A LOCAL MODEL NETWORK APPROACH
TO NONLINEAR MODELLING

A DISSERTATION SUBMITTED TO
THE DEPARTMENT OF COMPUTER SCIENCE
OF THE UNIVERSITY OF STRATHCLYDE
IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

By
Roderick Murray-Smith
November, 1994



(©) Copyright 1994 by Roderick Murray-Smith
The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of Strathclyde
Regulation 3.49. Due acknowledgement must always be made of the use of any

material contained in, or derived from, this thesis.



Abstract

This thesis describes practical learning systems able to model unknown nonlinear dynamic
processes from their observed input-output behaviour. Local Model Networks use a number
of simple, locally accurate models to represent a globally complex process, and provide a
powerful, flexible framework for the integration of different model structures and learning

algorithms.

A major difficulty with Local Model Nets is the optimisation of the model structure. A
novel Multi-Resolution Constructive (MRC) structure identification algorithm for local model
networks is developed. The algorithm gradually adds to the model structure by searching for
‘complexity’ at ever decreasing scales of ‘locality’. Reliable error estimates are useful during
development and use of models. New methods are described which use the local basis function
structure to provide interpolated state-dependent estimates of model accuracy. Active learning
methods which automatically construct a training set for a given Local Model structure are
developed, letting the training set grow in step with the model structure — the learning system
‘explores’ its data set looking for useful information.

Local Learning methods developed in this work are explicitly linked to the local nature of
the basis functions and provide a more computationally efficient method, more interpretable
models and, due to the poor conditioning of the parameter estimation problem, often lead
to an improvement in generalisation, compared to global optimisation methods. Important
side-effects of normalisation of the basis functions are examined.

A new hierarchical extension of Local Model Nets is presented: the Learning Hierarchy of
Models (LHM), where local models can be sub-networks, leading to a tree-like hierarchy of
softly interpolated local models. Constructive model structure identification algorithms are
described, and the advantages of hierarchical ‘divide-and-conquer’ methods for modelling,
especially in high dimensional spaces are discussed.

The structures and algorithms are illustrated using several synthetic examples of nonlinear
multivariable systems (dynamic and static), and applied to real world examples. Two nonlinear
dynamic applications are described: predicting the strip thickness in an aluminium rolling mill
from observed process data, and modelling robot actuator nonlinearities from measured data.
The Local Model Nets reliably constructed models which provided the best results to date on
the Rolling Mill application.
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Chapter 1

Learning Systems for Empirical

Modelling

1.1 Learning

The ability to interact with the environment and to learn from the effects of these interactions is
one of the defining features of intelligence. A system with the ability to learn from observation
thus compensates for an initial lack of a priori knowledge about its given task. Such flexibility
is becoming increasingly important in automatic systems, as the physical, technological and
economical environments in which systems are operating are changing faster than ever before.
Higher levels of autonomous action are desired from our robots, washing machines, cars and
computers. Improved flexibility and adaptability is a major asset, whether the adaptability is

in the product development process, or in the products themselves.

This thesis targets the task of modelling complex nonlinear, dynamic processes by allowing
models to learn from the processes’ observed behaviour. A goal of the work was to develop
methods which not only had the required performance, but were also relatively interpretable, to
support validation of models, and able to integrate models and methods from other paradigms.
The introduction of explicit a priori knowledge about the target process is also an important

element of applied learning systems.

Obtaining an accurate computer-based model of the physical process is the first step towards
the creation of high performance diagnosis systems, supervisory systems, controllers and filters.
In many practical systems, however, the process 1s still poorly understood, or new variations
of the system are being constantly created, leading to a slightly different problem each time a
controller is to be developed. The ability to use learning systems to cope with the uncertainties
would allow developers to produce high performance systems faster and more cheaply than

with conventional techniques.
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The intuitive concept of ‘learning’ can be interpreted in a number of ways when trying to

emulate 1t on a machine:

A typical dictionary definition of learning is:

° 1. to gain knowledge of something or acquire skill in some art or practice, 2.
to commit to memory, 3. to gain by experience, example etc., 4. to become

informed.
Other definitions from the researchers investigating machine learning include:

° Learning systems belong to the class of systems which show a gradual im-
provement of performance due to the improvement of the estimated unknown
information (Fu, 1970).

° Learning is optimisation under conditions of insufficient a prior: information

(Tsypkin, 1971).
. Learning is the process by which one entity acquires knowledge (Rich, 1988).

° Learning can be regarded as synthesising an approximation of a multi-dimensional
function, that is solving the problem of hypersurface reconstruction

(Poggio and Girosi, 1990).

° ...modifying patterns of behaviour on the basis of past experience so as to
achieve specific anti-entropic ends. In these higher forms of communicative
organisms the environment, considered as the past experience of the individual,
can modify the pattern of behaviour into one which in some sense or other

will deal more effectively with the future environment (Wiener, 1948).

° Behaviour is primarily adaptation to the environment under sensory guidance.
It takes the organism away from harmful events and toward favourable ones,
or introduces changes in the immediate environment that make survival more

likely (Hebb, 1949).

This work develops learning algorithms and model structures which gain knowledge about
a process from observed input-output example by synthesising a suitable non-linear multi-

dimensional function to fit the training data.

1.2 Learning & Engineering — Where is the Engineering?

Much research in recent years has been carried out within the artificial neural network paradigm,
using simplified formal models of physiological systems. The neural network research in empir-

ical modelling has been very experimentally oriented, so the learning algorithms and structures
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Which network architecture?

How many units in net?

Can we use a priori knowledge?

yx) = sin( 107 sin<x3n))

Which inputs, what system order?

Data pre-processing?

Is the training set adequate?

Is the trained network reliable?

Figure 1.1: The trouble with neural nets for engineering ... An engineer faces a number of
difficult design decisions when using neural networks in practical projects.

which have become popular in this community have been successfully applied to a variety of
challenging applications. However, few workers in the area have analysed the deeper theo-
retical issues, or exploited results and experience from closely related fields such as function
approzimation, system identification or statistics. This ignores decades of relevant work, and
has made the scientific output less accessible to a broader community, leading to criticism of

the neural network area by scientists and engineers from other fields.

The lack of a theoretical approach to the work has, unfortunately, also had the consequence
that there i1s no clearly defined engineering process in which a model can reliably be created
from measurements taken from a physical system, as shown in Figure 1.1. The impressive
results quoted in the literature usually come after months of ‘tweaking’ the parameters of
learning algorithms, implicitly using a priori knowledge by pre-processing the data, and in se-
lective testing of the trained system. The length of time taken for training is often prohibitive,

often without the guarantee of an optimal solution.

The difficulty in determining whether a good solution has been found stems from the fact that
most networks need to have their structure initialised in advance using guesswork, with little
guarantee against over-fitting the data, or under-specifying the model structure. It is vital for
the successful application of the ideas, that robust (in terms of reliably finding a good model
which generalises well to new inputs) learning algorithms be developed which can adaptively

find a parsimonious model structure and optimise its parameters to fit a given problem and
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training set.

The problems for learning systems in industry are not, however, limited to poor learning
algorithms. The creation of a training set for a nonlinear, multi-variable dynamic system can
be an extremely complex task. The data acquisition process may also be very expensive, time-
consuming, costly, and in some cases dangerous (if you don’t already have a good controller)
and time-consuming. It is also possible to unwittingly include undesired side-effects in the

data specific to a particular run/day/setting which limit the usefulness of the final model.

A further problem with much of the current reported research is that the methods used
to evaluate performance of the trained system are usually too simplistic. The reliability
of the resulting model is also usually not clearly understood, partially because of the poor
interpretability of the model architectures. In conventional neural networks it is often difficult
to introduce a prior: knowledge. This is highly important in practical applications, where
there is usually a great deal of such knowledge available about the system in question. In
most publications, the creation of the training set is implicitly affected by a prior: knowledge
about the system, and certain architectures may be more suited to certain system types. The
assumption underlying the research here 1s that it is very important that prior knowledge can
be explicitly built in to the system’s architecture and optimisation algorithms. Methods to do
this have been described, but are still not present in much of the current research. This work

attempts to bring these various facets together within a single framework.

1.3 Thesis Contributions

The methods described in this thesis have been chosen for their suitability for integration with
conventional engineering techniques, as well as their powerful representations and learning
algorithms. The resulting interpretability and robustness with respect to sparse or noisy data

was also an important aspect of the work.

o The Local Model Network, an existing generalisation of Basis Function' networks is
analysed, and the theoretical and practical suitability of the architecture for practical
modelling applications is demonstrated. The Local Model framework allows the inte-
gration of a prior: knowledge, is more transparent than other architectures, and by
pre-structuring the model structure, can better cope with high-dimensional, or high

order processes.

e It was found that the commonly used global parameter optimisation in Local Model
networks is computationally expensive, and in some cases poorly conditioned. A new
Local Learning algorithm for the optimisation of the parameters in a local model net has

been developed. This is significantly faster, produces more interpretable models and can

I Networks consisting of a single nonlinear layer, linearly weighted to the output, as described in Section 2.3.1.
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have a regularisation effect on the optimisation process producing models with a better

generalisation ability.

Locally interpolated error estimates for Basis Function and Local Model networks are
developed. These produce state-dependent error estimates for a trained local model net-
work, which help validate the trained model, and can be used by constructive algorithms,

or on-line when the model 1s in use.

The effect of normalisation of the basis functions in Local model and Basis Function
networks is analysed. Side-effects are described which reduce the interpretability, and

have serious effects on the smoothness and robustness of the final model.

The new Multi-Resolution Constructive (MRC) structure identification algorithm for
local model nets is developed. This automatically fits the model structure (number,
location and size of the basis functions, and the complexity of the local models) to the
available training data. The algorithm uses a ‘complexity heuristic’ to gradually improve

the model’s structure.

The local model network 1s extended to a hierarchy of local model networks — the Learn-
ing Hierarchy of Models (LHM) architecture. Parameter optimisation and structure
identification algorithms are described which utilise the hierarchical nature of the struc-

ture to make learning more efficient.

The algorithms and model structures are applied to model data from a real industrial
process — an aluminium rolling mill. The algorithms performed better than competing
learning systems such as MARS (Friedman, 1991), and Multi-Layer Perceptrons?, and
it is intended to implement the model in on-line tests. A further example, modelling

robot actuator dynamics is also analysed.

1.4 Thesis Structure

e Chapter 2 is a review of the existing empirical modelling theory. The empirical modelling

process is introduced and the importance of the various stages discussed: Ezperiment
destgn, construction of a suitable representation, optimisation of the parameters and val-
tdation of the trained models are all vital stages, and the lack of support for these phases
from conventional neural networks is criticised. The Local Model network architecture is
reviewed and its suitability as a network for practical modelling applications discussed,
as 1s the use of hierarchical learning structures. An overview of related work and theory

is given.

2See Section 2.1.4.
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e Chapter 3 investigates several aspects of local model networks. The problems with
ill-conditioning of the parameter estimation problem in local model nets are analysed
and a new local learning algorithm is described which is faster and in noisy or sparsely
populated problems can be more robust than global methods. The trade-off between

global and local training methods is discussed.

A flexible, straightforward extension to local model nets is given which allows interpo-
lation of local estimates of accuracy to provide a state-dependent error statistic for a

trained network.

The effect of normalisation of the basis functions on the network’s representational prop-
erties is analysed. Several side-effects other than the desired partition of unity are de-
scribed which can have serious consequences for the interpretability and robustness of

basis function networks.

e In Chapter 4 the new MRC algorithm for constructive creation of Local Model Basis
Function Nets 1s described. This development iteratively allocates units to the areas
of greatest complexity in the system. This is repeated at ever increasing resolution of
complexity, gradually creating an ever more accurate model, given the limitations of the

available training data.

Constructive techniques for active selection of the most important training data from a
large training set are given. This allows the learning system to maintain the training
set at the size and completeness needed for a given model structure. The strengths
and weaknesses of the methods developed in this chapter are illustrated using several

artificial static and dynamic modelling tasks.

e Chapter b introduces the Learning Hierarchy of Models architecture. This can be viewed
as a hierarchical local model net structure. The advantage of this structure is that more
efficient models can be produced, and that the hierarchical nature of the structure allows
more efficient learning algorithms, especially for high-dimensional problems. Parameter
optimisation algorithms and structure identification algorithms are defined. The confi-
dence estimation and active learning components described in previous chapters for local

model nets are extended to the LHM architecture.

e Chapter 6 demonstrates the practical application of the new methods with the modelling
aspects of an aluminium rolling mill. The local model and LHM architectures were
successfully applied to model the output thickness deviation of the strip, given the

current state of the system.

A further example, the modelling of robot actuator nonlinearities, is given. The re-
sults are compared with three other methods, MARS, ASMOD (Kavli, 1992) and LSA
(Johansen and Foss, 1994b).

e Chapter 7 summarises and discusses the significance of the results and analysis in the

thesis.



Chapter 2

Methods for training models

The scope of the use of learning techniques for empirical modelling tn this thesis is
outlined, and the classes of learning systems are described in general terms. The
various research paradigms associated with machine learning are reviewed, with
special attention paid to the practical problems with artificial neural networks in
an engineering environment. To clarify the requirements of a learning framework
for modelling, the modelling process s analysed, each phase of which is then as-
soctated with desirable features in a learning system. The Local Model Network,
a generalisation of Basis Function nets, is proposed as an architecture suited to
real applications. It provides the ability to introduce a prior: knowledge and model
complex systems robustly, while allowing estimates of accuracy and enhancing the
training set. The relevant literature s reviewed and the close connections to con-

ventional statistical methods, system identification and fuzzy logic are emphasised.

2.1 Using Learning Techniques for Empirical Modelling

The ‘modelling problem’ as discussed here is to try to robustly approximate the behaviour
of a given complex system from observation data, where complex implies that the system
can be non-linear, time-invariant, multi-variable and dynamic. This can be interpreted as a
learning task, where the learning system has to learn a suitable representation for the process
in question. The model should obviously be a good representation of the target system, for
the purposes intended of it, but in an industrial or scientific environment it should ideally
also be interpretable; so that the engineer gains improved understanding about the system.
The learning systems used in this thesis can therefore be viewed as computationally intensive
tools which are used to support the modelling process by attempting to induce a parsimonious
representation of the process from the behaviour described by the observed input-output

data. The basic assumption underlying the use of learning systems for modelling purposes is
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therefore that the behaviour of the process can be described in terms of its observed inputs
(1) and outputs (y). The process can therefore be modelled as a function f(4p) of the inputs

1, i.e. § = f(4p), subject to a measurement error e, so that the true outputs are

y=Tf() te (2.1)

Such methods are basically black-box modelling techniques, i.e. techniques which attempt
to describe a system by finding relationships between the system’s inputs, internal states
and outputs using general model structures (f(+p) performs a nonlinear mapping from n
dimensional inputs to m dimensional outputs, R — R™) to represent a fit to the given data,

irrespective of physical meaning of the parameters.

fw)
P y
Input Target System | Output
Hl’l Hll’ﬂ

System’s
Behaviour

Figure 2.1: Systems can often be described by their input-output behaviour

In practice 1t will usually be impossible to find an absolutely correct representation of the
underlying process because of the effects of unmeasured inputs and states, which can be
generalised to be treated as noise on the data, leading to the need to use a stochastic framework
for the modelling process. It will also be rare for the training data to be uniformly distributed
around the input space, and there may be areas with insufficient data available for a good
approximation. This uncertainty means that there 1s no general method which can be applied
to all modelling problems. To reduce the effect of the uncertainty in the data, constraints on
the form of the possible solutions must be used. Such constraints are basically any existing
knowledge about the process, or its environment. The framework should therefore be able
to include such knowledge wherever possible. If a prior: knowledge of model structures or
parameters is included in the estimation process, the model can be called a grey-boxr model.

The task for the tools developed in this thesis is therefore to support the process
Observed Data + A priori Knowledge — Model

as well as possible.

2.1.1 Empirical models of dynamic systems

Any real physical system’s reactions to a given input are not likely to be instantaneous,

and will depend on previous inputs. We are therefore dealing with dynamic systems, which



2.1. USING LEARNING TECHNIQUES FOR EMPIRICAL MODELLING 9

are processes described by difference or differential equations, where the current output of
the system depends not only on the current external stimuli, but also on previous stimuli and
internal states. This brings a new dimension to the modelling process, as the optimal sampling
rate of the unknown system must be estimated, the order of the system must be taken into
account, and the model’s dynamics must be validated. To represent the dynamic aspects of
the system, 1t 1s necessary to have memory elements to store past inputs and model states

which are passed to a static nonlinear model.

Most of the work in this thesis is based on the assumption that the process can be represented
by a non-linear auto-regressive model with exogenous inputs (NARX) over the whole operation
envelope. As the implementation of the learning system will be on a digital computer, we

consider discrete-time non-linear systems having the general form

y(t) = flyt = 1), ...yt —ny),ult —k),...u(t —k —ny)) + e(t). (2.2)

Here, y(t) is the system output, and w(t) the input. The analysis is limited to multiple-input
single-output (MISO) systems so that y(t) € Y C R and w(t) € U C R™~. Here k represents

a time delay. The information vector passed to the nonlinear model is therefore defined as

Y- =[yt-1),...y¢t —ny),ult —k),... u(t—k— ny )]t (2.3)

or, if a zero-mean disturbance term e() is to be taken into account on-line, the widely stud-
ied NARMAX (Non-linear ARMAX) framework (Leontaritis and Billings, 1985) from system

identification can be used,
PE—1D=[yt—-1),... .yt —ny),ult—k),...u{t—k—ny),e(t—1),...e(t— n )T, (2.4)
where e(t) € E C R.

u (1)

S 0

I—H—~HH

A 4

S

Figure 2.2: Using a tapped delay line (the T’s represent delay elements) and static neural net

to represent nonlinear dynamic systems.
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The NARX, or tapped delay line approach (see the graphical representation of equation (2.2)
in Figure 2.2) is fairly pragmatic, as it brings the neural network into the world of conventional
system identification theory, where the static neural net can be viewed simply as a technique
for function approximation. One disadvantage is that the input dimension becomes very large
for even simple systems. Also, if the sampling rate has been correctly set, the data from
a dynamic system will be highly correlated on the delayed inputs from the output state —
i.e. it is impossible for the data to fill the input space, as shown in Figure 2.3, which shows

a slice through the input space of the rolling mill data discussed in Chapter 6. This can

26.9
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4514 . . . .
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sO(t)

Figure 2.3: A slice through the input space of the rolling mill’s training set, showing a variable
plotted against the delayed version of itself.

have serious consequences for some learning algorithms, and model structures. If the model
structure is such that the nonlinearity results from partitions which are orthogonal to the axes
of the input space (an underlying assumption in learning systems such as MARS, ASMOD,
ABBMOD, ID3), the model will be less suited to modelling such dynamic processes than an
algorithm which can partition the input space more freely, e.g. by placing basis functions on

data points from the training set, or by allowing axis-oblique partitions of the input space.

An alternative to an external tapped delay line is to have memory and feedback within the
network itself, where the dynamics are learned by the network. Such recurrent networks,
which contain local internal feedback connections have received a great deal of attention in
the literature (see, for example (Hopfield, 1984, Zbikowski, 1994)). These networks are math-
ematically elegant structures which are, however, often more difficult to understand and train
than static networks for practical problems. The local model network mixed order systems
described in Section 2.5.4 are less susceptible to the dimensionality problems inherent to the

NARX representation.

A further alternative to the NARX representation is to pass the derivatives of the variables

to the model, which makes the data distribution more even and reduces the conditioning
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problems often caused by the highly correlated inputs found in the training data for NARX
systems. Because of the sensitivity of such systems to noise, it is important to filter the data

beforehand.

2.1.2 Classes of learning systems

As can be seen from the wide variety of definitions in Section 1.1, machine learning can be
studied from a number of widely differing viewpoints. This is largely because the use of
observed data to provide the information needed to better fulfil a given goal, whether on-line,
or off-line, is a major aspect of almost all areas of science and engineering. This makes it
important to try and describe the basic features of learning systems in as general a form as
possible, so that the various branches of research can be more easily integrated. The systems

shown in Figures 2.4-2.6 describe the range of learning ability for automatic model creation.

Systems which cannot learn

Engineer’s knowledge

(a) Input ————» Fixed System =9 Output

Figure 2.4: System without learning ability — behaviour is pre-programmed

System (a) is the traditional method of solving a problem. The problem is analysed, de-
composed into subsystems, and an explicit solution i1s developed by human engineers using
their knowledge of the problem, its constraints and its environment (note that much of this
knowledge is however based on earlier empirical work). The resulting program/expert sys-
tem /controller/classifier is then tested with experimental data and put into use. No automatic
learning 1s used in the development, making the development process sensitive to changes in

the environment, the system or the development goals.

Systems which can be trained

—P  Teacher 1

v

BN Learning » Output
System

(by Input

Figure 2.5: Supervised learning system
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System (b) is a supervised learning system. The machine’s task is therefore described by the
‘teacher’ using examples of what should be done, rather than instructions about how to do it,
and criteria for the evaluation of the learning system’s performance, compared to the output
the ‘teacher’ expected. The learning system then learns the optimal mapping from input
to output with the help of an external ‘teacher’. The task of adjusting the learning system’s
parameters and structure to achieve this is not a trivial matter. For any learning structure the

optimisation task usually becomes more difficult, the more flexible the representation used.!

Systems which can self-organise

v

Goals, Cost
(©) Input et [ Function » Output

Learning System

Figure 2.6: Self-organising system

System (c) is an unsupervised learning or self-organising system. There is no external teacher
and the system adjusts its parameters and structure to optimise some predetermined cost
function without instructive feedback from an external body. This very general description of
an unsupervised system is extremely far-reaching, and should not be confused with the limited
implementation of the current generation of unsupervised learning algorithms described in the
literature, e.g. the Self-Organising Maps (Kohonen, 1990), which are basically clustering algo-
rithms. The important feature of self-organising systems is that the goals and cost functions
are built into the system, allowing them to autonomously adapt their behaviour to better

achieve their given goals, rather than learning to imitate an existing solution.

The unsupervised learning system can provide a more general form of learning system, de-
pending on the complexity of implementation. The teacher has, in effect, been ‘hard-wired’
into the learning algorithm in the form of goals and a quality functional which is dependent
on the inputs and resulting outputs, taking system constraints into account. The methods
described in this thesis are not directed towards the direct implementation of Self-organising
learning systems, but will involve some of the self-organising principles to provide the structure
for the solutions within the supervised learning schemes, so the desired output is described
explicitly in the training set, although the structure of the learning system is identified from
the training data in an unsupervised manner — i.e. the ‘teacher’ does not have to tell the
learning system exactly what its structure should be and which training data it should use to

train its parameters.

1A more abstract form of this style of learning can be seen in reinforcement learning systems, where the
system is no longer told exactly what to do, but is given graded feedback about the system’s performance.
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2.1.3 Research paradigms for automatic empirical modelling
Cybernetics, control and adaptive systems

The idea of artificial systems capable of learning is not as new as some people imagine. Many
of the basic ideas present in modern research have been in print since the 1940’s, when
Norbert Wiener initiated the field of Cybernetics (Wiener, 1948) — a field which, like neu-
ral networks, brought together control engineers, biologists, mathematicians, sociologists and
computer scientists. The concepts of learning systems, especially with ideas from biological
systems, were examined throughout the world, the popularity of the field shown in review
papers such as (Sklansky, 1966) and (Fu, 1970). Steinbuch’s work was often ahead of its time
(note the rolling mill application of neural nets in (Steinbuch, 1963)!), while Tsypkin’s work
(Tsypkin, 1971, Tsypkin, 1973) still clarifies many of the basics involved and describes the

application of learning and adaptation to a variety of technical systems.

Although cybernetics, like neural networks, is still seen as an elegant framework for promoting
communication and interaction between various fields of research, it could not stand the strain
brought by the explosion in progress and knowledge in its various sub-fields, which lead to
the specialisation and more insular behaviour now common in the fields originating from

cybernetics.

System identification (Ljung, 1987) is the area of modern control theory with the closest
similarity to the learning systems philosophy described in this thesis, although the major-
ity of the identification work has been based on the basic assumption of linear representa-
tions of the systems. Important contributions to the area of non-linear system identification
can be found in the NARMAX modelling methods (Billings, 1980, Chen and Billings, 1989),
based first on polynomial representations, then later on neural network implementations
with multi-layer perceptrons and RBF (Radial Basis Function) Networks (Chen et al., 1990,
Chen and Billings, 1992).

On-line adaptation of the model can be used to cope with slow variations in the parameters
of a given system, or of a change in operating point. This adaptation allowed the use of
linear models for the control of non-linear systems and environments, and was also a signif-
icant, if restricted, step towards learning systems. Adaptive signal processing is covered in
(Haykin, 1991) and a review of the adaptive control field is given in (Astrém, 1987), where
he defines adaptive control as: a special type of nonlinear feedback control, where the states of
the process can be separated into two categories, which change at different rates. The slowly

changing states are viewed as parameters.

Most of the practical industrial applications of adaptive control systems have, however, been
limited to self-tuning control, where linear controllers are adjusted automatically for a given
system. In many cases, an accurate time-invariant nonlinear model of a system will remove

the need for on-line adaptation.
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Statistics

Many of the tasks routinely ascribed to learning systems (i.e. classification or modelling ability
derived from data, as opposed to a priori knowledge about the problem) can be viewed as
regression problems, and many of the tools for their solution have thus been a standard part of
the statistician’s toolkit for decades. (Barron and Barron, 1988) discusses the similarities be-
tween statistical methods and more recent developments. Fisher’s simple linear discriminant
algorithm is functionally similar to the Perceptron (Fisher, 1936), and has led to the more
powerful quadratic and polynomial discriminant algorithms. Nearest-Neighbour algorithms
are also powerful techniques, despite their simplicity (Dasarathy, 1990, Duda and Hart, 1973).
Spline and Kernel based modelling methods have much in common with Basis Function Nets
(to be described in Section 2.3.1) (Wahba, 1990, Wahba, 1992, Kavli, 1992) and local ap-
proximation ideas (to be described in Section 2.3.2) have also been used in statistics. The
statisticians also developed tree based regression systems independently from the AT world
(e.g. CART (Breiman et al., 1984) and MARS (Friedman, 1991)). A further important con-
tribution from statistics is the wealth of evaluation techniques developed to validate the models
and classifiers derived from observed data (e.g. cross-validation techniques, robust cost func-
tions, sampling techniques, additive models etc.). Projection pursuit methods are also closely

related to Multi-Layer Perceptron neural networks (Zhao, 1992).

Machine learning — the symbolic view

Non-neural machine learning has also a relatively long history, dating back to Samuel’s checkers
work (Samuel, 1959, Samuel, 1967) and although the neural network research faded away at
the end of the 1960’s, the Artificial Intelligence community kept working on learning systems.
Most of this work was in the symbolic domain, as opposed to the numerical environment
of neural networks, statistics and system identification. Despite this, some of the work on
Inductive Learning is relevant to modelling nonlinear dynamic systems and, in general, the
examination of different viewpoints often provide new insight into the learning mechanisms,
improving understanding for both groups of researchers. Techniques such as decision trees
have been used as models of dynamic systems (Isaksson et al., 1991). Omohundro describes
a variety of standard algorithms which can be applied in many situations with more suc-
cess than neural networks (Omohundro, 1987). Case-Based Learning also has applications in
modelling (Kolodner, 1993), and we describe the overlap of Case-Based Learning with nearest
neighbour methods and RBF neural networks in (Murray-Smith and Thakar, 1993), dealing
with aspects of customer modelling from sales information, where the basis functions per-
formed interpolation between cases. A general, easy to read overview of machine learning is
given in (Weiss and Kulikowski, 1991), and (Shavlik and Ditterich, 1990) is a collection of the
most significant papers in the field’s history. (Michalski et al., 1983, Michalski et al., 1986)
and (Kodratoff and Michalski, 1990) also provide collections of significant work.
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2.1.4 Empirical modelling with neural networks

The basic philosophy of the neural network approach to machine learning is to use the style
of information processing evident in the physiology of living beings as the inspiration for a
computational paradigm. A large number of simple processing elements, based on highly sim-
plified mathematical models of neurons, are densely interconnected by weighted connections
which roughly represent the axons and synapses of the biological model. These structures are
then optimised using a variety of algorithms, some aspects of which — although by no means

the majority — are based on biologically plausible techniques.

The resulting networks can represent complex mappings from their input nodes to output
nodes, making them interesting for engineering applications. The neural network architectures
used in this thesis are examples of flexible black-box models which are created on the basis
of input-output data pairs. There are several advantages of using neural networks to model
systems; the most compelling of which is their ability to model continuous, non-linear, multi-
variable systems. As mentioned in the previous section, this ability is not unique to neural
networks, but the progress made in recent years, due to the increase in available computing
power, has shown that the new algorithms often perform well compared to previous methods
of nonlinear system identification. More important, perhaps, is the multidisciplinary nature
of the research, which has brought new ideas from artificial intelligence, mathematics and

biology together with application-oriented engineering and computing practice.

A bit of history

The roots of the neural network approach to learning can be traced back to 1943, when
McCulloch and Pitts (McCulloch and Pitts, 1943) made some proposals about how simple
neural-like networks could compute. Hebb then suggested a biologically plausible learning
rule for such networks (Hebb, 1949). The beginning of the field as it is known today can be
found in Frank Rosenblatt’s work on Perceptrons (Rosenblatt, 1962). He pioneered the use of
formal mathematical analysis and the use of digital computers for simulation. He also made
some over-enthusiastic claims about the power of perceptrons compared to normal computers
which would spark off a debate which is still running to this day, but which then led to the
field being laid dormant for twenty years. This was a combination of the limitations of the
contemporary hardware, and the irritation caused to other scientists by Rosenblatt’s claims.
It was this irritation which lead Minsky and Papert to publish the famous Percepirons book
(Minsky and Papert, 1969) where they rigorously analysed the existing techniques and pointed

out the limitations of the structures and their inability to scale up to larger problems.

(Widrow and Hoff, 1960), coming from a more engineering background also proposed a similar
network called an Adaline, trained using the Delta-rule, which eventually found widespread
use in telecommunications systems as an adaptive filter. Kurt Steinbuch was another engineer

who did significant work in learning control systems, including his Lernmatriz learning system
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(Steinbuch, 1961, Steinbuch, 1963). Grossberg’s work in the 1970’s introduced new ideas from
biology and psychology to create the ART series of non-linear dynamic architectures. Albus
made important contributions with the CMAC architecture in the field of learning in robotics,
using many biologically motivated methods (Albus, 1972, Albus, 1975b, Albus, 1975a). Hol-
land examined adaptation in (Holland, 1975), introducing Genetic algorithms and classifier

systems for learning.

The main reason for the current renaissance in machine learning in general was the boom
in ‘artificial neural networks’ in the eighties, precipitated by Hopfield’s work (Hopfield, 1982,
Hopfield, 1984) and the PDP Group’s books (Rumelhart and McClelland, 1986). This was
combined with a general frustration with the lack of progress in ‘conventional” AT for tasks such
as speech recognition, vision and pattern recognition, and the fact that the powerful computing

hardware needed by these numerically intensive algorithms was now widely available.

The neural network ‘label’, as used in the current literature, seems to be applicable to almost
any modelling or classification scheme, as networks can be used as convenient graphic repre-
sentations for many mathematically described systems. (Barron and Barron, 1988) provides a
clear description of the similarities between neural nets and statistical methods. General intro-
ductory books include (Haykin, 1994, Hertz et al., 1991, Wassermann, 1993). Historically im-
portant papers are reprinted in the Neurocomputing collections (Anderson and Rosenfeld, 1988,
Anderson and Rosenfeld, 1990). Reviews of the neural network field for modelling and control

include (Miller et al., 1990, Hunt et al., 1992, Warwick et al., 1992).

The Multi-Layer Perceptron

As discussed earlier, the first neural architecture to be implemented and studied in detail
was Rosenblatt’s Perceptron (Rosenblatt, 1958). This is a very simple system, which was
suggested as a simple model of biological neurons present in the human visual system. The
output is a function (usually non-linear, such as a hard limiter or sigmoidal function) of the
sum of the weighted inputs.

y = f(xW + bias), (2.5)

where f(-) is the activation function, and W is the weight matrix connecting inputs x to
outputs y.

The extension of the perceptron to allow multiple layers — the multi-layer perceptron in equa-
tion (2.6) (see Figure 2.7 for a graphical representation), became widespread in the eighties

after suitable learning algorithms, such as back-propagation, became widely known.
y = [(Waf(xW 1 + biasy) + biass), (2.6)

where Wy is the weight matrix connecting inputs x to the hidden layer neurons, and W
connects the hidden layer neurons to the outputs y. Back-propagation was developed inde-

pendently by various workers (Werbos, 1974, Parker, 1985) with best known version being
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(Rumelhart et al., 1986), bringing the neural networks field back to life. The Multi-Layer
Perceptron soon became, for better or worse, the most commonly used (and abused) network

architecture in the history of neurocomputing. The widespread use came about because of the

)1

Y2

Yn

Figure 2.7: Multi-layer Perceptron

real flexibility of the structure in coping with complex high-dimensional problems, and because
it managed to produce often excellent results compared to competing methods. The disad-
vantages of the structure are the slow training times associated with the back-propagation
learning algorithm and poor transparency of the algorithm and of the trained networks. This
led to an alchemy-like approach to training taken by the majority of researchers, producing a

huge variety of heuristically motivated ‘new improved’ learning rules.

2.1.5 What is wrong with modelling with neural nets?

Empirical modelling as a methodology, even in its ‘hard’ form of System Identification, has
its disadvantages. Often, the models produced in empirical modelling, even if they have
achieved a useful representation of the process being modelled, give little physical insight into
the process, since they are rarely based on detailed knowledge about the process structure.
This 18 closely related to another disadvantage, which is that the product of a purely data
based modelling process usually has limited validity in situations different to that in which
the data was collected (e.g. at different working points, given different inputs, or a change
in environment). The identification methods in existence are also still very much highly
interactive art forms. They depend to a great extent on utilising as much knowledge about
the process in question as possible, to simplify the modelling problem, and on an intuitive feel
for the techniques used, as well as an understanding of the complex statistical tools available

for the analysis of the data and estimation of the parameters.

While things have improved slightly in recent years, a characteristic of much work in the

field of neural networks is the lack of rigour, compared to more established ‘competing’ areas
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such as statistics and system identification (see (Sjoberg et al., 1994) for a good discussion
of the overlap between the fields, with the intention of ‘removing the mystique’ surrounding
neural nets). This had certain advantages initially, as the fact that the area was linked
to human intelligence often made it more appealing to young researchers, as well as to the
various bodies which sponsor research and development, than the more highly mathematical
established fields. Although the field has been rightly criticised for the wild claims made
initially, it did bring in fresh ideas from other fields such as Al, psychology and physiology.
These insights have enriched the scope and methods of the research into learning and adaptive
systems; as well as a very application oriented style of research which got the method applied

to a wide variety of problems.

The problem facing researchers at the start of the 1990’s was that much of the experience
gained in the existing fields had been ignored, and the field was too strongly linked to one
architecture — the multi-layer perceptron. Initially much emphasis was laid on the fact that
the multi-layer perceptron architecture is theoretically powerful enough to represent arbitrary
nonlinear mappings, but such results did not help produce efficient training algorithms. A
large proportion of the research was invested in a variety of problem specific ‘fiddle factors’
designed to speed up the optimisation process—which often took days of computing time-and to
improve generalisation. The multi-layer perceptron can often be highly successful at modelling
a given system, but despite this it is not ideal for many modelling tasks. The long training
times are not suited to the iterative and interactive nature of the modelling process, especially
as 1t was unclear when learning should be stopped, or how many units or layers a net should
have for a particular problem. The poor interpretability limits the user’s ability to validate
a trained network, and limits the networks’ applicability to safety critical situations. There
is no straightforward way of introducing prior knowledge directly into the network structure,
even though for many tasks the ability to simplify the problem using such knowledge is critical

to reaching the desired level of accuracy.

Combining the different paradigms

While none of them is ideally suited to the task, the research paradigms for learning models
described in this section can all contribute significantly to the goal of having a flexible, inter-
active learning system which robustly forms a model of a complex process, given a mixture of
observed data and a priori knowledge. Systems theory and System Identification provide the
user with a mathematically well founded base of theory and experience for modelling dynamic
systems from observed data. Much of the work has been restricted to linear systems, but the
basics remain relevant, and many of the algorithms can be directly applied to the hybrid local
model architectures described in Section 2.3.2. Similarly with statistics, where the theory and
experience developed by statisticians in areas such as experiment design, model optimisation,
model validation and function approximation is an invaluable aid to a better understanding

and evaluation of newer systems such as neural networks.
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The models used in this thesis can benefit not only from numerically oriented techniques, but
also from the integration of fuzzy logic aspects and symbolic machine learning systems which
then allows the incorporation of linguistic or rule-based knowledge into the learning system.

Section 2.3.2 presents an architecture suitable for the integration of the various paradigms.

2.2 The Modelling Process

The work in this thesis is aimed at improving techniques for the design of models of non-linear
dynamic systems (the f(+(¢)) in equation (2.1)), with the aid of computationally intensive
data-driven techniques. The goal is to produce a mapping from the input space to the output
space which best fits the observed data and meets the specified constraints. This involves
integrating knowledge about the system with data observed from identification experiments.
This allows the developer to produce better model structures and identify their parameters,
as well as being able to validate the accuracy of the final model. Modelling from data and
knowledge is often viewed as an art form, mixing ‘expert’ insight with the information in

observed data, while using ad hoc simplifications to make the problem solvable. The typical

/ System Q .y EXPERIMENT

Engineering Insight is

. . M
applied at each stage . - casure

Observed data

A priori knowledge,
physical laws

<\ / . _ Pre-processing

\ / 4 Estimate model
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Estimate Model § Improve model structure,
Parameters I perform a new experiment, or
i change cost criteria
MACHINE LEARNING
‘. Model Validation -
Model Works. A% y
Designer can analyse it, and ’
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Figure 2.8: The Engineering Cycle for Training a Model
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modelling cycle is shown in Figure 2.8, showing the interaction of a priori engineering insight,
erperiment design, data acquisition and pre-processing, followed by machine modelling and

validation. Each of these phases will now be looked at in more detail.

2.2.1 Using a priori information

Modelling from observed data supported by learning systems is supposed to reduce the need
to understand the detailed physical relationships within the system under investigation, but as
can be seen in Figure 2.8, a major feature of the cycle is the important role of a priori knowledge
at each stage of the modelling process. A prior: information is initial knowledge about the
system, or problem in question. This includes aspects such as the goals of the problem, the
characteristics of the process, its parameters, the effect of the environment (expected noise,
disturbances), and the robustness requirements for different situations. Learning or adaptive
systems are usually used because of the insufficiency of the a prioriinformation (few complex
processes in reality can be described completely by a priori knowledge, due to the effects of
noise, disturbances and unmeasured states). Such systems try to compensate for this by the

continuous use of current information about the system:

‘A priori information is the basis for the formulation of an optimisation problem,

but the current information provides the solution for the problem’ (Tsypkin, 1971).

This describes the basis of Adaptive Control. Although the goal of learning systems is to
reduce the need for a priori knowledge, its use almost invariably makes the learning problem
more tractable. A priori knowledge can be used both tmplicitly and explicitly. Tt is used
tmplicitly when framing the problem, in the act of creating a representative training set,
deciding which learning algorithms and structures are best suited to the problem and which

inputs and pre-processing algorithms are likely to make the learning task easiest.

The ezplicit use of a priori knowledge involves the direct integration of models or rule-bases
into the learning system to reduce the learning effort. Knowledge about variable interaction
can also be used to decouple the inputs, and reduce the dimensionality problems. Model
structure, dynamic order and sampling rate are dependent on @ priori knowledge. Knowledge
about physical constraints can be used to limit the generalisation in areas with insufficient
data. Existing models or controllers (e.g. human operators) can also be copied, where valid.
Models of the environmental disturbances expected can also be included, as can knowledge

about the relative importance of various areas of the input space.

Another important aspect of modelling from observed data is that the machine learning in-
volved also usually results in the human engineer gaining a better understanding of the system,
and the a prior: knowledge about the system in question therefore being improved. The hu-
man designer is still a vital part of the process, and the goal should be to enhance the power of

the interactive software by automating the learning process wherever possible, but by giving
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the engineer the freedom to intervene at each stage. As knowledge about the system be-
ing modelled increases, more possibilities of simplifying the machine learning should become
clearer, allowing it to be used more successfully, closing the loop in the modelling cycle seen
in Figure 2.8, where the a priori knowledge is improved by the availability of the validated

model.

The final product, a working model, can therefore be seen as a contribution to the more general
pool of engineering and scientific insight. The laws, rules or models we take as a prior: today
were also once poorly understood observed behaviour, which was then measured, analysed
and turned into some simpler law or model. Kepler’s laws of planetary motion were found
only after painstaking acquisition of observed data, and the application of a variety of model
structures to the data, estimation of the model parameters and validation of the models on

new data!

2.2.2 Creating the training set — design & pre-processing

The traming set D is the data set used for optimising the parameters and structure of the
learning system. It is generally necessary to devote a great deal of attention to the process of

extracting preprocessing and representing the data for training.

Experiment design

It 1s vitally important that the training set represents the task in hand correctly and adequately
over the whole nput space, but it is important to consider the relative importance of the
various areas of the input space. In many situations a system spends most of its time in a
particular operating region. It may make sense to weight this more heavily in the learning
process. In others, a particular aspect of the model must be very accurate, for example
the reaction to a step change in the inputs or disturbances is important for many processes.
In others it is important to have very accurate models in relatively stable areas, as this is
where the process spends most of its time. In many applications certain areas of the system
are assoclated with danger — how should these be treated in the model? Constructing a
representative training set i1s often far more difficult than learning the task from the training
set. The general process of training set creation is shown in Figure 2.92. A significant aspect
of the diagram is the existence of important disturbances which can not be measured. The
ability of the training procedure to cope robustly with such disturbances will often determine

to a great extent the procedure’s usefulness in real world applications. It is not only important

2In many cases the model is to be developed in order to produce a controller for the process in question. A
valid point is to ask how this controller should be developed, without an adequate model to design it with? In
critically unstable cases this will be a major problem, but in many cases the task is to improve on an existing
controller which can be used for the purposes of data acquisition. There may, however, have to be a series
of acquisition and modelling runs, as some aspects of the processes may not be apparent with less powerful
controllers. In many cases, however, the learning system will have to make do with whatever data is available,
because of the costs of extensive experimentation both in terms of money, as well as organisational effort.
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Figure 2.9: Acquiring and preparing the training data

to have training data covering the input space, but to have larger amounts of data where the
decision surface is most complex, and to have some information about the relative significance
of individual training data. This could be in the form of probability distribution functions,
showing the relative frequency of particular situations, or the definition of areas which are
particularly important. The science of creating an optimal sampling of the input space is
called Ezperiment Design (Fedorov, 1972, Goodwin and Payne, 1977, Ljung, 1987), and has

been picked up by workers in machine learning within the active learning framework.

Active learning

The neural network community traditionally threw every available training example at the
network during the learning phase, irrespective of redundancy, noise levels; or local complexity
in the process being modelled. The disadvantages of this procedure are being increasingly
recognised, leading to the introduction of active learning methods which enhance the training

set used during the learning process, as shown in Figure 2.10.

System to . .
be modelled Input Stimuli

Neural Model

System response

Figure 2.10: Active learning — exploring the input space. The learning system can interact
with its environment to obtain new training data.

The research in active learning has gained momentum in recent years, see (Cohn et al., 1990,
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Cohn, 1994) and (Cohn et al., 1994). (Plutowski, 1994) is a recent thesis in the area. The
use of local basis functions to guide active learning is described in (Murray-Smith, 1992). As
described in (Thrun, 1992), active learning can be viewed as either directed guided search or
undirected, random search. The undirected active learning methods described in the literature
have the disadvantage that the effort needed to learn a given process increases exponentially
with the dimension of the input space. Active learning can include active sampling and active

selection,techniques:

o Active sampling is associated with the experiment design phase — in which regions of
the input space should training data be acquired to best minimise the uncertainty in
the model? The uncertainty estimate in the model 1s based on the information in the

existing training set.>

o Active selection, which involves the most efficient use of a large existing training set uses

closely related techniques to active sampling, without the connection to the environment.

The active label is due to the fact that the selection or sampling processes are dependent
on the learning process and model structure, so that the learning process can be seen more
broadly as actively exploring its environment or training data, then ezploiting that data to
optimise its performance.The use of complexity-based active learning algorithm in local model
networks is described in Section 4.3, and an active sampling routine is used to improve the

learning process in the rolling mill application in Chapter 6.

Pre-processing

A wvital factor in all empirically driven model building approaches is that the training set
should be pre-processed before learning. Any way in which the data can be transformed to
make learning easier will lead to a significant improvement in performance. Pre-processing
includes all action applied to the measured data, including which sensor information to use,
how to sample 1t, how the amount of data can best be reduced, what transformations should
be applied, and how can it be best encoded to make the learning task easier. The data may
have to be pre-filtered to remove noise effects, anti-aliasing techniques will be necessary when
continuous signals are sampled, outliers can be removed, or extra information can be used
to reduce the distorting effect of measurable disturbances. In many cases non-linear char-
acteristics in sensors or actuators are well known in advance, and the nonlinearity can be
counteracted before learning commences. Somewhere between pre-processing and representa-

tion lies the aspect of minimising variable interaction. The data can be transformed to a lower

3The concept of giving a learning system a ‘sense of curiosity’, based on internal estimates of its own
accuracy, and giving it the ability to search the most promising areas of the input space for new information
is of major importance for the future of autonomously learning systems, and the techniques used are closely
related to those needed for the recursive identification of time-varying processes, where it is important to be
able to ‘forget’ the training examples in the right areas, while learning from those describing the new behaviour
of the process.
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dimension using principal components analysis to reduce the problems related to the ‘curse of
dimensionality’. It may be known that particular variables interact in a given way, whether
additively, multiplicatively or nonlinearly (Hastie and Tibshirani, 1990). This information can
be used to limit the freedom of the learning system, forcing it to learn more efficiently and
generalise more robustly (see Section 2.5.4 for more details on how this information can be
used). In general, the pre-processing applied to the raw data is often a critical stage in the
development of models from observed data, and its importance should not be underestimated

for learning systems.

2.2.3 Learning algorithms and knowledge representation

Once the training data has been acquired and pre-processed, a knowledge representation ability
is required for the model to be able to learn the data and a learning algorithm which can be
used to go from the information presented to the learning system, in the form of inputs,
outputs and feedback from the environment, to the desired representation. In simple cases
this can be viewed as an optimisation process, where the optimal set of parameters for a given
structure is found, or it can also involve the construction of the representation itself. Learning
systems involve a wide variety of knowledge representation techniques, from simple numerical
parameters or symbolic features to complex specialised structures. Each style of knowledge
representation is biased towards a particular class of problems, a fact which can be seen in
the classical fields of statistics and system identification, as well as the newer areas of neural
networks and machine learning, each of which tend to use structures suited to the problems

faced in that field

When considering learning systems in general, for any given data set, a variety of possible
model structures usually compete for the best representation of the data. It is important that
the most suitable style of representation is chosen for a given problem, as the right choice
of model structure will be a major factor in producing a model which is able to ‘generalise’
correctly. Generalisation is the ability of a learning system to give a ‘correct’ output to inputs
on which it has never been trained (see Figure 2.11). These could be new, noisy or incomplete
inputs. Memorisation, or learning the training set to perfection is not the goal of learning — a

random access memory (RAM) can do this adequately!

The resulting quality of generalisation for a given problem will depend on the problem defi-
nition, encoding of the features, the quality of the training set, the power and suitability of
the representational structure M and the learning algorithm used. To analyse the trade-off
between learning the training set D, and generalising to unseen inputs, it can be helpful to
decompose the modelling error J (M, D) into two aspects, the bias Jp(M, D) and the variance
Jv (M, D) (Geman et al., 1992).

J(M,D)Ijv(./\/l,'p)—l—JB(M,'D), (2.7)
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Poor estimation ‘Good’ generalisation ‘Bad’ Generalisation (Overfitting)

Figure 2.11: The generalisation/overfitting dilemma.

where the bias 1s

T5(M, D) = (Eolf(x; M, D)) = Ely)}) (28)

where Fp is the expectation over the training set D, and the variance
. . 2
JV(M,D):ED[(f(x;M,D)—ED [f(x,M,p)]) ] (2.9)

The bias of a model is the average difference from the real system of models trained on a
number of training sets, thus indicating what the system could not learn, even when given the
information. The variance of a model 1s the average variation of the model estimates from all
trained models to the ‘average’ model over all data sets, and can be used as an indicator of

how robust the learning process was.

The flexibility required of the model to be able to model an arbitrary data set (reducing the
bias part of the error) conflicts with the desire to reduce the variance of the resulting estimate.
Use of a large flexible representation will reduce the bias, but without a correspondingly large
data set is likely to lead to the overfitting effect, where the training set 1s learned adequately,
but generalisation is poor — equivalent to high variance. The system has either learned the
noise in the data, or has learned the data correctly, but interpolates between data points
poorly. It is therefore important to use a suitably sized model structure for the given training
data — the system must be over-determined (i.e. more training data than parameters, and -
importantly for nonlinear systems — 1t must be locally over-determined in the complex areas of
the input space). One of the most important features of a learning algorithm is that it reliably
finds a solution which generalises robustly to new data. The regularisation methods described
in Section 2.5.1 are methods which artificially increase the bias to improve the variance and
therefore create more robust networks. In practice, algorithms which produce reliable models
will be far better suited to engineering problems than algorithms which sometimes produce

excellent results on one problem but then fail dismally on the next application.

2.2.4 Model validation

Once the model structure and parameters have been identified it is necessary to validate the

accuracy of the final product. This is obviously a very important stage in a process which by
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its very nature has relatively little in the way of ‘common sense’ intuition about the behaviour
of the target system. It is therefore important to combine data-driven validation — is it
adequately accurate and robust for its purpose? — with more subjective validation, i.e. does
the model behave in a way which seems physically plausible? Can the final machine learned
model be interpreted to give the human engineer a better understanding of the system in
question? Model validation is an issue which has often been neglected in the literature on
learning systems, but one which is very important in industrial situations. There will usually
be a trade-off between flexibility and interpretability, the outcome of which will depend on

their relative importance for a given application.

Use of n-fold cross-validation

The most commonly applied method of predicting the accuracy of a neural network is that of
measuring the quality of the system’s response on the training and test sets, assuming that
the data set was complete enough to have encountered all of the important areas of the input
space. The general technique is called cross-validation. Generalisation ability is closely tied
up with the concept of expected error prediction, so this is of fundamental importance to

learning systems (Stone, 1974).

Resampling methods such as cross-validation aim to give unbiased estimates of the error rate
of a learning system. They make minimal assumptions about the statistics of the training
data. The simplest form of this is to use two sets of data (training and test sets), where
the first is used to train the system and the test set is used to validate the results. A more
general form of this is n-fold cross-validation, where the available data are partitioned into n
subsamples. Fach subsample is tested by training the net with the other (n — 1) subsamples
and the error rate is then the average of these n sub-samples. This reduces the bias present
in the error estimate, but is often a time consuming process and the error rates have a high
variance. (Weiss and Kulikowski, 1991) Leave-one-out validation is a special case of cross-
validation, where one example of the training set is left out to provide a test example for
the model trained on all the other examples. This is then repeated until each member of the
training set has been used as a test example. It is therefore very computationally expensive,
and although it provides the most accurate prediction of error, is only suitable for problems

with small training sets, or few parameters.

Cross-validation was initially not used with neural networks because of the computational ex-
pense of running the system several times, which for MLPs trained with back-propagation, can
take several days, was fairly unrealistic. Less computationally expensive methods have been
developed (e.g. Generalised Cross Validation GCV (Wahba, 1990), Aikaike’s Final Prediction

Error (FPE) have been used to optimise the size of multi-layer networks).

Cross-validation is therefore useful for automatically finding the optimal model structures

or parameter estimates for a given data set, as well as supporting the human designer in
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validation and interpretation of models. The model can start small and increase its size until

the cross-validation results start to show too much variance in the test errors.

The reliability of the accuracy estimates achieved by methods such as cross-validation depends
strongly on the adequacy of the training data. If the training data is present in sufficient
quantity throughout the input space (complex parts of the model will need a related number
of data to train and test the parameters in that area) this provides a good estimate of the
predictive power of the model. The amount of training data needed is also related to the noise
on the training data. As the noise level increases, the amount of data points needed to train

and validate a particular model increases.

2.2.5 Organisational aspects in empirical modelling projects

The procedure for the successful development of a model is often a major undertaking, involv-
ing a variety of experts from various fields. The data must be acquired somehow, usually from
an experiment carried out by an experienced operator. The experiment design should ideally
be an interactive process, involving several steps, including information from earlier modelling
attempts. Initial data processing will involve signal processing engineers, the goals of the
modelling are set by a mixture of business and engineering constraints, and the validation of
how well the goals were achieved involves every link of the chain. For most realistic problems
there will also have to be many iterations towards the goal of an accurate, useful, reliable
model, so the representation used must be promote co-operation between specialists with very
different backgrounds, and be able to integrate different types of @ priori knowledge either

directly as model structure, or in the optimisation process as cost-functions and constraints.

2.3 Local Methods in Modelling

The previous section described the aspects of the modelling process which should be supported
by a learning architecture. This thesis discusses variations on one main class of network, the
Basis Function Network (BF Net) because of its suitability for modelling continuous nonlinear
systems. The BF nets used in this thesis are basically local structures, which inherently involve
modularisation in representation and allow the easy integration of ideas and structures from

other modelling paradigms.

2.3.1 Basis Function Networks for modelling

The basic Basis Function Network described in equation (2.10) is shown in Figure 2.12. The

output* y is a weighted (by parameters 6;) linear combination of the activations of the many

*The models discussed in this report are all Multi-Input/Single Output models. The extension to multi-
output systems is mathematically straightforward. The optimisation of the units’ weights is unchanged, other
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d(w,c1,01)

Figure 2.12: Radial Basis Function network

(na) locally active non-linear basis functions p;(-) which react to the input vector b,
A
y=r(h) = 0ipi(). (2.10)
i=1

The nonlinear basis functions basically map inputs into a higher dimensional space, where it
is easier to learn the mapping to the outputs than from the original input space, so that a
linear connection to the output suffices. The optimisation of the weights then becomes a linear
process, meaning that the optimal solution can be found using the standard tools of linear
optimisation theory, including a variety of powerful methods for coping with #ll-posed problems
(see Section 2.5.1), and methods for analysing the covariance of the parameter estimates (see

Section 3.2.3), from which aspects such as experiment design criteria can be obtained.

Basis functions

Each unit’s centre is a point in the input space, and the receptive field of the unit (the support,
or volume of the input space to which it reacts) is defined by its distance metric d(4;c, o).
The basis or activation function (similar to the membership function of a fuzzy set) of the unit
is usually designed so that the activation monotonically decreases towards zero as the input
point moves away from the unit’s centre (c;), e.g. B-Splines or Gaussian bells are common

choices.

than that a matrix of output values is used instead of a vector. The optimisation of the model structure is
obviously more difficult for multi-output problems, because the nonlinearity and complexity for the various
output spaces will not always be in the same areas of the input space. The use of a single model structure with
multiple outputs would mean that for the total model there are fewer parameters to optimise, which would
suggest a lower variance than for a decomposed model. It may, however make more sense to decompose the
problem into several single output problems, because each sub-problem will then have the required complexity
and basis function locations for the complexity of the output in question, and will not produce an increase in
variance in the other output variables, which happens in the multi-output case.
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Figure 2.13: A typical locally active, smooth basis function

In Radial Basis Function (RBF) nets, the basis functions are composed of two elements. The
distance metric d(4); ¢;, 0;) for basis function 4, defined in equation (2.11), can scale and shape
the spread of the basis function relative to its centre c¢;, depending on its width o;, and the
basis function itself p(-), which takes the distance metric as its input
2

d(t; e, 00) = Wo) ;Z;i) ; (2.11)
and can be generalised by using a matrix o; instead of a scalar, giving an ellipsoidal ba-
sis function (equation (2.12)). Training algorithms for such distance functions are given in

Section 4.2.3.
d(sci 00) = [ — i o7 i — ¢ (2.12)

There is a wide variety of possible basis functions, e.g. the Gaussian bells used in this thesis,

as in equation (2.13), B-Splines, thin plate splines, linear functions etc.

pi(P) = p(d(v; ci, 07)) = exp(—d(vp; ¢i, 07)), (2.13)

(Carlin, 1992) compares the effectiveness of a variety of basis functions for modelling and con-
trol purposes. The basis functions used in this report will be assumed to have local properties®,
l.e. they are active in a limited area of the input space because of the improvement in trans-

parency achieved.

If the units have localised receptive fields, and a limited degree of overlap with their neigh-
bours, the unit’s weights can be viewed as locally accurate piecewise constant models (in more
complex networks, more general local models can be used, see Section 2.3.2), whose validity

for a given input is indicated by their unit’s own activation functions for a given input.

For modelling and control of continuously differentiable processes; the basis function should
be smooth, and if the basis functions are to be local, they must decrease monotonically from
a maximum at ¥ = ¢ (distance metric = 0) towards zero, according to the distance metric
d(qg; ¢, o). This forces the influence of the local model associated with the basis function to
decrease as the inputs move away from its centre (where the basis function’s local model is

the most accurate representation of the system).®

5Note that strictly speaking the Gaussian is not a local basis function, as it does not have compact support.
6Given relevant a priori knowledge, more complex basis functions can be used which do not adhere to the
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Partition of unity

For modelling tasks the basis functions should form a partition of unity for the input space,
l.e. at any point in the input space, the sum of all basis function activations should be 1.
This is a necessary requirement for the network to be able to globally approximate systems as
complex as the basis functions’ local models, e.g. in the straightforward single weight case, so
that constant areas of the input space can be modelled exactly. The partition of unity ensures
that every point in the input space has an equal weighting, so that any variation in output
over the input space is due only to the parameters 8 weighting the basis functions’ activation.
In many applications the network’s basis functions are normalised to achieve the partition of

unity, i.e.

p(d (’d” Ck; Uk))
2P (d (e, o))

where p(-) is the general unnormalised basis function, so that the normalised basis functions

pr(tp) =

(2.14)

px(+) sum to unity,
n p
> pild(ah,ciyon)) =1, (2.15)
i=1

(Werntges, 1993) discusses the advantages of normalisation in RBF nets, promoting somewhat
simplistically the advantages of a partition of unity produced by normalisation. Normalisation
can be important for basis function nets, often making the model less sensitive to poor choice
of basis functions, but it also has a number of side-effects which are discussed in detail in
Section 3.3. These side-effects make the argument for or against the use of normalisation far

more complicated than is often assumed.

Literature of Basis Function nets for modelling

Basis Function Networks and their equivalents have been used for function approximation and
modelling in various forms for many years. The original Radial Basis Function Nets came from
Interpolation theory and are described in (Powell, 1987), where a basis function is associated
with each training point, as in (Specht, 1991). Potential FPunctions (Aizermann et al., 1964),
Kernels (Wahba, 1992) and Spline Models (Wahba, 1990) are all similar structures. The lit-
erature of local learning methods in statistics is reviewed in (Atkeson, 1990). These methods
store the training data and for a given input point form a locally weighted representation
of the system from the related training points. Smoothing methods such as Gaussian Kernel
methods, as described in (Hastie and Tibshirani, 1990) like other local averaging methods,

suffer from the curse of dimensionality (Friedman, 1991), and are computationally expensive.

Aldus’s CMAC ideas have a great deal of overlap with BF Nets with uniformly distributed
local basis functions (Albus, 1975b, Lane et al., 1991, Brown and Harris, 1994). The close

features above, but which are specially relevant to a particular application, e.g. sinusoidal basis functions are
a good choice if it is known that oscillatory components play an important role in the system being modelled.
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relation of basis function nets to classes of fuzzy logic systems has also been discussed in
(Jang and Sun, 1993), (Haas and Murray-Smith, 1993) and (Brown and Harris, 1994), where
the similarity between membership functions and basis functions is pointed out. Mizture
Models used in statistics are created by mixing a number of probability distributions, and

have many similarities to RBF nets (Bishop, 1994) and (Xu et al., 1994).

Recently BF neural networks have received a growing amount of attention from the neural net-
work community, starting with the early papers (Moody and Darken, 1989, Jones et al., 1989,
Broomhead and Lowe, 1988). (Hlavickovd and Neruda, 1993) gives a brief review of the use
of RBF nets. (Poggio and Girosi, 1990) (Girosi et al., 1993) and (Mason and Parks, 1992) de-
scribe the networks within the mathematical framework of Regularisation Theory for function
approximation. (Hutchinson, 1994) describes the use of RBF nets for financial time series
modelling. (Park and Sandberg, 1991) and (Park and Sandberg, 1993) proved the universal

approximation abilities of RBF nets.

Use of RBF nets for modelling and control purposes is described in (Barnes et al., 1991)
(Sanner and Slotine, 1992) (Sbarbaro, 1992a) and (Pantaledn-Prieto et al., 1993). The meth-
ods were applied in (Rdscheisen et al., 1992) to control a rolling mill. Early work related to
this thesis can be found in (Murray-Smith et al., 1992) and (Neumerkel et al., 1993). RBF
networks which use the local nature of the basis functions to give a local prediction of their
own accuracy throughout the input space are examined in (Leonard et al., 1992) (this idea is

extended to the local model nets in Section 3.2).

The Gaussian Bar nets (Hartman and Keeler, 1991, Kurcova, 1992) are also closely related,
although less powerful. These are nets with ‘semilocal’ units formed by taking one-dimensional
local basis functions and forming their tensor product to approximate a multi-variable function,
as with tensor product spline models such as the ASMOD system (Kavli, 1992). The advantage
of these units is that they can better cope with some classes of high dimensional problems, as
they do not need to cover ‘uninteresting’ dimensions. A disadvantage of this style of network
1s that the representation does not cope well with processes where the nonlinearity depends

on several variables, such as the marsl benchmark used in Chapter 4.

Pao’s Functional Link Network (Pao, 1992), and Billing’s closely related Ertended Model Set
ideas (Billings and Chen, 1989), use links with a fixed non-linear function built in to expand
the input vector, resulting in the production of extra ‘higher-order’ inputs. These are lin-
early weighted by the networks parameters. The well known Polynomial methods can also
be viewed as Basis Function systems, as there is a single layer of nonlinear functions, and
the parameter optimisation is a linear process. The problem here is to find the suitable
model structure — i.e. which set of basis functions can approximate the system adequately.
Some off-line structure identification algorithms are described in (Chen and Billings, 1994,

Ivakhnenko, 1971). Holden describes a general framework for basis function nets, calling
them Phi-nets in (Holden, 1994).
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Are Basis Function nets too local?

An intrinsic feature of the Basis Function networks is the concept of ‘locality’. In linear
systems the data, optimisation and validation are all considered to be globally relevant, i.e. any
results obtained are valid over the entire input space, whereas in nonlinear systems the process
complexity varies throughout the input space. For nonlinear systems, however, (especially
when multivariable) the problem can be simplified by partitioning the input space into multiple
subspaces. This can involve a reduction of the problem’s dimensionality by decomposing the
problem, discarding irrelevant interactions, or of simply partitioning the input spaces into
subspaces which are easier to handle — the traditional ‘divide and conquer’ strategy inherent

to local modelling techniques.

The concept of ‘locality’ is obviously relative, depending on the complexity of the system,
the availability of training data, the importance of the given area of the input space, and a
priori knowledge of internal structures within the given system. The form of ‘locality’ utilised
depends on the representation used; in decision trees, locality is introduced by partitioning
the input space into hypercubes, in RBF nets locality is hyperspherical and in multi-layer
perceptrons or Projection Pursuit nets locality is a projection of the input space. This locality
can be used to make networks more transparent and computationally efficient, which can then

make learning algorithms which utilise the locality more efficiently than alternative algorithms.

The problem with standard basis function networks is that the crudeness of the local ap-
proximation (weighted piecewise constant models), suffers like other local methods from the
‘curse of dimensionality’ (Bellman, 1961). This forces the system to use exponentially increas-
ing numbers of basis function units to approximate a given system, as the input dimension
increases. This leads to computational, transparency and robustness problems (the training
data to train all of the units has to exist!). Tt is therefore important to be able to profit
from the local nature of the basis functions while not having to have too many units”. This
implies that the basis functions should be associated with more powerful representations than
piecewise constant models, so that a smaller number of them could cover larger areas of the

input space while achieving the desired modelling accuracy.

2.3.2 Local Model basis function nets

Linear models, although very restricted in their representational ability have proved to be
very useful for a large range of problems. This i1s due to their simple representation, their
easy interpretability, and their robustness to noisy or missing data. It makes sense therefore

to include the ability to at least be able to form a linear model within the network, as in

. n¢+1 TLM+TL¢+1
J=FWp) =0+ > Gt > bipi(eh), (2.16)
=2 i=ny+42

"see (Lowe, 1994) for a discussion of further arguments against local basis functions.
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where ny is the dimension of the input vector 1. The basic architecture (Poggio and Girosi, 1990)
is a simple improvement which is highly relevant for practical applications, e.g. used in
(Hutchinson, 1994).

The ability to use linear (or other) models, can also be introduced in a more general way.
Standard basis function networks can be generalised to allow not just a constant weight to
be associated with each basis function, but a more general function of the inputs, so that the

network can be described in the form

y=f) =3 fi@)ni(9), (2.17)

i=1
where (;3 defines the operating point of the system. This is a vector which can be defined on a
lower dimensional subspace of the input space which is covered by the basis functions. These
can be seen as scheduling or gating functions for the local models which are defined on the full

input space.

The basis, or model validity functions used in this thesis are radial, 1.e. they use a distance
metric d(qg; ¢;, 0;) which measures the distance of the current operating point 4 from the basis
function’s centre ¢;, relative to the width variable o;, as in equation (2.12). They are also
normalised, so that they sum to unity, as in equation (2.14). See Figure 2.14 for a simple
representation of operating regimes in a two dimensional operating space. The overlapping
operating regimes allow the basis functions to smooth the transfer from one region of the

model structure to the next.

P4

Figure 2.14: Local Model Operating Regimes. Each local model is associated with an operating
regime. These regimes overlap, and the gradual decay of ‘validity’ provides interpolation
between models.

This means that the structure has the advantages inherent to the local nature of the basis
functions while, because of the more powerful local models associated with the basis func-
tions, not requiring as many basis functions as before to achieve the desired accuracy. The

improvement is more significant in higher dimensional problems. This generalisation of the
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BF network to the Local Model Network described in equation (2.17), where the weights have
been generalised to allow not just a constant weight to be associated with each parameter,
but to have a function of the inputs weighted by the relevant basis function, has been applied
by a number of authors. The naq local models used are represented by general functions of

the inputs fi(4), but in many cases simple linear models are chosen
M;(8) = fi(s) = 6] [1 ). (2.18)

The network form of equation (2.17) is shown in Figure 2.15. The trained network structure
can be viewed as a decomposition of the complex, nonlinear system into a set of locally active

sub-models, which are then smoothly integrated by their associated basis functions.

Figure 2.15: Local Model Basis Function network

To illustrate the workings of a local model network, a one dimensional function is mapped
using local models in Figure 2.16. The top plot shows the target function and the model’s

approximation, while the basis functions and associated local models are shown below.

Literature of local model methods in learning and modelling

The representational ability of the normal Basis Function (BF) net can be extended to a gener-
alised form of BF network, where the basis functions are used to weight other functions of the
inputs as opposed to straightforward weights. This was suggested in (Jones et al., 1989), fol-
lowed up by (Stokbro et al., 1990) and (Barnes et al., 1991). The Adaptive Expert networks in
(Jacobs et al., 1991) are essentially local model systems, where the local models are called ez-
pert networks and the integration of the various ezpertsis made by gating networks. These were

developed into hierarchical models in (Jordan and Jacobs, 1991, Jordan and Jacobs, 1993).
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Target and Model outputs

_2 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Local Models and Basis Functions

-0.5F

_1.5 1 1 1 1 1 1 1 1 1 |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.16: An example of local models representing a one dimensional function

The advantages of local representations are discussed in (Bottou and Vapnik, 1992), where
they suggest that a proper compromise between local and global methods will usually prove
most effective as varying levels of complexity are required throughout the input space, although
they claim that the ‘local capacity’ should match the data density, which 1s not necessarily
true, as this would not place units where the system is complex, but rather where there was
most data. The more general goal of allocating local capacity is that the learning system

should match the ‘ocal complezity’ of the target system.

The idea of using locally accurate models is also described in the statistical literature in
(Cleveland et al., 1988), where local linear or quadratic models are weighted by smoothing
functions. (Priestley, 1988) describes State Dependent Models for non-linear time series which
are basically linear models where the parameters depend on the operating vector (;3 (corre-

sponding to the ‘state’ in Priestley’s terminology)
T < 1
=" (1= 1) 0pi(). (2.19)
i=1

Local Model nets could be viewed as a finite parameterisation of the state-dependent model.
Tong’s Smooth Threshold Autoregressive (STAR) models (Tong, 1990) are also structurally
equivalent to local model nets. In neither Priestly’s or Tong’s case, however, is much detail
given about how to find the smooth weighting functions. (Billings and Voon, 1987) also uses
a number of linear models to approximate a nonlinear system, but does not have smooth

interpolation between basis functions.

Local model systems for diagnosis, modelling and control of dynamic systems have been
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applied extensively by Johansen and Foss in Trondheim, e.g. (Johansen and Foss, 1992c),
(Johansen and Foss, 1992b) and (Johansen and Foss, 1993). A development of the ideas to

a state-space implementation of local models is described in (Johansen and Foss, 1993).

Some fuzzy logic systems can also be viewed as Local Model networks, e.g. the methods
used in (Takagi and Sugeno, 1985) are effectively overlapping piecewise linear models, with
the interpolation between models provided by the membership functions. Similar applica-
tions are reported in (Sugeno and Kang, 1988, Foss and Johansen, 1993), (Wang, 1994) and
(Harris et al., 1993). In (Haas and Murray-Smith, 1993) we discuss the similarity between
fuzzy and basis function systems in more detail. (Back and Tsoi, 1991) describes the use of
dynamic models as nodes in Multi-Layer Perceptrons — this could be seen as an MLP imple-

mentation of Local Model methods.

(Skeppstedt et al., 1992) describes the use of local dynamic models for modelling and control
purposes, but with hard transfers from one model regime to the next. (Pottmann et al., 1993)
describes a multi-model approach where although the local models overlap there is still a sharp
transition from one model to the next, and to minimise model switching a heuristic criterion
is introduced which only allows switching after three consecutive steps in the direction of the

new model.

2.4 Hierarchical Approaches to Learning Models

We have discussed the use of locality in basis function networks for the limitation of complexity,
but how can we decide on the suitable level of locality for any given area of the input space?
How can we reduce the effect of high dimensionality by only concentrating on the areas of
interest? Can we produce efficient training algorithms which take points outside a given local

model into account, while not reducing the system to a global optimisation technique?

A common technique for the control of complexity, found in nature, society and technical
systems, is hierarchy (Mesarovic et al., 1970). In the flat local model networks used so far, the
structure identification phase tends to be computationally expensive, because any alteration
to one unit affects many others. The effect of normalisation also alters the local properties
of the basis functions, sometimes leading to unexpected results, as described in Section 3.3.
Hierarchical methods offer, due to their structure, the ability to more effectively hide local
complexity, in the traditional ‘divide and conquer’ manner, making the learning process more
efficient and robust. The goal is truly hierarchical learning, where a network can grow to
fit the data, and as the representation of the model improves decisions made earlier in the
learning process can be reevaluated, leading to gradual changes to the higher levels. The local
model framework is well suited for the creation of such hierarchies, as the local models in a
given network can be further local model networks producing a hierarchy of local model nets.
This is the Learning Hierarchy of Models (LHM) structure described in Chapter 5.
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2.4.1 Hierarchical learning methods

The use of hierarchy in learning algorithms breaks down into two general camps. The decision
tree methods started in the 1970’s with k-d trees (Bently, 1975), Classification And Regression
Trees (CART) (Breiman et al., 1984), and ID3 and C4.5 (Quinlan, 1993), and involve hierar-
chies of sharp partitions, dividing the input space into ever smaller areas. (Isaksson et al., 1991)
and (Stromberg et al., 1991) describe the use of such trees with dynamic models in the leaf
nodes to model nonlinear dynamic systems. Because of the sharp partitions, however, these

methods are poorly suited to modelling continuous systems. An alternative approach is the

Figure 2.17: Decision tree structure

use of soft splits, where the input space is no longer sharply partitioned, but there is a gradual
transfer from one local model space to the other, allowing smooth interpolation between the
models. This also means that a point in the input space can activate models in several leaves

of the tree, with a differing level of membership to each.

Examples of this type of structure include Basis-Function Trees (Sanger, 1991b) and the re-
lated paper (Sanger, 1991a). The Hierarchical Miztures of Erperts (HME) structure, is a hi-
erarchical structure (Jordan and Jacobs, 1993) trained using Expectation Maximisation tech-
niques (EM). Friedman used spline-based techniques to extend the CART ideas to soft splits
for his Multiple Adaptive Regression Splines (MARS) algorithm (Friedman, 1991). Quinlan
also started to work with continuous systems modelling using Model Trees (Quinlan, 1992).
Links between wavelets and hierarchical networks (Bakshi and Stephanopoulos, 1993) have
also been investigated. Banan describes a constructive hierarchical method, with local lin-
ear models, which trains many times, and partitions the input space randomly in the areas
producing errors. The ‘average’ network produced by the random splits is then the result
of training (Banan and Hjelmstad, 1992). (Omohundro, 1991) describes Bump- and Balltrees
which have linear classifiers in the leaves of the tree. The first work from this thesis with

hierarchical networks was the development of Fractal Radial Basis Function Nets, described
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in (Murray-Smith, 1992). The extension of this method is integrated into the local model
paradigm in Chapter 5.

2.5 Learning in Local Model Basis Function Networks

The learning task for Local Model Networks is to try to adapt their structure and parameters
to minimise a cost functional related to the deviation of the model from the target system. The
optimisation of the parameters® is a linear process and relatively straightforward, while the
optimisation of the number of basis functions and their position and determining a suitable
level of ‘locality’ is a difficult non-convex problem, where ad hoc methods of reducing the

complexity play an important role.

The description of the learning process is therefore split into the two highly interdependent
stages of structure identification (Section 2.5.4 describes methods for introducing a priori
knowledge into the model structure, Section 2.5.3 reviews the literature of structure identifi-
cation methods) and parameter estimation (Section 2.5.1), which are repeated until the desired

structure and parameters are found.

2.5.1 Parameter estimation in Local Model Nets

The assumption made during the parameter estimation stage is that the model structure (i.e.
the basis functions and local model structures) already exists and remains fixed during the
estimation phase. This thesis only deals with time-invariant processes, so the methods used
are all off-line methods, where the entire training set is assumed to be available simultaneously
for the estimation phase, as opposed to on-line or recursive methods, which assume a constant
stream of new information®. The assumption made here is that the local models are linear in

the parameters, as in equation (2.18).

The problem of parameter identification within such a framework is reasonably well under-
stood, with a variety of efficient optimisation algorithms existing to solve the problem of
optimising the parameters 8 of local models ﬁ() in equation (2.17) to minimise the cost func-
tional J(8, M, D) for a given local model structure M, where M = (¢, o, np, M1 _n,,) (ie.
the basis functions’ centre locations and basis function sizes, as well as local model types) and
training set D = (¢(t—1),y(t)),t = 1..N. Parameter optimisation for a given model structure

finds the optimal cost J*
J* (M, D) :mainJ(H,/\/l,D). (2.20)

8In this work the term parameters refers to the parameters of the local models and does not include the
basis function parameters, the centres and widths, which are deemed to define the model structure.

9Section 4.3 discusses methods for iteratively extending the training set used, but for any given estimation
stage the optimisation is seen as a batch process.
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Weighted Least Squares estimation

In many learning situations the relative importance of the training data varies throughout the
input space, either because the system spends most of its time in one particular operating
regime, or because a particular aspect of the system is more interesting than others, and it is
also common to have varying measurement accuracy in different areas of the input space. It is
therefore important to be able to weight points in the training set to have more or less signif-
icance. The global criterion for estimation of the parameters of the model in equation (2.17)

1s then the weighted least squares cost functional,

J(6) = %Za(%)(m - 9i)%, (2.21)

i=1
and the vector containing all the estimated model parameters is that which minimises J. In
equation (2.21) a(wp;) are observation weights which can be attached to each measurement.
For the case where the measurement noise estimate for each training point is available, this cost
functional is the chi-squared function (where «a(t);) = ﬁw, where o(1);) is the measurement
error (standard deviation) of the ith training vector). The model obtained using this functional

is known as a Markov Estimator or a Best Linear Unbiased Estimator (BLUE).

Regularisation methods for complexity penalisation

The parameter optimisation for local model nets is an ill-posed problem as described in

(Tikhonov and Arsenin, 1977). This is because there is insufficient data in the training set
to reconstruct the input-output mapping uniquely, the data is usually corrupted by noise,
meaning that a unique solution is impossible, and the continuity conditions are violated. To
make the problem well-posed 1t 1s necessary to make assumptions about the smoothness of
the underlying process being modelled, and the training set must have redundancy in an

information-theoretic sense.

A variety of methods can be used to regularise the optimisation problem, to reduce the variance
of the solution. Many neural network learning algorithms have implicitly (often unplanned!)
had a regularisation effect, in that they have not found the ‘optimal’ (in the least squares sense)
solution to the posed optimisation problem. Methods such as weight decay, stopping learning
early (Sjoberg and Ljung, 1992), network pruning, learning with noise (Bishop, 1994) are all
examples of ad hoc attempts to produce a regularisation effect. The classic regularisation
method as defined in the regularisation theory proposed by (Tikhonov and Arsenin, 1977) is

to extend the simple quadratic error cost functional to become a cost-complexity operator,

70,D) = 3" o) (= 50 + ARU (9, 6) (222)

i=1
including penalising nonnegative functional R(g) which includes a priori information such as

smoothness constraints which makes the optimisation problem well-posed. This forces the
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optimisation to find a ‘smoother’ solution (A is a small weighting, which defines the relative
cost of the complexity compared to accuracy), which is likely to improve the generalisation
of the network on new examples, at the cost of a slightly worse performance on the training
data e.g. (Bishop, 1991) (Bishop, 1994) (Poggio and Girosi, 1990) (Girosi et al., 1993). These
are, unless analytical solutions exist, too computationally expensive for problems of more
than a few dimensions. More practical regularisation methods are described in Chapter 3.
(Sjoberg et al., 1993) describes the use of regularisation methods in system identification, and
the earlier paper (Sjoberg and Ljung, 1992) links the regularisation work to stopping training

early, and discusses the number of important parameters in multi-layer perceptrons.

A priori knowledge of physical constraints on models can also be used to improve generalisa-
tion, as in (Kramer et al., 1992), and by (Roscheisen et al., 1992) who demonstrate the use of

a priort models in training an RBF model of a rolling mill.

Using Singular Value Decomposition to estimate the local model parameters

The optimisation of the weights in RBF and Local Model Networks is theoretically a straight-
forward application of Linear Regression techniques, and as the optimisation problem is a
linear one, the ‘optimal’ solution should always be found (assuming uncorrelated zero-mean
noise). The regression problem can be viewed as finding the local model parameters 8 which
satisfy the equation,

Y = 6 (2.23)

where ® is the design matrix, where the rows are defined by

¢; = pl(qgi)[1¢i1~~~¢ ]~~~an(¢i)[11/’i1~~1/’ Il (2.24)

i”w i”w

so that the design matrix @, and vector of output measurements Y are

P4 n

= "~ |, vy=| - (2.25)

¢N YN
The task of matrix inversion is important for the optimisation process. In practical situations,
however, the straightforward inversion of an information matrix is of little use, as the matrices
are not square, and even if they are, the poor condition or singularity of the matrix in question
makes inversion impossible. To avoid these problems, the Moore-Penrose pseudoinverse of @,

&7 is used to estimate the weights.
6=ty =("®)'a"Y (2.26)

so for weighted least squares as described in equation (2.21), with Q a diagonal matrix with

Qii = «a(x;), the optimal weights are:

6=(@"qQd) 'a7Qy (2.27)
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The algorithm used in this work'?, as in many other papers, to calculate the pseudoinverse is
Singular Value Decomposition (SVD) of a matrix of observed input data. The SVD algorithm
decomposes any N X ng matrix ® to matrices U (N X ny column orthogonal), I (ng x ng
diagonal) and V (ng x ng orthogonal), such that & = USV”. Due to the orthogonality of
the matrices U and V, UTU = VI'V = 1. V is the matrix containing the eigenvectors of
®7®. U is made up of the eigenvectors of ®&”. The associated eigenvalues (o;) are the
same in both cases, and are the squares of the singular values (s;), i.e. 0; = s;> As U and V
are orthogonal, their inverses are equal to their transposes. X is diagonal, so its inverse is the
diagonal matrix containing the reciprocals of its diagonal elements (the singular values). The
advantage of this decomposition'! is that the inverse of ® is now trivial to compute, giving

the pseudoinverse:

g+ =vstu’ (2.28)
where
s 0 0 0
0 s, 0 0
Y= . . (2.29)
0 .0
0 0 sn,

The method is robust because it can, within limits, cope with singular or poorly conditioned
matrices. The condition number of a matrix gives an indication of the rank of the matrix.'? If
this 1s infinite the matrix is singular, and if the reciprocal of the condition number approaches
the machine precision, the matrix is said to be ill-conditioned. In such cases the singular
values are so small that the result is corrupted by the round off effects caused by finite
accuracy arithmetic. Their corresponding columns in V are linear combinations of x’s which
are insensitive to the data. The % elements, where s is less than a preset tolerance are zeroed,
reducing the number of free parameters in the fit. Once the singular values have been zeroed,

the parameters 8 solving the regression problem in equation (2.23) can be calculated,
6=vsuTy. (2.30)

This method of optimising the parameters is not without its disadvantages, however, which
are described in Section 3.1.1. For more details on SVD see the general treatment in books
such as (Golub and van Loan, 1989), or (Press et al., 1988). The use of the method in sys-
tem identification applications is described in (Séderstrom and Stoica, 1989). The review
article (van der Veen et al., 1993), and papers on the general application of the method in
(Deprettre, 1988) and (Vaccaro, 1991) give further background.

10The implementation of SVD used in this thesis is the MATLAB function svd().

1To better understand the behaviour of the original transformation Y = ®8, the SVD of ® is a rotation
of 6 in ny-space by VT, the components are then scaled by S and then rotated again by U to give Y. If a
vector Y lies in the range of ®, there is a solution to 6. The solution is actually a set of solutions, as any
vector in the nullspace can be added to € in any linear combination. SVD, however, finds the solution 8 with
the smallest magnitude (see (Press et al., 1988) for details).

125ee Section 3.1.1 for more details.
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2.5.2 Uniformly distributed basis functions

The simplest method of determining the position and widths of the basis functions in a local
model net 1s to fit a regular mesh or lattice of basis functions over the input space, as shown in

Figure 2.18. This also allows the use of computationally simple methods to find active units, as

Sum of Basis Funtions

iy
0ty

(a) Hexagonally distributed BF’s (b) Sum of Hexagonally distributed BF’s

Sum of Basis Funtions
~——

(c) Grid-like distribution of BF’s (d) Sum of grid-like distributed BF’s

Figure 2.18: A lattice style distribution of basis functions in square and hexagonal forms

the net is effectively an interpolating memory. The total number of units required will rise — as
the ‘curse of dimensionality’ would have us expect — exponentially with the input dimension.
Many non-linear systems in the real world, however, have smooth nonlinearities which can be
represented by relatively few units (this becomes even more relevant when the individual units

are associated with more powerful local models). Also, as the system being modelled is often
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only active or of interest in a small region of the input space, a further saving of redundancy
can be found by only placing basis functions in regions where the system operates. This
demands more flexibility in the model structures than is possible with mesh-like networks,

and methods for optimising the flexible structures.

2.5.3 Structure identification

The use of existing @ priori knowledge, as described in Section 2.5.4, to define the model
structure is important, but as many problems are not well enough understood for the model
structure to be fully specified in advance, it will often be necessary to adapt the structure for
a given problem, based on information in the training data. The optimisation of the network
structure M is, however, a difficult non-convex optimisation problem, and is probably the most
important area of research for basis function networks, if they are to be applied to demanding

modelling problems where little is known about the model structure in advance.

The goal of the structure identification procedure is to provide a problem-adaptive learning
scheme which automatically relates the density of basis functions and the size of their receptive
fields to the local complexity and importance of the system being modelled. The desirable

features of a structure identification algorithm are:

e (onsistency — as the number of training points increases the algorithm should produce

models which approximate the real process more accurately.

e Parsimony — the model structure produced by the algorithm should be the simplest

possible which can represent the process to the required accuracy.

e Robustness — the model structures produced should be as robust as possible with regards

to noisy data or missing data.

e Interpretability — the model structure produced should ideally be as interpretable as

possible, given the available data, local models and basis functions.

The aim is therefore to find a model structure M which allows the network to best minimise the
given cost function in a robust manner, taking the above points into consideration. Minimising
J* (M, D), from equation (2.20), over the possible model structures leads to the ‘super-optimal’

cost, using a priori knowledge about the process structure Kg,

J™(D.Ks) = minJ" (M, D). (2.31)

The robustness 1s an important aspect, as constructive structure identification algorithms can
obviously be very powerful, enabling the network to represent the training data very accurately
by using a large number of parameters, but usually then leading to a high variance. The choice

of model structure plays a major role in the bias-variance trade-off (see (Geman et al., 1992)
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for details about the trade-off), and this should be reflected in the cost functions Jand J*
(from equation (2.20)) in the form of regularisation terms for J and terms which penalise

over-parameterisation in the structure functional J*.

Algorithms for structure identification from data should take into account the complexity of
the target mapping, the representational ability of the local models associated with the basis
functions, and the availability of data. This is a general non-convex optimisation problem,
and in practice it is not possible to guarantee a general method which will provide an opti-
mal solution to the problem for all possible learning tasks. The methods described here are

optimisation techniques implicitly suited to the basis function optimisation problem.

Learr}lng Parameters
algorithm
Data < » Model
Structure
Cost Function A priori
& Constraints Knowledge

Figure 2.19: The structure learning process involves a number of complex interactions.

Structure through parameterised optimisation

A gradient descent optimisation technique for moving the centres and adapting the widths
is described in (Poggio and Girosi, 1990). This is, however, reported to be a slow and un-
reliable technique. There is no guarantee of convergence to a global minimum and there is
therefore likely to lead to variance in performance between runs on similar data. This method
was applied in (Roscheisen et al., 1992) and also in (Hutchinson, 1994), where some practical

guidelines for clustering are given.

Clustering basis functions

RBF researchers used methods where a fixed number of basis functions was assumed, and
the structure identification task was seen as the optimisation of the centres and widths. In
the papers (Moody and Darken, 1989, Sbarbaro, 1992b) clustering algorithms such as self-
organising maps or k-means clustering were used to place the centres. A disadvantage of such
algorithms is that they do not relate the location of the basis functions to the complexity of

the function being mapped, only to the location of data in the input space. Pantaleén-Prieto
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et al (Pantaledn-Prieto et al., 1993) use a clustering routine where only the nearest unit to a

given input is adapted, in order to reduce computation.

Placing centres on training data points

The disadvantage of the techniques described above is that the user must still define how many
units the network should have before learning starts, but as the complexity of the system is
usually not fully understood, the optimal number of units is also unknown. Some researchers
developed methods which estimate the number of units from the position of the training data
in the input space. Specht describes a method which has a basis function centred on every
example in the training set (Specht, 1991). This is a simple technique, but one which scales
up very poorly, and is not particularly robust when faced with noisy or sparse data. More
promising methods use the redundancy in the training set to reduce the number of units
needed to learn the desired training data. A hierarchical clustering technique based on a
binary tree approach to recursively partition the input space is used in (Stokbro et al., 1990).
The resulting network is a single layer net, only the partitioning process is hierarchical. The
partitioning is not related to the local complexity of the system, but simply to the presence of
data — a drawback of other similar algorithms. (Raipala and Koivo, 1992) describe a similar
simple method for constructing a network, which is to insert a new unit whenever an input
occurs which 1s not near the centre of any of the units’ receptive fields. This is repeated
in (Roberts and Tarassenko, 1994). The algorithms we used in (Murray-Smith et al., 1992)
and (Neumerkel et al., 1993) can be seen as extending this type of technique by including the

system complexity in the distance metric for the clustering process.

Iterative constructive techniques for gradual approximation

Another option is to start off with a simple model, to estimate its parameters, determine where
the representation is still unsatisfactory and to dynamically add new models to the network.
This leads to a sequence of model structures M; — My — ... — M,,,,, where M; — M,
indicates an increase in the representational ability (more degrees of freedom) in the model
structure followed by a parameter identification and confidence estimation stage. Constructive
techniques which gradually enhance the model representation in this manner have a number
of advantages. They automate the learning process by letting the network grow to fit the
complexity of the target system, but they do this robustly, by forcing growth to be guided by
the availability of data and the complexity of the local models. This automatically determines
the size of the network needed to approximate the function adequately, while preventing
overfitting. Two such constructive algorithms are described in Chapters 4 and 5, coming from

the work published in (Murray-Smith and Gollee, 1994) and (Murray-Smith, 1992).

Chen et al (Chen et al., 1991) used orthogonal least squares for the clustering task. Their

algorithm is a constructive one, which uses every training point as a candidate centre. Each
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time a unit is added to the network, it chooses the best candidate centre by attempting to
minimise the variance in the model output due to the network parameters. The Resource
Allocation Net described in (Platt, 1991) is a constructive algorithm, where when a pattern is
presented which causes an error larger than a given threshold a new unit would be added at
that point. Wynne-Jones suggests a constructive method where existing units in the network
are split into two. The Hierarchical Self-Organising Learning (HSOL) algorithm, a hierarchi-
cal strategy for the construction of single layered basis function networks for classification is
described in (Lee and Kil, 1991). Units are added to the network in a coarse to fine strategy.
(Carlin, 1992) applied HSOL to modelling problems and similar coarse-to-fine ideas have been
used for spline-based modelling applications (e.g. ASMOD in (Kavli, 1992)). (Fritzke, 1994)
describes a constructive method based on a self-organising map framework. The LSA algo-
rithm which splits the input space orthogonally to the axes of the input space is described in
(Johansen and Foss, 1994b). The spline-based MARS algorithm (Friedman, 1991) mentioned

earlier is also a gradual constructive method.3

2.5.4 Pre-structuring the local model net

The straightforward local model network, where the local models are simple linear models, can
be viewed as a general structure which is well suited for use in modelling dynamic systems. A
major advantage of the local model nets is, however, their ability to allow the introduction of
a priori knowledge to define the model structure for a particular problem. This leads to more
interpretable models which can be more reliably identified from a limited amount of observed

data.

Incorporating local models based on «a prior: knowledge

The most general form of information is the expected order of the system, and the form of
model to be identified (e.g. simple linear ARX models etc). If more knowledge is available, the
local models could be physically oriented models, possibly with only a subset of their variables
to be identified, thus allowing the engineer to easily create grey-boz models. A generalised form
would allow the designer to specify a pool of feasible local models; which could be locally tested

for suitability in the various operating regimes defined by the basis functions.

In many cases, there will not be sufficient data to train the model throughout the input space.

This 1s especially true in areas outside normal desired operation, where the model may have

13The Model Merging algorithm described in (Omohundro, 1991) attacks the problem in a different way,
using a fine-to-coarse learning algorithm, where each training point is initially viewed as a model, and in-
creasingly global models are created by merging the existing models. This has the disadvantage of being more
computationally intensive than the top down methods, and will tend to overtrain where coarse-to-fine methods
tend to over-generalise. Other workers have produced constructive algorithms for a variety of network types,
e.g. Cascade-correlation (Fahlmann and Lebiere, 1990) and GAL (Alpaydin, 1991), but these structures lose
the locality advantages of the basis function networks, and cannot easily introduce a prior: knowledge, unlike
local model nets.
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to be very robust, and well understood. These situations can be covered by fixing a prior:
models in the given areas, and applying learning techniques only where the data is available

and reliable.

Incorporating a priori knowledge of non-linearity into the basis functions

Locality of representation provides advantages for learning efficiency, generalisation and trans-
parency. It is, however, very difficult to automatically find the ‘correct’ level of locality for
a given subspace of an arbitrary problem. The problems of dimensionality can also be re-
duced in many systems with a large number of inputs, as there are often combinations of
input dimensions which are of no interest, or which are additively or linearly related. The
problem can then be decomposed, if the user already has a prior: knowledge about the system
being modelled, thus allowing the user to treat the system as an additive combination of lower
dimensional sub-models. (The use of such physically based knowledge makes on-line adap-
tation of the system’s parameters much more feasible). The statisticians have developed the
theory of additive modelling techniques, e.g. (Hastie and Tibshirani, 1990, Friedman, 1991)
to support such decompositions. (Hrycej, 1992) also describes similar methods for the mod-
ularisation of neural networks. Also, because of the strong links between Fuzzy membership
functions and Basis Functions (see our review in (Haas and Murray-Smith, 1993), or the books
(Harris et al., 1993, Brown and Harris, 1994)), the a priori knowledge of how best to decom-
pose the problem could be expressed as linguistic rules with accompanying basis functions.
(Bridgett et al., 1994) analyses the functionality of the MARS and ASMOD algorithms and

relates them to fuzzy systems.

High dimensional Local Models, low dimensional Basis Functions

The decomposition of the input space 1s especially interesting for nonlinear, high order dynamic
systems, as the input space is very large (and in practice such high dimensional input spaces
are often impossible to fill with data), but the nonlinearity may only be dependent on a small
number of the inputs. Local model nets are well suited for modelling such systems because
although the system may be globally strongly nonlinearly dependent on the inputs,it may be
possible to use the most important subset of the inputs to partition the input space. The
system can then be locally approximated sufficiently accurately by simple (possibly linear)

models which use the entire input vector, so
¢ C 1, dime < dimp. (2.32)

In the dynamic systems’ case, a dramatic reduction in the input space used for the nonlinear
partition could be achieved by including only a subset of the delayed values of the inputs and

state in (;5, while all are present in 9 (i.e. the dimension of (;3 1s usually smaller than that of

¥).
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The well-known consequences of the ‘curse of dimensionality’ can be greatly reduced by defin-
ing a lower dimensional projection of the input space for the location of the basis functions
and the evaluation of the distance metric (shown in Figure 2.20). This greatly simplifies the

scale of task facing the structure identification algorithm.

Low-dimensional Basis Functions
1 Subset of
inputs 1
— ‘ Model Weighting Vector
@ 2
I Local Models
High dimensional
Input vector
1/) np,
Full :\’>

~>

dimensionality

Y

Figure 2.20: A mixed order hybrid Local Model Net system, where the operating point (;3 has

a lower dimension than the model inputs 1.
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2.6 Conclusions

2.6.1 Engineering deficits of neural net solutions

The idea of creating a model of a given system by examining its behaviour, as opposed to
gaining an understanding of the physical processes within the system, was not an innovation
of the neural network field. The related fields of Statistics, System Identification, Cybernetics
and Machine Learning all offer much support in both theoretical and practical aspects of the
modelling task. Although the last decade has seen the publication of thousands of papers on
neural networks, the deficiencies of many artificial neural networks for reliable use in practical
applications are now becoming obvious to many working in the field. While networks like the
multi-layer perceptron have been applied with success in a number of real applications, the
lack of clear methods for training, analysis and validation lessen their applicability to difficult,
or safety-critical projects. The ‘curse of dimensionality’ is a basic fact of life when producing
models from data, making it necessary to introduce a priori knowledge—a procedure which is
not well supported in multi-layer perceptrons. The lack of an engineering methodology also
makes project administration in any such work more difficult, due to the unpredictability of
success or failure, the variation in time needed to achieve a solution and the uncertainty about

the quality of the final trained model.

2.6.2 Local Model Basis Function nets for practical problems

Local Model nets can be seen as a more general implementation of the more widely used basis
function net. Local Model Nets have fewer of the engineering problems described above. The

two main advantages of the architecture are:

e given local basis functions, i.e. limited overlap between models, a significantly higher level
of transparency is achieved. This allows the easy local introduction of tools from other
modelling paradigms (system identification, statistics etc.), and makes it easier to build
a priort knowledge into the architecture in the form of partially or fully parameterised

physical models.

e the partition also simplifies the evaluation of local confidence limits, and therefore leads
to more efficient parameter and structure identification algorithms. The localised con-
fidence estimates and constructive structure identification methods have a further ad-
vantage, as it becomes possible to automatically determine local sparsity in the training

data so that more data can be demanded in active learning systems, if necessary.

e an enhanced representation, making it more suitable for modelling high dimensional
and dynamic systems. Although the basis functions are still local, the more powerful

local models associated with them allow the representation to be significantly more
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global, without the problems seen in more powerful fully global representations such as

polynomial approximations, or the curse of dimensionality in fully local methods such
as RBF nets.

The local model nets seem therefore to be a promising framework for the improvement of the
‘learning engineering’ problems which this thesis set out to attack. The local nature of the
basis functions makes it easier to develop constructive structure identification algorithms. The
Local Model Nets are more interpretable than other neural network architectures, and thus
allow existing modelling techniques to be more easily integrated. This makes the framework
potentially very powerful, as it can benefit from the wealth of theory and experience in domains

such as statistics and system identification.



Chapter 3

Aspects of Local Model
Networks

The methods used for the global optimisation of the parameters in local model net-
works are analysed, revealing frequent problems with ill-conditioning. Global opti-
misation methods are computationally expensive, and produce poorly interpretable

final models when the underlying structure is not physically meaningful.

Local learning methods utilise the locality in the network structure to provide a more
computationally efficient, more flexible and often more robust alternative. Local
learning also has a regularisation cffect on the optimisation, and often produces
more interpretable results than global learning. The simultaneous use of a variety

of local optimisation routines in heterogeneous local model nets 1s outlined.

Methods which use the local nature of the network structure to provide state-
dependent estimates of model accuracy are described. These use the basis functions
to interpolate general local error statistics. Methods for estimating the covariance

of local model parameters are given, and the detection of extrapolation is discussed.

An investigation of normalisation of the basis functions reveals that normalisa-
tion can fundamentally alter properties of the basis functions in a manner not
appreciated by many researchers: the shape is no longer uniform, mazima of basis
functions can be shifted from their centres, and the basis functions are no longer
guaranteed to decrease monotonically as distance from their centre increases. In
many cases basis functions can re-appear far from the basis function centre. The

consequences for model interpretation and learning algorithm development are out-

lined.

51
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3.1 Local Learning vs. Global Learning

The optimisation process described in Section 2.5.1 is based on the assumption that all of the
parameters @ would be optimised simultaneously with a single regression operation. This is
not always computationally feasible if a large number of training patterns or local models are
needed for a particular problem (see Section 3.1.3). A further problem is that the global nature
of the observation can lead to the trained network being less transparent, as the parameters
of the local models cannot be interpreted independently of neighbouring nodes. Also, even
with robust identification algorithms, ill-conditioning in the design matrix can lead to the
‘optimal’ network parameters consisting of delicately balancing large positive and negative
weights which minimise the output error on the training set, but which are not robust when

confronted with new examples — i.e. the model generalises poorly.

3.1.1 Problems with global optimisation methods

The condition of the design matrix is very important for the robustness of the optimisation

process. The condition number of a square matrix A is defined to be
c(A) = ||All A~ (3.1)

The larger the condition number, the larger the effect of slight changes in the matrix A on the
solution of the pseudoinverse A1. As the weights are dependent on AT | a slight change in
data would lead to different weights, so generalisation is likely to be poor. SVD is used to avoid
robustness problems, but it is still important to try to improve the condition of the design
matrix. The condition number for the pseudoinverse of A can be easily calculated from the

singular values produced by the SVD (see Appendix A.4 in (Soderstrom and Stoica, 1989)), as

the norm of a matrix ||A|| = s; (the largest singular value) and the norm of the pseudoinverse
is [JAY|| = SL, where there are n; nonzero singular values, so the condition number is
s
c(A) = = (3.2)
Sn

Ill-conditioning in Local Model Networks

RBF nets with widely varying basis function sizes can have condition problems, because the
smaller basis functions will have relatively few data points in their receptive fields, compared
to the larger ones, leading to them being treated as singularities in some cases. Local model
networks, with global optimisation, tend to be more prone to ill-conditioning than simple RBF
nets, because of the increased level of correlation between basis elements in the regression
problem — the same inputs appear in each local model, the only difference being differing

weightings provided by their basis functions.!

1The condition can be improved slightly by norming the inputs to the individual local models by using
deviation from the centre (or operating point in conventional linearisation theory) as an input to the local
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A one-dimensional example is used to illustrate the relationship between the properties of the
networks and the associated singular values for a variety of local model nets. The arbitrarily

chosen nonlinear function 1s

y(x) = cos(6x?) + £(), (3.3)

where the additive noise term () is Gaussian with a varying standard deviation of o(z) =
0.4 exp (— |x — %| 4.6). The examples plotted in Figure 3.1 used 401 training examples (see
Figure 3.5 on page 63 for a plot of the training data).

Even using deviation inputs to the local models, the condition of the design matrix still

deteriorates rapidly with increasing numbers of local models, as can be seen from the example

in Figure 3.3(b).

—C . . . . .
models ¥ 4., = %, so that the regression bases are in the same numerical range, but there is less correlation
i

between bases.
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Figure 3.1: A set of 10 basis functions is fixed and used to represent the system using constant,
linear and quadratic local models. The singular values for piecewise constant, linear and
quadratic models are plotted. The drops in the singular values at 11 in the linear local model
case, and at 11 and 22 in the quadratic model case are less pronounced than in Figure 3.2.
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Figure 3.2: The same case as in Figure 3.1, but with basis functions half the size. Notice the
sharp drops in the singular values at 11 in the linear local model case, and at 11 and 22 in the
quadratic model case. These indicate that the basis functions associated with the higher order
inputs are more likely to contribute to poor conditioning in learning. Note also the effect of
narrow basis functions on the smoothness of the RBF model output — the normalised basis
functions are more step-like, reducing the smoothness of the model output.
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Effect of basis function overlap factor on condition

Figure 3.3(a) shows the increase in condition number with increasing numbers of local models,
when the relative overlap remains identical. To better understand the role of overlap, Fig-
ure 3.3(b) shows the increase in condition number in a local model net with a fixed number
of units (seven) when the overlap is increased. The interpretation of this for learning systems
is that an increase in the number of models, or the level of overlap of the basis functions can
lead to a poorly conditioned optimisation problem, and models which do not generalise well.
Too few models, however, will obviously lead to poor approximation, and too little overlap

leads to non-smooth approximations.
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basis functions evenly space, with ¢ = |c1 — c2|. factor for the basis function width. 1 represents a
width related to the distance between centres, i.e.
o= |e1 — ¢zl

Figure 3.3: Condition number increasing with number of local models or with overlap. Basis
functions were normalised.

3.1.2 Local learning

An alternative to global learning is to locally estimate the parameters of each of the local
models (as defined in equation (2.18)) independently?. As described in (Murray-Smith, 1994),

potential advantages of local learning include:

e The local optimisation will be more computationally efficient (see Section 3.1.3).

2this assumes that the basis functions achieve a partition of unity.
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e In the global case the design matrix (®) has many elements which are close to zero since
only a small number of validity functions are significantly non-zero at any point in the
input space. Also, given a large degree of overlap, many local model bases will appear
very similar. Both features can lead to poor conditioning of the optimisation equations

and numerical problems.

The restriction involved in local learning means that the final locally trained network

will often be more robust when facing new data than a globally trained model.

e Heterogeneous local model networks can be defined which use a variety of optimisation

algorithms (possibly also nonlinear), each suited to the individual local model type.

e If global training 1s used, the parameters of a ‘local’ model can often have no local
meaning, as they depend on interaction with their neighbours to produce the correct
model behaviour, whereas locally trained local models can be interpreted independently
of neighbouring local models. This is extremely important, as an oft-cited advantage of
local model networks is that the trained local models are easier to interpret than other

representations as they are already in a locally interpretable form?.

Local learning with weighted least squares

For the global criterion it is possible to set a(4p,) = 1 for 