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Abstract: Event-driven Intermittent control (IC) has been used as a framework to explain relevant
aspects of human movement. The events, which are generated by states crossing predefined thresholds,
give rise to state trajectories that mimic those of a continuous controller, by only using feedback
information at event times. Here we present the results of using an optimisation approach to identify the
parameters of an intermittent controller from experimental data, where users performed one dimensional
mouse movements in a reciprocal pointing task. The results show that IC is able to reproduce both,
the dynamical features and the variability of the pointing task across participants. We then introduce
probabilistic elements in the IC framework in the form of Gaussian processes as an additional method to
represent human movement variability.
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1. INTRODUCTION

Understanding the control strategy that humans implement to
interact with computers in order to change their state is at the
core of the field of Human-Computer interaction (HCI). Most
of these interactions come through the use of pointer devices,
where the user moves a mouse (input device) using the hand
to control the position of a pointer on a screen. The process of
interacting with a computer is dynamic by nature and it happens
under the influence of a feedback loop. The user observes the
current state of the pointer and adjusts their strategy to steer the
system to the desired state. Control theory is the mathematical
framework for systems in the presence of feedback loops and
it has been used in the past to better understand human-motor
control and HCI in general (Gawthrop et al. (2015), Müller et al.
(2017), Murray-Smith (2018)).

The purpose of this paper is to introduce event-driven Intermit-
tent Control (IC) as a special type of control and as a plausible
framework to explain the experimental results of a pointing task
as well as the observed variability of the recorded movements,
by presenting the results from Müller et al. (2017) and Martı́n
et al. (2021). Additionally, initial results based on extensions
made to the IC framework are shown as an alternative method to
represent human movement. These extensions are probabilistic
in nature due to the use of Gaussian Processes (GP) that replace
key elements in IC, introducing variability in the observed tra-
jectories in a simple way without the need to introduce noise or
disturbances.

⋆ Funding support provided by EPSRC through grant EP/R018634/1 (Closed-
loop Data Science) and a PhD Scholarship.

2. INTERMITTENT CONTROL

Traditional feedback control can be seen as applying an input
signal that is generated using observations which are often
combined into an estimate of the state, to a dynamic system cf.
Fig. 1. In continuous control (bottom left in Fig. 1), the input
signal is computed based on continuously observed informa-
tion. In contrast, IC (Gawthrop et al. (2011), Gawthrop et al.
(2015)), shown in the bottom right of Fig. 1, relies on an event-
trigger to use feedback at specific moments in time in order
to compute a control trajectory that is applied in an open-loop
configuration.

The IC framework is described with more detail as a block
diagram in Fig. 2, based on the versions presented in Gawthrop
et al. (2011) and Gawthrop et al. (2015). Together, the Hand-
Arm Biomechanics and Input device PTF (Pointing Transfer
Function) blocks from Fig. 2 represent a mathematical model of
the neuromuscular dynamics of the user and the user interface.
We assume that the overall dynamics can be expressed as
a linear state-space model of order n that can be written as
follows:

ẋ(t) = Ax(t) + Bu(t) , y(t) = Cx(t) , (1)
with x(0) = x0 as initial condition and where x ∈ Rn corre-
sponds to the system state such as pointer position and velocity,
and muscle activation, y ∈ Rny corresponds to the output such
as pointer position on the display, and u ∈ Rnu corresponds
to the input such as muscle excitation. A is a n × n matrix
representing how the system evolves without control input, B
is a n × nu matrix, representing the impact of control signals
such as muscle excitation on the system, and C is a ny × n
matrix, representing how the system state maps to the users’
observation, such as pointer position on the display.
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Fig. 1. Feedback control of a dynamic system: In continuous
control (bottom left block diagram), the control signal
(time-series in black) is generated continuously, based
on observations of the system (time-series in red). In
intermittent control (bottom right), feedback information
from continuous observations is only used intermittently
(determined by an event trigger) to reset an open-loop
control signal trajectory. The instances when feedback is
used in intermittent control are indicated by circles on the
red and black time-series, representing the system output
and the control signal, respectively. The control signal
trajectories between two consecutive red circles (or events)
are generated open-loop, i.e. without the use of feedback.

The goal of the user is to steer the output y(t) as close as
possible to the target signal w(t) (e.g., the pointing target). A
recurrent problem in control is that finding a suitable state-
feedback control input might not be possible using only the
observations. For example, in pointing, the user observes the
pointer position. If the pointer velocity and muscle activation
states can not be observed directly, they must be estimated in
order to compute a control input signal. One way to solve this
is to feed the input u(t) and the output y(t) to a linear observer,
which is a dynamical model based on (1), that reconstructs the
full state of the system x̂(t) using only output measurements and
information on the input that is being applied. In IC, once the
target signal w(t) has been introduced as xw(t) = x̂(t) − xssw(t),
the resulting observed states xw(t) get sampled at discrete points
in time ti. In this case, xss corresponds to the steady-state
version of the states and it can be computed offline according
to equations 8 and 9 in Martı́n et al. (2021).

The predictor block in Fig. 2 is to compensate for transmission
time-delays which might be present in the feedback loop both
from the users neural system and from the computer system, by
predicting the future states xp(ti) based on the state estimates
xw(ti). These predictions are used by the hold, a dynamical
model that mimics the behaviour of the overall closed-loop
system. The hold mechanism is a central feature of IC and its
main purpose is to generate the state vector xh(t) using feedback
information only when a sample is taken at ti. The hold states
xh(t) follow the trajectories of an ideal closed-loop system in the
absence of disturbances or noise, so the hold is sometimes seen
as an internal model that is used by IC to control the system
when it is evolving in an open-loop configuration.

The trigger compares the hold states xh(t) and the observed
states xw(t) to generate a prediction error ep. An event is
generated by the trigger at ti once ep exceeds a predefined
threshold q. The hold states xh(t) are used to compute a state

feedback control input u(t) continuously, which is the signal
that drives the neuromuscular system producing the final input
to the system ue(t). The State feedback block represents the
control gain vector k which can be designed offline using
traditional methods such as pole-placement or linear optimal
control (Goodwin et al. (2001)). Both the input u(t) and the
output y(t) can be affected by motor noise vu(t) and sensory
noise vy(t) respectively.

The time between event instants is known as the intermittent
interval ∆i. The ith intermittent interval is defined as ∆ol =
∆i = ti+1 − ti. Also, IC makes use of a a continuous variable
τ that is restarted every ∆i according to τ = t − ti. A lower
limit ∆min

ol can be specified within a given intermittent interval
as ∆i > ∆

min
ol > 0. The lower limit ∆min

ol , also known as minimum
open-loop interval, has been used to model the psychological
refractory period observed in human motor control (Gawthrop
et al. (2011)). The formal definition and implementation details
of the predictor, observer, hold, state-feedback and trigger
blocks are established in Martı́n et al. (2021).

Neuromuscular
Mechanics Observer

Trigger

State Hold Delay Predictor

ue(t) y(t)

xssw(t)

x̂(t) xw(t)

xw(t)

ti

xw(ti)

xp(ti)xp(ti − td)

xh(t)u(t)

feedback

System

vy(t)

PTF
Input device

Hand-Arm Biomechanics

Arm-Mouse + − + −

Fig. 2. Block diagram of intermittent control. The hold states
xh are compared with the state-estimates xw in the trigger
block. If the difference exceeds a predefined threshold,
then the block creates events at times denoted by ti. The
hold states xh are used to generate the control signal u dur-
ing the open-loop period, and it is reset only at times ti by
the predictor block. The dashed lines represent signals that
are defined only at ti. The Hand-Arm Biomechanics block
contains the Neuromuscular System which generates the
force that is applied to the input device and the Arm-
Mouse Mechanics block that translates it into a position
for the pointing transfer function (PTF).

3. EXPERIMENT SETUP

The IC framework from the previous section was used to iden-
tify the parameters of a standard intermittent controller based
on experimental data collected from a pointing experiment 1

(Müller et al., 2017), where 12 participants were asked to
control a pointer shown on a screen. The pointer reflected the
changes in the x-dimension of the mouse and it was restricted
to move only horizontally.

The task consisted of clicking a number of one-dimensional
targets that were displayed in sequence. During a block of trials,
the active target was presented in a different colour compared
to the previous target, and the distance between them, as well
as the width of the target, stayed constant throughout the block.
Each block uses a specific combination of distance and width;
a total of 8 combinations were applied for each participant: 1)
distance of 212 mm and widths of 0.83, 3.32, 14.1 and 70.6
mm, 2) distance of 353 mm and widths of 1.38, 5.54, 23.5, 118
mm. According to Fitts’ law (Fitts, 1954), the corresponding
1 http://joergmueller.info/controlpointing/



Index of Difficulty (ID) for each distance and target width
combination are 8, 6, 4 and 2. Each participant had to complete
a full block of trials per ID for the two distance conditions.
The experiment blocks were designed to have 102 trials each,
divided into 22 trials for training and 80 for the rest of the task.

4. MODEL ASSUMPTIONS AND CONTROL DESIGN

The block labelled as Neuromuscular system in Fig. 2 was
implemented as a second order system with time-constants of
50 ms (Gawthrop et al., 2011),

Gnms(s) =
1

(0.05s + 1)2 , (2)

where G(s) is the transfer function in the Laplace domain. This
transfer function was converted to an equivalent state-space
system in the form of equation (1) with

Anms =

[
−20 20

0 −20

]
, Bnms =

[
0
20

]
, Cnms =

[
1 0
]
. (3)

Similarly, the block shown in Fig. 2 as Arm-Mouse Mechanics
was established as a double integrator in the state-space repre-
sentation of (1) with

Asys =

[
0 1
0 0

]
, Bsys =

[
0
1

]
, Csys =

[
1 0
]
, (4)

where the associated state vector is xsys(t) =
[

xpos(t) xvel(t)
]T

,
comprised of the pointer position xpos(t) and velocity xvel(t).
This assumes that the output of the neuromuscular system, de-
picted as ue(t) in Fig. 2, is a force generated by the participant,
applied to a unit mass in a low friction environment, and that
the output of the overall system, y(t), is the position of the
mass, which in this case is equivalent to the position of the
pointer on the screen. The combination of (3) and (4) yields
a fourth order system based on the full state vector x(t), which
is then used to design the overall controller. The feedback gain
vector k (defined in Martı́n et al. (2021)), needed to generate the
final control law u(t) was designed using optimal control via the
LQR design method (Goodwin et al., 2001). This involves the
minimisation of the LQR cost function

JLQR =

∫ ∞
0

[
x(t)T Qcx(t) + u(t)T Rcu(t)

]
dt , (5)

and the solution of its associated algebraic Riccati equation.
Both x(t) and u(t) in (5) are weighted by design matrices Qc
(an n × n diagonal matrix that must be positive semi-definite)
and Rc (an nu × nu diagonal positive definite matrix, where nu
corresponds to the number of inputs in the system). Using the
same LQR method on the dual problem of state estimation,
the closed-loop observer gain matrix L, can be computed to
force the estimation error to vanish asymptotically, by choosing
a design matrix Qo. In this case, only the first state of the
state vector x(t), corresponding to the pointer position xpos(t),
was used by the observer to estimate the rest to the unknown
states. The matrices Qc and Qo were defined as parameters to
be optimised, whereas Rc was fixed for the entire process with
a value of 1. The time-delay td remained constant at 0.01 sec for
all participants and conditions. To detect events, a threshold q
was applied only to xpos(t). However, the actual value of q was
obtained via the optimisation process.

5. OPTIMISATION APPROACH

Based on the combination of (3) and (4), an optimisation
procedure was used to fit a set of controller parameters to the

experimental data. The following parameters were identified as
a result of the optimisation process: The LQR design matrix Qc
(the four elements in its diagonal since the off-diagonal terms
are all zero), the observer gain Qo, the prediction error threshold
q for triggering purposes, the minimum open-loop interval ∆min

ol
and a mismatch gain Ap = 1−p, for a total of 8 free parameters.
The purpose of Ap is to model the cases where the control input
that is applied to system is different by a fixed amount from
what it should be by design. This is implemented as follows:
from Fig. 2, the output of the neuromuscular system ue(t),
which serves as the input to the system in (4), is multiplied
by a quantity p, resulting in ẋsys(t) = Asysxsys(t) + Bsysusys(t),
where usys(t) = pue(t). When p = 1, the full input is applied.
A mismatch is generated when p is different than 1. The
optimisation process identified the value of p directly; however,
the mismatch gain Ap is reported in the following sections as
it gives a better insight on the difference between ue(t) and
usys(t). A pattern-search method was used for all subjects and
conditions as implemented in Matlab’s Optimisation Toolbox.

5.1 Data partitioning

The data was partitioned according to the following criteria:
the time elapsed between two successive changes in the target
position would constitute a full slice. Essentially, each slice is
composed of the pointer trajectories made by the subject to
reach consecutive targets (two consecutive trials). An individual
IC is then fitted to each slice. In Fig. 3, a prototypical target
signal is used to illustrate how the data was partitioned into
individual slices. Each block had 80 trials, this resulted in 40
full slices per block. The optimisation was carried out using
the information of the last 20 slices in the block, leaving the
rest for evaluation. 20 controllers were optimised for each of
the 8 conditions in the experiment. This was repeated for all 12
participants. Altogether, 1920 individual ICs were obtained.

Position

Time

Full slice

Right Left Target
signal

t0 t f

wc

m1 mi

Fig. 3. Data partitioning diagram. A slice starts at t0, which is
10 samples before a change in reference wc (movement
to the target on the right), and ends 10 samples after the
next change in reference in the same direction (t f ). The
second portion of the slice (shown as Left) corresponds to
the movement from the right to the left target. As described
in section 5.3, m1 is the best controller in bank m and mi is
a randomly selected controller from the same bank.

5.2 Model fitness via cost functions

To establish how well the intermittent controller fits the experi-
mental data, we use a general cost function J measuring the dif-
ference between pointer movement predicted by the model and
actual pointer movement, which also includes the difference in
terms of the pointer velocity. The optimiser considers the root
mean squared error (RMSE) of these quantities as follows

J = cp

√∑n j

i=1 (ŷi − yi)2

n j
+ cv

√∑n j

i=1 (v̂i − vi)2

n j
, (6)



where ŷ and v̂ are the simulated pointer position and velocity
respectively. The number of samples considered for each slice
is shown as n j and the constants cp and cv denote values that
act as weights for each of the errors. For the optimisation
procedure, the values of cp and cv were set to 0.5, resulting in
equal weights for each of the error terms in (6).

5.3 Controller switching

The resulting models of the optimisation procedure can be used
to carry out a simulation over a collection of trials for each
participant. To create a controller that captures some of the
inherent variability of human control, we used a multiple-model
approach, instead of a single optimised model for all trials. A
bank of optimised models m was generated for each participant.
This bank is essentially a ranked list according to the value
of (6), which contains the intermittent controllers that were
derived using the optimised parameters for each slice, resulting
in 20 controllers per condition. At the start of the simulation, the
best controller in the bank, or m1, is used against the first trial,
which corresponds to an initial pointer movement towards the
right target followed by a second movement to the left target.
Fig. 3 shows the moment in time when the target changes (wc),
which is when a new controller mi is selected randomly from m
and applied for the duration of the next trial only. This selection
mechanism starts after the first trial has finished and is kept in
use for the remaining trials.

6. OPTIMISATION RESULTS

The optimised parameters for all participants are shown in
Fig. 4 when grouped by ID: the threshold q (A), the gain Ap (B),
the minimum open-loop interval ∆min

ol (C), the observer gain Qo
(D) and the four elements in the diagonal of matrix Qc (E, F,
G, H). The data distribution for each parameter is shown as a
violin plot for the two target distances of 212 mm (left side) and
353 mm (right side) respectively.

Fig. 4. Optimised controller parameters for each condition. (A)
the threshold q, (B) mismatch gain Ap, (C) the minimum
open-loop interval ∆min

ol , (D) the observer gain Qo, and the
four elements in the diagonal of matrix Qc (E, F, G, H),
are shown as violin plots including data of all subjects and
categorised by ID (horizontal axis). Both Qo and Qc are
shown in log scale. The results are also grouped according
to the two values of distance between targets used in the
experiment (left: 212 mm and right: 353 mm). The shape
of the distributions for ID 2 is slightly different compared
to the rest of the conditions.

For the threshold q (Fig. 4A), all conditions exhibit long tails
and similar distributions, indicating the presence of higher
thresholds in some of the models. The mismatch gain Ap in
Fig. 4B shows that the data distributions are wider for ID 4,

6, and 8, suggesting that there is less of a mismatch compared
to ID 2. The minimum open-loop interval ∆min

ol in Fig. 4C is
similar for all conditions, with the distributions covering the
0.03 to 0.05 sec range. The optimised parameters in matrix Qc
are shown in 4E, F, G, and H, using a log scale. The first and
second elements of Qc (Fig. 4E and Fig. 4F) are of particular
importance since Qc1 is associated to the pointer position state
and Qc2 to the pointer velocity state. Qc1 shows higher values
in all conditions compared to the other elements in Qc, this
suggests that the controller puts more emphasis on the position
state in order to reduce the overall error. The higher values of
Qc1, Qc2, and Qc3 in ID 2 reveal that as the ID increases, a
higher degree of precision is needed which forces the controller
to become more cautious by producing smaller feedback gains.

7. DYNAMIC RESPONSES

In Fig. 5, the phase planes and Hooke plots of participant 10 are
shown and compared to a simulation generated by the multiple-
model IC approach. Each row corresponds to a specific ID,
starting from ID 2 at the top and ending with ID 8 at the bottom.
The first two columns from left to right contain data for a
distance of 212 mm, the third and fourth columns correspond
to 353 mm. The simulated phase planes (in red) follow the
behaviour of the human response (in blue); however, the IC
response captures the variability from the experimental result in
all conditions, being slightly less accurate as the ID increases.

The phase planes in Fig. 5E and Fig. 5O, are a reflection of
the type of control strategy applied by the participant. Once
the trajectory approaches the target, the control policy that is
used results in a reduction in velocity followed by a sequence
of corrections to reduce the error (more frequent in difficult
conditions), or in an error in the opposite direction in the form
of overshoot. The simulated IC not only covers almost the en-
tire range of possible trajectories generated by this participant,
but also reproduces the overshoot behaviour that was previ-
ously mentioned. The Hooke plots (second and fourth columns)
compare how the pointer acceleration changes with time. In
Fig. 5F and Fig. 5P, the acceleration trajectory generated by
the IC is smooth (in red), and follows the experimental result
(blue) in terms of its overall shape. For ID 2 in Fig. 5A and
Fig. 5B, the control strategy changes significantly and a more
fluid motion is observed, which requires less corrections as the
pointer approaches the target, which agrees with the parameter
distributions for ID 2 in Fig. 4.

8. PROBABILISTIC ELEMENTS IN IC

One of the benefits of the approach described in the previous
sections, where parameters are optimised for each trial and
then a bank of controllers is used to simulate trajectories for
a pointing task, is that the observed variability arises from the
triggering process that is inherent to IC and the constant switch
to a different controller during the block of trials, without the
need for added noise. However, having a control framework
where the variability can be generated via open-loop trajecto-
ries and effective triggering alone is appealing because only one
controller would be responsible for a wide range of responses,
simplifying the estimation of the full set of parameters. For this
reason, we have explored the use of probabilistic elements, in
the form of Gaussian processes, to replace the Hold element in
the IC framework, which is responsible for the production of



-0.2 0 0.2

-2

0

2

-0.2 0 0.2

-20

0

20

-0.2 0 0.2

-2

0

2

-0.2 0 0.2

-20

0

20

-0.2 0 0.2

-2

0

2

-0.2 0 0.2

-20

0

20

-0.2 0 0.2

-2

0

2

-0.2 0 0.2

-20

0

20

-0.2 0 0.2

-2

0

2

-0.2 0 0.2

-20

0

20

-0.2 0 0.2

-2

0

2

-0.2 0 0.2

-20

0

20

-0.2 0 0.2

-2

0

2

-0.2 0 0.2

-20

0

20

-0.2 0 0.2

-2

0

2

-0.2 0 0.2

-20

0

20

Fig. 5. Phase planes and Hooke plots for participant 10 in
all conditions. Each row corresponds to a particular ID,
starting with 2 for the top row and ending with 8 at the
bottom. The two columns on the left show the phase planes
(pointer position vs velocity) and Hooke plots (pointer
position vs acceleration) for a distance between targets of
212 mm (A, B, E, F, I, J, M, N). The two columns on the
right show the same quantities for a distance of 353 mm
(C, D, G, H, K, L, O, P). The participant’s response is in
blue, while the trajectories generated by the IC are in red.
Green vertical lines show the target signal.

open-loop trajectories. We now introduce our initial results in
the context of human balancing.

8.1 Gaussian processes and the hold mechanism

The Hold mechanism in Fig. 2 produces a state vector xh(t) that,
in combination with the state-feedback gain k, generates the
control input u(t) that is applied to the system to be controlled.
In our standard formulation of IC, the process of computing
xh(t) involves a closed-loop matrix Ac = A − Bk, that depends
on the system matrices defined in (1). At the start of every
intermittent interval i.e., at ti, and until the next event appears,
an autonomous dynamical model is defined as follows:

ẋh(t) = Acxh(t) , (7)
where ẋh is the derivative of the hold state vector w.r.t. time.
This ensures that in the absence of disturbances or noise, the
hold states xh would match those of the underlying closed-loop
system, with the distinction that they only use feedback at event
times (when (7) is restarted). The hold formulation in (7) is
deterministic in nature and provides a solid frame of reference
in order to decide when to trigger an event. However, if (7) is
replaced by a GP using:

Acxh(t) ∼ N(0,K) , (8)
which depends on a kernel matrix K, then a prediction of the
hold state for the next time instant can be made:

ẋh(t) = xh(t + 1) = N(xh(t)|0,K) . (9)
This recursive formulation allows the computation of hold state
trajectories of finite length. The implementation of a GP in

order to do prediction and the obtention of the kernel matrix
K, as in (9), depends on an off-line optimisation process that
is based on training data generated by the system that is being
approximated (Rasmussen and Williams, 2006). A diagram of
the proposed hold in (9) is shown in Fig. 6, which is based on
the standard IC diagram of Fig. 2. In this case, the Hold block
has been expanded to show that each component of the state
vector xh(t) is approximated by an individual GP. The Arm-
Mouse Mechanics and Input device PTF blocks are replaced
by a more general representation using a System block which
corresponds to the actual system being controlled.

Two alternatives have been explored to generate the hold states
xh(t) based on the GP in (9):

(1) To use the mean of the distribution embedded in the GP to
compute the prediction for the next open-loop interval.

(2) To draw a sample from the distribution and use it for the
next open-loop interval.

These two alternatives produce hold states that eventually lead
to stable closed-loop controllers; however, the difference in
behaviour obtained from using one or the other is noticeable.
The first method results in behaviour that is closer to the one
observed when the standard hold in (7) is used. Interestingly,
the second alternative adds a richer variety in terms of the range
of the responses. These results are illustrated in the next section
using a simulation of a human balance model.

Neuromuscular System Observer

Trigger

State

Hold

Delay Predictor

ue(t) y(t)

xssw(t)

x̂(t) xw(t)

xw(t)

ti

xw(ti)

xp(ti)xp(ti − td)

xh(t)u(t)

+ − + −

feedback

System

N (0, K1)

N (0, Kn)

vy(t)

Fig. 6. Intermittent Control using a GP based hold. The Hold
block is expanded, compared to Fig. 2, to show how
individual GPs predict the trajectories of the states in
xh(t). The control input u(t) drives the Neuromuscular
System and System blocks, where the latter represents the
dynamical model of the system that is being controlled.

8.2 The inverted pendulum model of human balance

The single inverted pendulum model has been used to describe
the human balance control problem both in simulation and
using experimental data. For the purpose of our simulations,
the dynamic bias model of human standing described in (Lakie
et al., 2003; Gawthrop et al., 2011) is used. This model con-
siders that the control signal applied to maintain a human-size
inverted pendulum balanced is generated by a tendon connected
in series with a contractile element (in this case the calf muscle)
which is in charge of generating a balancing torque. The model
can be written in a state space form, as in (1), if the following
state vector is defined: x(t) =

[
θ̇ θ
]T

, where θ and θ̇ are the
angular position and velocity. Using x, the final model is:

ẋ(t) =
[
−V

J
(1−c)mgh

J
1 0

]
x(t) +

[
cmgh

J
0

]
u(t) (10)

y =
[

0 1
]

x(t) . (11)



The constants in (10) are: the tendon stiffness ratio c = 0.85, the
moment of inertia J = 77 kg m2, the ankle viscosity V = 2.9
Nm rad−1, the mass of the pendulum m = 70 kg, the distance
from the ankle joint to the centre of mass h = 0.92 m, and the
gravitational acceleration constant g = 9.81 m s−2, as reported
in Loram et al. (2009). c being smaller than 1 implies that the
tendon stiffness is not enough to stabilise the pendulum on its
own, requiring additional control effort provided by the muscle.

8.3 Simulation results using a GP based hold

The model in (10) was used to run a comparison simulation
between the traditional hold of the IC framework, referred to
as Standard hold and the GP based hold with the two sampling
alternatives described in section 8.1: 1) Mean based GP (mGP)
and 2) Sample based GP (sGP). The parameters of the three
intermittent controllers were: threshold q of 0.01 rad applied to
both θ and θ̇, a minimum open-loop interval ∆min

ol of 0.25 sec, a
2 by 2 identity matrix as Qc, and Rc = 1. An initial condition of
0.01 rad for θ was used while θ̇ was set to 0. First, a comparison
between the standard hold (blue) and the mean based GP hold
(mGP), in red, is presented in Fig. 7, where the two states θ̇
and θ are shown in (A) and (B) respectively and the associated
phase plane in (C). Both responses are similar, small differences
arise when the mGP based hold is used, specially in the regions
close to zero angle and velocity, but overall the same pattern is
obtained with the two holds.
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Fig. 7. Left: Standard (blue) vs mGP hold (red) comparison.
(A) shows the evolution of θ̇, (B) shows the angle θ,
and (C) is a phase plane representation of θ̇ vs. θ. Small
differences observed between the responses.
Right: mGP hold (red) vs sGP hold (green) comparison.
(A) shows the evolution of θ̇, (B) shows the angle θ,
and (C) is a phase plane representation of θ̇ vs. θ. The
differences between the two responses are more evident,
starting to diverge at around 2 seconds. The phase plane in
(C) shows this behaviour clearly, especially the max/min
values of θ when close to zero.

To illustrate the increased range of the responses obtained when
a sample from the distribution is taken (sGP) instead of using
just the mean (mGP), a comparison was made between the two
holds and the results are shown in Fig. 7(right).The time-series
for both states in (A) and (B) show differences in behaviour
after only two seconds, which is expected. The overall trend of

the trajectories generated by the sGP hold is comparable to both
the standard hold and mGP, but due to event times being slightly
different in all of them and the fact that in mGP the starting
point of the trajectory is determined by the standard deviation
of the distribution, a wider arrange of patterns emerge. For
instance, in Fig. 7(right, B), around 5 and 24 sec, the angle θ
does not cross to the other side of the vertical reference at 0 rad
and it bounces back to the same side where it came from.

9. CONCLUSIONS

The results presented in this paper show how IC is a plausi-
ble framework to study and understand human movement. In
particular, the results of applying IC to the experimental data
recorded from pointing task in the HCI context show that the
triggering process of IC and the proposed multiple-model ap-
proach are capable of reproducing the dynamical features of the
trajectories generated by the participants. These results provide
a starting point to study the effects of closed vs. open-loop
configurations and the role of intermittency in HCI, by looking
at methodologies that are not only physiologically compatible
but that are also supported by the existing theory of control sys-
tems. Also, the GP based extensions mentioned in the previous
section add a probabilistic point of view to the IC framework,
resulting in a controller that is capable of being precise and
at the same time provide a wider range or responses to better
represent the variability of human movement.
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