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Abstract

Local Model Networks are flexible architectures for
the representation of complex non-linear dynamic
systems. The local nature of the representation
leads to a modular network which can integrate a
variety of paradigms (neural nets, statistics, fuzzy
systems and @ priori mathematical models), but
because of the power of the local models, the ar-
chitecture is less sensitive to the curse of dimen-
sionality than other local representations, such as
Radial Basis Function networks. The concept of
‘locality’ 1s a difficult one to define, and tends to
vary over a problem’s input space, so a construc-
tive structure identification algorithm is presented
which automatically defines a suitable model struc-
ture on the basis of the observed data from the pro-
cess being identified. Local learning algorithms are
introduced for the local model parameter optimisa-
tion, which save computational effort and produce
more interpretable and robust models.

1. Introduction

Computationally intensive learning systems capa-
ble of representing multivariable nonlinear systems
have been the centre of a great deal of attention
in the last decade. In many cases, however, there
has been little attempt to provide any link to con-
ventional modelling and identification theory, or to
make the resulting trained systems interpretable to
the user. There has been a recent upsurge of inter-
est in neural networks and spline or kernel based
architectures with local representation. This popu-
larity is based to a great extent on the local nature
of the approximation which makes the system more
interpretable, and the fact that a great deal of the
classical optimisation and regularisation theory can
be applied to such architectures. A major problem,
however, is that as one would expect with local rep-
resentations, the architectures are highly suscept-
able to the curse of dimensionality. This paper de-
scribes an architecture which is flexible enough for
the designer to limit the effect of high dimensional-
ity, especially for dynamic systems, and a construc-

tive structure identification algorithm which auto-
matically determines the ‘suitable’ level of locality
throughout the input space. A further reduction in
the effect of high dimension is the application of lo-
cal learning methods to the parameter optimisation
phase of learning, which are outlined in this paper.

2. Local Model Methods

In this paper we discuss variations on one main
class of network, the Basis Function Network (BF
Net) because of its suitability for modelling contin-
uous nonlinear systems. BF nets are basically local
methods, which are inherently modular representa-
tions and thus allow the easy integration of ideas
and structures from other modelling paradigms.

2.1. BF Nets for Modelling

Basis Function Networks and their equivalents have
been used for function approximation and mod-
elling in various forms for many years: The original
Radial Basis Function Nets came from Interpola-
tion theory and are described in [1], where a basis
function is associated with each training point. Po-
tential Functions, Kernels and Spline Models are
all similar structures. Smoothing methods such as
Gaussian Kernel methods like other local averag-
ing methods quickly become impractical in high-
dimensional spaces. Recently BF neural networks
have received a growing amount of attention from
the neural network community, [2, 3, 4, 5, 6, 7]. [§]
gives a brief review of RBF nets. The basic struc-
ture is defined in more detail in our companion pa-
per [9]. We are trying to model a process, where
the underlying system can be described as

y=f(p)+e (1)

where the input vector ©¥» € R™v.

The output of the BF net is a weighted (by pa-
rameters 6;) linear combination of many (n) locally



active non-linear basis junctions p;(-),
i=1f)= Z@Pi(ﬂ’) (2)
i=1

Each unit’s centre is a point in the input space,
and the receptive field of a unit ¢ (the volume of
the input space to which it reacts) is defined by
its distance metric d(v; ¢;, 0;), e.g. the Euclidean
distance metric divided by a scalar value (¢;) rep-
resenting the basis function’s radius,
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The basis or activation function (similar to the
membership function of a fuzzy set) of the unit is
usually designed so that the activation is local (i.e
limited to the area near the centre), and that it
smoothly and monotonically decreases towards zero
as the input point moves away from the unit’s cen-
tre (c;), e.g. B-Splines or Gaussian bells are com-
mon choices,

pi(P) = p(d(v; ci, 7)) = exp(—d(p; ¢;, 07)), (4)

There are a number of advantages to this style of
structure, where the nonlinear representation is lin-
early weighted to the output. The optimisation
of the parameters is based on standard regression
techniques, and methods such as regularisation, ex-
periment design and recursive estimation are easier
to transfer to such structures.

2.1.1 Are BF Nets too local?: An
intrinsic feature of the Basis Function networks is
the concept of ‘locality’. In linear systems the data,
optimisation and validation are all considered to be
globally relevant, i.e. any results obtained are valid
over the entire input space. For non-linear sys-
tems, however, (especially when multivariable) the
problem can be simplified by partitioning the input
space into multiple subspaces. This can involve a
reduction of the problem’s dimensionality by de-
composing the problem, discarding irrelevant inter-
actions, or of simply partitioning the input spaces
into subspaces which are easier to handle — the tra-
ditional ‘divide and conquer’ strategy inherent to
local modelling techniques.

The concept of ‘locality’ is obviously relative, de-
pending on the complexity of the system, the avail-
ability of training data, the importance of the given
area of the input space, and a prior: knowledge of
internal structures within the given system. The
form of ‘locality’ utilised depends on the represen-
tation used; in decision trees, locality is introduced
by partitioning the input space into hypercubes, in
RBF nets locality is hyperspherical and in multi-
layer perceptrons or Projection Pursuit nets ‘local-
ity’ is a given projection of the input space.

‘I'he problem with standard basis fTunction networks
is that the crudeness of the local approximation
(weighted piecewise constant models) forces the
system to use large numbers of basis function units
to approximate a given system, leading to computa-
tional, transparency and robustness problems (the
training data to train all of the units has to ex-
ist!). Tt is therefore important to be able to profit
from the local nature of the basis functions while
not having to have too many units. This implies
that the basis functions should be associated with
more powerful representations than piecewise con-
stant models, so that a smaller number of them
could cover larger areas of the input space while
achieving the desired modelling accuracy.

2.2. Local Model Basis Function Nets

The representational ability of the normal Basis
Function (BF) net can be extended to a generalised
form of BF network, the Local Model Network de-
scribed in equation (5), where the basis functions
are used to weight general functions of the inputs
as opposed to straightforward weights,

g=1)=>_fi$)n(9). (5)

The basis, or model validity functions used in this
paper are radial, i.e. they use a distance metric
(equation (3)) d((}ﬁ;ci, ;) which measures the dis-
tance of the current operating point ¢ (which is
not necessarily the same as the full model input
1, but usually a subset of 4)) from the basis func-
tion’s centre ¢;, relative to the width variable o;.
If the units have localised receptive fields, leading
to a limited degree of overlap with their neighbours
the functions ﬁ(¢) can be viewed as locally accu-
rate models, whose validity for a given input % is
indicated by their basis function’s value for that in-
put. The basis functions are normalised, so that
they sum to unity. See [10] for a discussion of the
side-effects of normalisation.

This means that the structure has the advantages
inherent to the local nature of the basis functions
while, because of the more powerful local models
associated with the basis functions, not requiring
as many basis functions as before to achieve the
desired accuracy. The improvement is more signif-
icant in higher dimensional problems. This style
of representation was suggested in [3], followed up
by [11] and [12]. The idea of using locally accurate
models is also described in the statistical literature
in [13], where local linear or quadratic models are
weighted by smoothing functions, and Priestley’s
State Dependent Models [14] have many similari-
ties to LMN’s. LMN’s for modelling and control
of dynamic systems have been used extensively by

Johansen and Foss [15, 16, 17].



‘Lhe n local models used are represented by general
functions fi(¢)), but in many cases simple linear
models are chosen

Mi(8:) = i) = [1e7] 6, (6)

where the parameters local model i, are §; € R*#+!
The network form of equation is shown in Figure
1. The trained network structure can be viewed as
a decomposition of the complex, nonlinear system
into a set of locally active submodels, which are
then smoothly integrated by their associated basis
functions.

Figure 1: Local Model Basis Function network

To give an impression of the workings of a lo-
cal model network, a one dimensional function is
mapped using local models in Figure 2. The top
plot (a) shows the target function and the model’s
approximation, while the basis functions and asso-
ciated local models are shown in (b).
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Figure 2: An example of local models representing a
one dimensional function

3. Pre-structuring the Local Model

A major advantage of the local model nets is their
ability to allow the introduction of a prior: knowl-
edge to define the model structure for a particular
problem. This leads to more interpretable models
which can be more reliably identified from a limited
amount of observed data.

3.1. Incorporating local models based on a
priori knowledge

The most general form of information is the ex-
pected dynamic order of the system, and the form
of model to be identified (e.g. simple linear ARX
models etc). If more knowledge is available, the
local models could be physically oriented models,
possibly with only a subset of their variables to be
identified, thus allowing the engineer to create grey-
boz models. A generalised form would allow the
designer to specify a pool of feasible local models,
which could be locally tested for suitability in the
various operating regimes defined by the basis func-
tions.

In many cases, there will not be sufficent data to
train the model throughout the entire input space.
This 1s especially true in areas outside normal oper-
ation, where the model may have to be very robust,
and well understood, but where no data can be ac-
quired. These situations can be covered by fixing a
priori models in the given areas, and applying learn-
ing techniques only where the data is available and
reliable.

3.2. Incorporating a prior: knowledge of non-
linearity into the Model Structure

Locality of representation provides advantages for
learning efficiency, generalisation and transparency.
It 1s, however, very difficult to automatically find
the ‘correct’ level of locality for a given subspace
of an arbitrary problem. The problems of auto-
matically discovering structure in high dimensional
spaces can be reduced in many systems, as there
are often combinations of input dimensions which
are known a priort to be of no interest, or which
are additively or linearly related, thus allowing the
user to treat the system as an additive combination
of lower dimensional sub-models. (The use of such
physically based knowledge makes on-line adapta-
tion of the system’s parameters much more feasi-
ble). In [9] we make use of the strong links between
Fuzzy membership functions and Basis Functions
to initially decompose the problem by expressing
structure as linguistic rules with accompanying ba-
sis functions.

The decomposition of the input space is especially
interesting for nonlinear, high order dynamic sys-
tems, as the input space can be very large (and
in practice such high dimensional input spaces are
often impossible to fill with data), but the nonlin-
earity may only be dependent on a small number
of the inputs. Local model nets are well suited for
modelling such systems because although the sys-
tem may be globally strongly nonlinearly dependent
on the inputs, if the important subset of the inputs
is used to partition the input space, the system can
then be locally approximated sufficiently accurately



by simple (possibly linear) models which use the en-
tire input vector. In the dynamic systems case, an
important reduction in the input space used for the
nonlinear partition could be achieved by not includ-
ing all of the delayed values of the inputs and state
in (?), while all are present in 1 (i.e. the dimension
of (}5 is smaller than that of %, as shown in figure
3).
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Figure 3: A mixed order hybrid system

4. Learning in Local Model Basis Function
Networks

The learning task for Local Model Networks is to
try to adapt their structure and parameters to min-
imise a cost functional related to the deviation of
the model from the target system. The optimisa-
tion of the parameters’. is a linear process and rela-
tively straightforward (assuming uncorrelated noise
on the outputs), while the optimisation of the num-
ber of basis functions and their position and deter-
mining a suitable level of ‘locality’ is a difficult non-
convex problem, where ad hoc methods of reducing
the complexity play an important role.

We will therefore split up the description of the
learning process into these two highly interrelated
stages, structure identification (Section 4.2) and pa-
rameter identification (Section 4.1), which are re-
peated until the desired structure and parameters
are found.

4.1. Parameter Estimation

Parameter identification for local model nets, where
the local models are linear in the parameters, 1is
reasonably well understood, with a variety of effi-
cient optimisation algorithms existing to solve the
problem of optimising the parameters 6 to min-
imise the cost functional J(8, M, D) for a given
local model structure M and training set D =
(¥t —1),y(t)),t = 1..N. Parameter optimisation
for a given model structure finds the optimal cost

1Tn this work the term parameters refers to the parame-
ters of the local models and does not include the basis func-
tion parameters, the centres and widths, which are deemed
to define the model structure M

dimensionality > 3

J 7 such that
J*(M, D) :mainJ(Q,M,D). (7)

The optimisation process generally used for the pa-
rameters of the local models is usually a conven-
tional linear regression technique, where all of the
parameters are optimised simultaneously using a
single pseudoinverse calculation (see companion pa-
per [9] for details). The linear regression problem
is well understood, and there is a range of excellent
algorithms for this task. The problem is that it is
not always computationally feasible if a large num-
ber of parameters are to be identified from a large
number of training patterns. A further problem is
that the global nature of the observation can lead
to the trained network being less transparent, as
the parameters of the local models cannot be inter-
preted independently of neighbouring nodes. Also,
even with a robust method such as SVD, because
of ill-conditioning, the ‘optimal’ (in a least squares
sense) network parameters will often fail to pro-
duce a robust model. Tn [18] we suggested a local
learning method to get round these problems, which
optimises the local model parameters for each lo-
cal model independently (again, see the companion
paper [9] for further details), leading to computa-
tional cost scaling linearly with the number of local
models, rather than to the cube of the number of
parameters, as in the global case.

4.2. Structure Identification

The use of existing a priori knowledge, as described
earlier, to define the model structure is important,
but as many problems are not well enough under-
stood for the model structure to be fully specified
in advance, it will often be necessary to adapt the
structure for a given problem, based on informa-
tion in the training data. The optimisation of the
network structure M is, however, a difficult non-
convex optimisation problem, and is probably the
most important area of research for basis function
networks, if they are to be applied to demanding
modelling problems where little is known about the
model structure in advance.

The goal of the structure identification procedure
is to provide a problem-adaptive learning scheme
which automatically relates the density of basis
functions and the size of their receptive fields to the
local complexity and importance of the system be-
ing modelled. The aim is to find a model structure
M which allows the network to best minimise the
given cost function in a robust manner. Minimis-
ing J*(M, D), from equation (7), over the possible
model structures leads to the ‘super-optimal’ cost,
using a priori knowledge about the process struc-
ture Kg,

J*(D,Ks) = minJ*(M, D). (8)



‘I'he robustness 18 an important aspect, as construc-
tive structure identification algorithms can obvi-
ously be very powerful, enabling the network to
represent the training data very accurately by us-
ing a large number of parameters, but usually then
leading to a high variance. The choice of model
structure plays a major role in the bias-variance
trade-off (see [19] for details about the trade-off),
and this should be reflected in the cost functions
Jand J* in the form of regularisation terms for J
and terms which penalise over-parameterisation in
the structure functional J*.

5. Constructive Algorithm for Structure
Identification

As a result of the above considerations we sug-
gest a constructive structure identification algo-
rithm where the model structure is gradually im-
proved, forming a coarse representation of the sys-
tem initially, and refining it at each step by adding
a new local model where it will bring the greatest
improvement in accuracy. This involves a loop of
the following manner:

1. Identify model parameters from training data.

2. Determine where model structure most needs
improvement.

3. Improve model structure, if necessary and fea-

sible.

4. Goto 1

To produce efficient, practical algorithms the fol-
lowing observations should be noted:

1. Although highly desireable, the distribution
of training data will probably not be directly
related to the complexity of the observed pro-
cess.

2. The mapping will probably have varying lev-
els of complexity in different areas of the input
space.

3. The training data will not be uniformly dis-
tributed, and there will be areas of the input
space which cannot be filled with data.

The first point implies that we should consider the
local complexity of the system in the selection of
cluster points, as opposed to unsupervised learning
techniques, which only consider the density of the
input data, regardless of the output response. The
second point implies the need for a multi-resolution
technique which will find clusters representing vary-
ing volumes of the input space (varying levels of lo-
cality). The last point lets us reduce the volume of
the input space we consider for new local models to
only points covered by the available training data.

a.1. Complexity Detection — VWhere Are ELxX-
tra Units Needed?

The multi-resolution cluster algorithm uses a ‘com-
plexity detection’ heuristic to place new local mod-
els. The heuristic was inspired by the Vector Field
Approach to Cluster Analysis [20]. Observation 3
above indicates that we should simplify the search
task by assuming that the training data covers the
significant areas of the input space adequately for
the initial search (an assumption which must be
true for any degree of learning to take place). Ini-
tially, therefore, each training point is viewed as
a possible centre (¢) for a basis function, where
c € R™#, and the ‘complexity’ of the mapping in
a windowed area (p(-) is the windowing function)
around this point is measured, using

NZ

where N is the number of neighbouring data points
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Figure 4: Windowed Complexity Estimate

used, and

A7i = VY — Yecentre (10)

and

e = Yi — Yi- (11)
The function d is a distance measure. The com-
plexity is estimated by an analogy to the concepts
of forces acting on a mass in physics. The weight-
ing of the forces depends on their associated resid-
uals (e;), and the difference from the prototype
centre’s output (Ay;). The windowing function fo-
cusses the heuristic’s attention on the level of local-
ity currently being examined. The larger the level
of Fisia1, the larger the estimated complexity.

The major disadvantage of the complexity heuristic
is its computational load. It can require a maxi-
mum of N? calculations of the weighting function
and the associated offset. This can be reduced by
limiting the search by using only a subset of the
training data as potential centres, or by the use
of hierarchical decomposition of the input space to
limit the number of data points under considera-
tion, as in [21].

5.2. Overlap Determination

Giiven a set of basis function centres we need to de-
fine the basis function widths, which determine the



level ot overlap between neighbouring local mod-
els. When basis functions are used where centres
can be distributed unevenly throughout the input
space finding the ‘correct’ degree of overlap is a dif-
ficult problem. The conventional method is to set
the radius o; proportional to the average distance
of the k nearest neighbours from the centre ¢;,

k
1
UJOCEZHCJ'—%W (12)
i=1

In many cases this will be unsatisfactory, as the im-
mediately neighbouring units could be widely vary-
ing distances apart in different directions, meaning
that the resulting level of overlap with the neigh-
bouring basis functions would vary greatly. Too
much overlap and there are problems with poor es-
timation and singularities in the regression process.
With too little overlap, and normalisation the map-
ping loses smooth interpolation between local mod-
els, and the behaviour further away from the centre
becomes unpredictable, because of the interaction
with other basis functions. The overlap problem is
further complicated when basis functions are nor-
malised.

To avoid this problem, more powerful distance met-
rics, e.g. the ellipsoidal distance metric in equation
(13), where o; is a positive definite square matrix,
as in [5, 22] can be used.

(13)

T -
o; ‘qﬁ—ci

d(&; Ci, Ui) = ‘65 — ¢

This potentially allows a more even level of overlap
with the neighbouring units?.

The problem is therefore to robustly determine the
matrix o for each basis function from the distance
of the neighbouring units. We used a heuristic
which calculated the ‘covariance’ of the centres ¢,
surrounding the chosen centre ¢; (the ‘mean’), and
using the inverse of this to define the distance func-
tion, as in equation (13).

—e)'], (14)

o; x E, [(cn —¢i)(cn

where F, is the expected value over the chosen
neighbouring centres c,. The results of this tech-
nique are shown in figure 5. ‘x’ is the centre of
the unit being adjusted, and the ‘0’ points are the
centres of neighbouring units. The surface plot in-
figure 5 shows the form of the basis function pro-
duced. The problem with this technique 1s that we
are interested in distance to the nearest neighbours
in all directions around the centre, so it is not suf-
ficient to take the k nearest, as they could all be in
the same area. To avoid this, we used a heuristic

2The use of such distance metrics becomes more signif-
icant where more powerful local models are used, allowing
the model to be composed of fewer, but more powerful units.
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Figure 5: Using the ‘covariance’ measure to determine
the basis functions size and orientations

which demanded a minimum angle between neigh-
bouring centres before they were included in ¢, to
be used for the covariance estimate, as shown in
figure 6. While producing intuitively pleasing re-
sults for lower dimensional problems, this technique
becomes less robust with increasing input dimen-
sion. The ellipsoidal basis functions demand an ex-
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Too closeo X .
X2

O O \\\\ Onin

Figure 6: Eliminating centres with a common direc-
tion

tra w free parameters, and the variance inher-
ent in this increase in parameterisation is not triv-
ial. To reduce the variance we used singular value
decomposition (SVD) to determine the inverse of
the ‘covariance’ matrix o. This allows us to apply
simple regularisation ideas to the distance metric by
altering the singular values, and thus reducing the



degrees of Ireedom 1n the final distance metric. In
our experiments, however, we found that the mini-
mal improvement in performance compared to the
simple RBF net was usually not enough to justify
their use. Axis-orthogonal elliptical basis functions,
where o is a diagonal matrix, can be easily derived
by only considering the diagonal terms of the co-
variance matrix, and tended to be lead to more ro-
bust networks. Figures 7 and 8 show the contours
(at a level of 0.5) of the basis functions found for
a two-dimensional problem with the given centres,
using the three styles of distance metric with and
without normalisation. However, when the basis

Figure 7: Radial, Ellipsoidal and Axis-orthogonal el-
lipsoidal basis functions

functions are normalised, there is often little dif-
ference between the various options: The heuristic

Figure 8: Normalised Radial, Ellipsoidal and Axis-

orthogonal ellipsoidal basis functions

method described in this section could be seen as
a fast initialisation routine, which could be further
optimised by iterative gradient techniques, as in [5].

5.3. Preventing Overfitting

The problem of differentiating between errors due
to noise on the training data and errors due to bias
caused by an inadequate model structure is often
a difficult one. Overtraining is the result of ex-
tending the structure so far that noise is learned,
instead of system structure. A simple constraint on
the structure identification algorithm is to require a
minimum number of data points within the recep-
tive field of a given local model for it to be consid-
ered viable, i.e. only if piotat, > Nmin, Wwhere Npin
is the minimum number of training points needed
and piotal, = Zf\;l p;((?)l-) is a heuristic ‘count’ of
the local data points for smoothly overlapping ba-
sis functions. Ny, 1s dependent on the level of

nolse on the data and the complexity of the local
model.

Further pruning techniques, which merge neigh-
bouring local models if their parameters are similar
enough have also been successfully applied to sim-
plify the networks. These rely on the use of local
learning techniques [18], to ensure that the param-
eters have a strictly local interpretation.

5.4. Local Model Structure Selection

The structure optimisation extends also to the
model structures of the individual local models.
These need not be homogeneous, the user can define
a pool of possible local models which can then be in-
serted into a given operating regime, with the ‘best’
one being chosen. This would allow a more robust
fitting of models to operating regimes, taking the
amount of data and the local process complexity
into account.

5.5. The Constructive Process

In order to robustly determine the model struc-
ture a constructive approach is proposed. The al-
gorithm starts off with a minimal representation
(perhaps only one linear model) and searches for
‘coarse’ complexity (use of a large windowing func-
tion) initially and then refines the model at ever
increasing levels of resolution until the desired ac-
curacy has been achieved, or the data is exhausted.
To determine where to add the extra representa-
tion the ‘complexity’ heuristic is used to decide
where new models should be placed. Given the
new model centre, which must be a minimum dis-
tance (which depends on the size of the ‘complexity
window’) from existing centres, the desired overlap
with neighbouring regions is determined, and the
local model parameters for the new mdoel struc-
ture are re-estimated. If the model is still not accu-
rate enough, the search for the next most ‘complex’
area of the input space i1s then restarted. This is
repeated until the added models do not bring any
improvement, whereupon the scale of the ‘complex-
ity window’ is reduced (although how rapidly to
reduce the windowing size is still a matter for ex-
perimentation), and the search is restarted at the
finer resolution.

Such a gradual approximation has several advan-
tages:

e The learning process is automated somewhat,
in that the model structure is determined by
the learning algorithm.

e It allows the network to first allocate repre-
sentation where most needed, according to
the complexity functional.

e Generalisation tends to be improved, as the
required model structure is created, while



the overfitting protection inherent to the con-
structive algorithm limits overtraining.

e A priori knowledge can be introduced in the
form of a pool of local model structures, so
that the model best suited to a local area of
the input space is chosen.

e The proportion of the training set used can
also be selectively extended during learning to
have a density matching the density of the ba-
sis functions, improving the quality of the pa-
rameter estimates, and speeding up the learn-
ing process. If there is insufficient data in cer-
tain areas of the input space, the constructive
algorithm could be linked to an active learn-
ing procedure.

The structure identification problem is, however,
far from solved, and this should remain a major
research area in the near future.

6. Conclusions

The local model networks described in this paper
allow the introduction of @ prior: knowledge about
the process being modelled which reduces the di-
mensionality of the problem. The learning process
can usefully be seen as being composed of two parts,
structure identification and parameter identifica-
tion, the structure identification phase of which is
more difficult. A constructive algorithm for the au-
tomatic determination of the ‘locality’ of the model
structure was described. A local method for param-
eter estimation was outlined which is more robust
and far more efficient than the global method. The
algorithms have been applied to real industrial data
sets with success. Details of the applications will be
given in the talk.
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