi
, fzj

) + n�ij ); C(yi, fz) = C(fzi
, fz).

In addition, assume that the related stochastic process, f
�ei
z ,

where f
�ei
z = (f(z+�ei ) − fz)/� and ei is a unit basis vector,

is well-defined in the limit as � → 0, i.e. all the necessary
probability distributions for a complete description exist. De-
note the derivative stochastic process, i.e. the limiting random
process, by f

ei
z . The E[f ei

z ] as z varies is interpreted as a fit to
�f/�zi (z) when the partial derivative of f (z) in the direction ei

exists. Provided the covariance C(fzi
, fzj

) is sufficiently dif-
ferentiable, it is well known (O’Hagan, 1978) that f

ei
z is itself

Gaussian and that

E[f ei
z ] = �

�zi

hf (z), hf (z) = E[fz], (9)

where zi denotes the ith element of z; that is, the expected
value of the derivative stochastic process is just the derivative
of the expected value of the stochastic process. Furthermore,

E[f ei
z0

f
ej
z1 ]=∇1

i ∇2
j Cf (z0, z1), Cf (z0, z1)=E[fz0fz1 ], (10)

where ∇1
i Q(z0, z1) denotes the partial derivative of Q(z0, z1)

with respect to the ith element of its first argument, etc.
The above procedure can be repeated to construct second

derivative stochastic processes. The means and covariances can
be determined by recursive application of (9) and (10).

In the examples discussed in Sections 3 and 4 of this paper,
a straightforward smoothness prior covariance function is used
which ensures that measurements associated with nearby val-
ues of the explanatory variable should have higher covariance
than more widely separated values of the explanatory variable;
specifically,

C(fzi
, fzj

) = � exp

[
−

∑
k

((zi )k − (zj )k)
2/2
k

]
k

, (11)

where (zi)k denotes the kth element of vector zi . The value of 
k

characterises the rate of variation of the function in dimension
k, thereby, estimating the degree of nonlinearity or the relative
smoothness in different directions of the explanatory variable.
The corresponding covariance for yi is

C(yi, yj ) = � exp

[
−

∑
k

((zi )k − (zj )k)
2/2
k

]
+ ��ij . (12)

The parameter � is the variance of the measurement noise, n,
on the output. To obtain a model given the data, M , the hy-
perparameters (�, 
k, �), whilst constrained to be positive, are

adapted to maximise the likelihood p(M|(�, 
k, �)). The co-
variance function, (11), is sufficiently smooth for the derivative
and second derivative stochastic processes to be well-defined
and the relations (9) and (10) to apply (O’Hagan, 1978).
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