
A FRACTAL RADIAL BASIS FUNCTION NEURAL NET FOR MODELLING

Roderick Murray-Smith

Daimler-Benz Research, Alt-Moabit 91b, 1000 Berlin 21, Germany.

Abstract – A new recursively self-constructing fractal learning al-

gorithm for an artificial neural network is presented. The network

architecture is based on a tree-like structure of Radial Basis

Function (RBF) networks. This paper examines some of the prob-

lems with RBF nets, and suggests a possible solution. Neurons

in RBF nets have local receptive fields. The new learning algo-

rithm ‘grows’ new sub-networks within the fields of existing units

producing modelling errors greater than the tolerated limit. The

network complexity is thus matched to the complexity of the sys-

tem being modelled. The local nature of the neurons allows the

modelling tolerance to be stored locally, enabling the network to

give a varying confidence estimate for outputs from various

areas of the input space. The learning algorithm continually un-

dergoes a train–test–train procedure. This prevents overtraining

and can be used to create representative training data automati-

cally.

1. INTRODUCTION

Artificial neural networks have proved to be highly successful in a wide

range of application areas. The solutions arrived at, however, have

usually been ad hoc ones, with only rough guidelines for the choice of

network architecture, the learning algorithm, the algorithm parameters

and the acquisition of training data. This paper gives a brief introduc-

tion to RBF neural nets, then describes a new network architecture and

learning algorithm, in an attempt to make the modelling process for

continuous systems more automatic and reliable.

This algorithm automatically constructs a neural network architecture

with enough representational power to learn the target mapping. The

algorithm can also be used on-line, to automatically generate stimuli

for the system being modelled, creating a training set which is more

densely populated in areas of input space which are mapped to areas

where the system’s response is more complex.

As the learning process inherently calculates the local modelling accu-

racy of the network, the final network can give not only the estimated

answer, but also a measure of the expected accuracy of this response.

The net ‘knows what it doesn’t know’.

1.1 Notation used

x model input vector

f () – local model

c – centre of basis function

� – separation of basis functions

d – input to local model (distance from centre of local m

p – number of children created when a model is split

1.2 Radial Basis Function networks

Radial Basis Function neural nets (RBF nets) represe

linear combinations of functions with limited, usually s

tive fields, whose centres are distributed throughout

(see Eqn. (1)). Such nets have previously been applie

modelling problems with success, and offer theoret

[10]. There is a close relationship between RBF nets a

bellar Model Articulation Controller (CMAC) [1][4]. The

have several advantages over other neural network ar

to the local nature of the receptive fields of the ‘neuron

is ‘locally tuned’, so that it only reacts to a small area of

x1

x2

xn

1

2

N

��d�

w1

w2

wN

Figure 1: A Radial Basis Function network

y(x) ��
N

i�0

�i
�� x � ci

�� � wi

These nets have also been suggested as suitable for

line) learning. Training with data from one area of inp

affect the net’s output in a different area, if the basis fu

enough. This means that rarely occurring inputs will sti

rectly and that on-line adaptation is feasible.

1.2.1 Regular spacing of the basis functions

The basis functions of the network can be inititialised t

space uniformly. The number of units, their radii and s

suitably set beforehand. This makes the process o

complex area dictates the density of the basis functions in the whole

network, making this style of initialisation very inefficient for high-di-

mensional problems.

1.2.2 Irregular spacing of the basis functions

It is also possible to adapt the centres and radii of the basis functions

to suit the local data complexity. The adaptation of all of these parame-

ters is, however, a non-linear optimisation problem, and is therefore a

more complex task, and convergence cannot be guaranteed.

Moody and Darken [8] describe a hybrid technique which used an un-

supervised k-means clustering algorithm to place the centres (the

number of centres is chosen explicitly), and then estimated the radii by

using a nearest neighbour heuristic. They also attempted to optimise

all of the parameters using a conjugate gradient algorithm, but the re-

sults were disappointing. Another technique is to place the centres di-

rectly on data points from the training set [10][11].

1.2.3 Problems with RBF Nets

The ‘curse of dimensionality’; as described earlier, the number of units

needed in a regular network grows exponentially with input dimension.

As the receptive fields are local, the generalisation ability of the net-

work is obviously reduced, implying requirement of large quantities

training data, which is sometimes not feasible.

As described in 1.2.2, the placement of unit centres and the determina-

tion of the radii of the units is an area of active research, with several

hybrid algorithms being used. There is still no systematic way of decid-

ing on the number of units needed.

2. THE FRACTAL RBF NET

The network presented in this paper is described as ‘fractal’ because

it recursively creates subnetworks with the same architecture and

learning algorithm, applied at different scales over the input space.

Other authors have also proposed tree-like neural networks. Utgoff de-

scribes Perceptron Trees, which are decision trees with perceptrons

as decision nodes, and which perform classification of integer prob-

lems [12]. Deffuent [3] describes a Neural Units Recruitment algorithm

which uses perceptrons for Boolean classification problems with real

inputs. Baram [2] describes a fractal neural network, based on the

Hopfield neural network model, for image storage.

The use of RBF networks and the recursive construction algorithm de-

scribed in this paper are similar to that used by Omohundro’s Bump-

trees [9], although the recall in the fractal RBF net is not equivalent to

tree search. The automatic construction of a training set related to the

modelled system’s complexity is new. The validity estimation has pre-

viously been applied only to normal RBF nets [7].

In the following, a unit refers to a local model which should be a simple,

optimisable system, such as a straightforward weight or a linear com-

biner. This is then modulated by a basis function which prescribes the

region of the model’s validity.

2 1 The network architect re

The models used within the units can theoretically be

single weight to a multi-layer perceptron or a conventio

as a polynomial representation. In some cases it may

include a customised model structure, which was deri

knowledge. The network equation, with local mode

comes:

y(x) ��
N

i�0

�i
�� x � ci

�� � fi(x)

A simple model with linear learning algorithms, guara

gence, is desirable. In the example used in this pape

limited linear combiner was used. This approach has

by Jones et al. [6].

2.1.2 Basis functions

The basis functions should be thought of as being

function of the particular model. Their outputs are clo

the model is accurate and decrease towards zero as

accuracy (i.e. as the input moves away from the mode

ating point) [5]. The basis functions for the models sh

to have compact support, i.e. they have no influence

receptive field [4]. This means that training one area

will not affect the output of an unrelated part of the n

The centres and radii of the functions should be set so

rectly neighbouring units overlap, by setting the radii o

to �, the distance between neighbouring centres. This

tween centres,�
N

i�0

�i (d) � 1, and thus that the interpo

tent. Basis functions at the edge can be given maxim

their centres towards ∞, by normalising the basis funct

sis functions thus perform a partition of unity [9]

p = 4

� =1

��

Figure 2: Normalised basis functions

y(x) ��
N

i�0

�i
�� x � ci

��

�
N

k�0

�k
�� x � ck

��
� fi (x)

The Gaussian bell �(d) � e
�d2

�2 , although often used,

ideal, as it has neither compact support nor vertical sy

choice, for example, is the function �(d)= cos�(d), w

is scaled to the range –�/2 < d < �/2. This function ha

of the desired compactness, and correctly spaced un

level surface summing to 1. It was used in the examp

-0.5

0

0.5

1

ing of fields in a regularly spaced RBF net. This spacing leads to un-

equal distances between neighbours (� � �√2).

In Figure 4b, the units are shown with a different layout. The use of an

offset between rows of units allows the placement of receptive field

centres so that they are always a unit distance (�=radius of basis func-

tion) away from their neighbours. This was used to ensure that the in-

put space is more evenly covered by the basis functions.

�

��

�

��2

�

a b

Figure 4: Two possible arrangements of the receptive fields

The use of regularly spaced basis functions with radii equal to the

spacing also has the effect that any point in input space will be in at

most 2n receptive fields. As the net is regular, the output can be calcu-

lated very quickly, using a hashing algorithm, making the speed of re-

call dependent only on the number of input dimensions (n), not on the

total number of units (N), which depends on the complexity of the func-

tion being modelled. This also potentially enables a simple imple-

mentation of RBF nets with standard RAM technology.

2.2 The learning algorithm

The flow diagram of the learning algorithm is shown in Figure 5. The

form of the system using minimal a priori knowledge is a network initial-

ised with only one unit, which has a uniformly active model validity

function. Training proceeds until no more progress is made. At this

point, the unit(s) producing errors greater than the permitted tolerance

levels ‘grow’ another unit within their respective receptive fields (this

unit is identical in structure to the main network, but applied at a smaller

scale).

This process is then repeated recursively until the worst errors pro-

duced by the training set are satisfactory, at which point the net is

tested using data from the test set. Beyond the aspects related to

learning a given training set, the algorithm addresses two other impor-

tant aspects; namely the adequacy of the training set and measure-

ment of the confidence range of the output, throughout the input space.

2.2.1 How local should the model training be?

The training for each local model can be achieved globally, where in-

puts are presented to the whole system, allowing the network to use

the error at the top level model output to train the relevant local models.

An alternative is to train the local models individually, with no regard

to the other models. The global approach will result in the most parsi-

monious model, but is more computationally expensive. The global

solution was used in this work.

TRAIN NETWORK

AND NETWORK’S

CHILDREN

TEST NETWORK.

IS GENERALISATION

SATISFACTORY?

MAX_ERROR < TOLERANCE?

GROW NEW UNITS

TRAINING

SET

SYSTEM TO BE MODELL

YES

NO

NO
YES

ACQUIRE INPUT

OUTPUT DATA

WITHIN GIVEN

BOUNDS

TEST

SET

SPLIT DATA INTO

TEST AND TRAINING

SETS AND ADD TO

EXISTING SETS

INITIALISE

NETWORK

TRAINING SET
LEARNED
CORRECTLY.

NO

YES

MODEL LIMIT

 (I.E. IS RECE

 TOO SMALL)?

NOYES

DOES LOCAL M
ENOUGH TRAIN

TRAINING SET
NOT LEARNED CO

NETWORK

PERFORMANCE

SATISFACTORY.

FINISH

START

Figure 5: Flow chart of fractal net construction algorithm

2.2.2 Growing sub-networks

As already mentioned, an increase in representation

network can be achieved by growing sub-networks wit

fields of existing units, as shown in Figure 6.

Split

Split

Figure 6: Growing new models by splitting the basis functions hier

The units which are to be expanded are those with

than the tolerance level within their receptive fields.

nodes to be split at each iteration depends on the tra

being used; local or global. When local training is use

error > tolerance will split, whereas the use of global tr

grows around such areas, neglecting other more easily learnable parts

of the function. Another method is to choose the units probabilistically,

with the probability of a unit splitting being proportional to its worst er-

ror.

A minimum size of receptive field is set as a halting condition, as some

functions, e.g. a step function, require an infinitely small radius, which

can never be achieved. In some cases, units will not be able to split be-

cause the sub-models have reached this minimum. There may also be

insufficient training data for some of the sub-models, prompting a re-

quest for more data in this area (see section 2.4).

Once the decision to grow from a unit has been made, how should it

split the input space within its receptive field? The straightforward

scheme for the one-dimensional case is shown in Figure 7. The area

covered by one basis function now contains p basis functions, with ra-

dii � =1/(p+1), spaced at intervals of �, from �.

p = 4

� =1/(p+1)

��

Figure 7: Splitting a basis function

This question of where and how to split basis functions is not trivial

when dealing with multi-dimensional problems. The most straightfor-

ward scheme is simply to split each dimension in p places, introducing

pn new units. The network size, however, increases exponentially as

n increases.

This means that, rather than splitting all dimensions, one of the dimen-

sions must be chosen to be the discriminating one. The problem of

choosing the dimension to split on is very similar to the problems faced

in constructing decision tree algorithms. It should be possible to apply

techniques from that field. The method used in this paper was to relate

the probability of a split along a given dimension to the absolute

weighting of that dimension (equivalent to the gradient of the hyper-

plane in that dimension) in the particular unit’s local model.

2.3 Confidence of the network output

As the overall model is made by combining many local models, each

of these models can also learn the tolerance of its output. This ranges

between the worst positive and negative errors which occurred in the

training and test phases within the receptive field of that local model.

As the accuracy of any local model decreases as the operating point

moves away from the local model’s centre, the errors are weighted by

the local model’s basis function for the current input, before being

compared to the worst errors.

dence estimation with their ‘Validity Index’ network [7],

measures were used to evaluate the sufficiency of the

and to calculate the confidence limits for each unit.

2.4 Automatic construction and extension of the

To train any system capable of learning requires a repr

ing set of input-output pairs, yet surprisingly little att

paid to this aspect of machine learning. The system

must have been sufficiently stimulated to ensure that

cover the input space adequately. Satisfactory results

achieved with ad hoc solutions, but a general solution

comes difficult for non-linear, multivariable systems.

training data is not to become impractically large, an a

knowledge must be used, to make a more intellige

training data.

The fractal RBF network, like most other learning sys

an arbitrary training set. The fractal construction algo

also offers the opportunity of creating a training set w

the complexity of the system being mapped. The netw

data in a more focused way, because of the local natu

allowing the more complex areas of the model to have

amount of training data.

 System to
be modelled

Input Stimuli

System response

 Fractal
Neural Mode

y

x

Figure 8: Network stimulates the system to enhance its training da

If, after training, certain areas of the net produce una

on the test set, or if there is too little training data with

field of a given unit for it to grow children, the network

input stimuli for the system. These stimuli are create

dom points from within the receptive field of the uni

more data. The data measured from the system’s re

mediately split into test and training patterns, ensuring

is also representative.

The previously inadequate training and test sets, can

improved, from zero contents if necessary, to a set

pairs, forming a representative sample of the system

3. THE FRACTAL NET ALGORITHM IN PRAC

As an example of the network’s learning ability, the fu

y(x) � sin�10� sin�x3�� � �x � 1
2
��; �

2

was chosen as a test system for the learning algorithm

is an example of a non-linear function containing a

complexity.

The learning progress of the fractal network is sho

For this implementation, the network was initialised with only one unit,

the local models were simple hard limited linear combiners. Each unit

could grow two sub-units. A global approach to training, and error es-

timation was taken. To ensure a more even training progress, each

non-leaf node could send a split command to all children with an error

> tolerance, but only the worst leaf node of any given model could be

grown from.

Figure 9: Early stage of learning (2 iterations), only very rough approximation.

Figure 10: After 4 iterations. Some areas already well learned, others less so.

Figure 11: Final state. Note the different densities of the basis functions.

The confidence limits were simply the worst errors occurring during the

training and test phases. These were then modulated by the basis

functions and summed together. The desired tolerance was set to 5%,

and the limit on the size of receptive field was set to (2�)9 = 0.026.

Although this example shows that the ideas developed in this paper

are feasible, achieving an average absolute error of 1.2% in this exam-

ple, the various open questions regarding the training algorithm and

network architecture need further work. Which other structures are

For complex, multi-variable function approximation, th

load may become excessive for conventional worksta

local nature of the activation functions, standard RBF

selves to parallel implementation. Each local model ca

independently, with its own local training and test set

4. CONCLUSIONS

The Fractal RBF net algorithm described in this pap

method of creating a neural network to model a given

tem. The algorithm does this by recursively constru

structure of structurally identical sub-networks.

The algorithm can also automatically produce the ne

and test data, if the system to be modelled is available

ing. Testing, tolerance and validity measurements are

of the learning process, ensuring good generalisation

The automatic creation of training and test data deal

variable static systems. The obvious next step to the

duction of training sets for non-linear dynamic systems

significant one.

With the advantages listed above, this network archite

tential to make the process of modelling non-linear, m

tions faster and more reliable than with other neural

5. REFERENCES

[1] J. S. ALBUS, Data Storage in the Cerebellar Model
Controller, Trans. ASME, Journal of Dynamic System
ment & Control, 97, p220–227, 1975

[2] YORAM BARAM, Associative memory in Fractal Neu
IEEE Trans. Syst., Man and Cybernetics, Vol. 19,No

[3] GUILLAUME DEFFUANT, Neural units recruitment algo
eration of decision trees, IJCNN 90, San Diego, Vol.

[4] STEPHEN H. LANE, DAVID A. HANDELMAN, JACK J. GEL

Order CMAC Neural Networks – Theory and Practice
can Control Conf. 1991, Vol 2., p1579-1585.

[5] TOR A. JOHANSEN, BJARNE A. FOSS, Representing a
Unmodeled Dynamics with Neural Network Memorie
Control Conference, Chicago, June 1992.

[6] R. D. JONES, Y. C. LEE C. W. BARNES G. W. FLAKE, K
LEWIS, S. QIAN, Function Approximation and Time Se
with Neural Networks, IJCNN 90, San Diego, Vol 1, p
1990.

[7] J. A. LEONARD, MARK A. KRAMER, L. H. UNGAR,
A neural network architecture that computes its own
Submitted to Computers and Chemical Engineering.

[8] J. MOODY, C. DARKEN, Fast Learning in Networks o
Processing Units, Neural Computation 1, p281–294,

[9] STEPHEN M. OMOHUNDRO, Bumptrees for Efficient F
Constraint, and Classification Learning, Tech. Repor
ary 1991, Internat. Computer Science Institute, Berke

[10] THOMAS POGGIO, FEDERICO GIROSI, Networks for A
and Learning, Proc. IEEE, Vol 78, No. 9, p1481-1496

[11] DONALD F. SPECHT, A General Regression Neural
IEEE Trans. Neural Networks, Vol. 2, No. 6, p568-57

[12] PAUL E. UTGOFF, Perceptron Trees: A Case Study

