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Abstract. Local Model Networks are learning systems which are able to
model and control unknown nonlinear dynamic processes from their ob-
served input-output behaviour. Simple, locally accurate models are used
to represent a globally complex process. The framework supports the
modelling process in real applications better than most artificial neu-
ral network architectures. This paper shows how their structure also
allows them to more easily integrate knowledge, methods and a priori
models from other paradigms such as fuzzy logic, system identification
and statistics. Algorithms for automatic parameter estimation and model
structure identification are given.

Local Models intuitively lend themselves to the use of Local Controllers,
where the global controller is composed of a combination of simple locally
accurate control laws. A Local Controller Network (LCN) for controlling
the lateral deviation of a car on a straight road is demonstrated.

1 Introduction

This paper presents methods for the automatic construction of local model net-
works. These are architectures capable of representing nonlinear dynamic sys-
tems by smoothly integrating a number of simpler locally accurate models. Local
methods of controlling systems, such as gain scheduling, are very useful methods
for nonlinear control, but determining the gain schedule becomes increasingly
difficult as the process complexity increases. The Local Controller Networks pre-
sented here can be viewed as a general formulation of the gain scheduling idea,
where the ‘schedule’ can be automatically determined by the Local Model struc-
ture constructed to represent the process. The effect of the choice of local or
global parameter estimation methods on the resulting model structure is dis-
cussed.

1.1 Model Structures

We consider discrete-time nonlinear systems having the general form

y(t) = fly(E—=1), ... y(t—ny),u(t—k),.. u(t—k—ny),e(t—1),...e(t—n.))+e(t).

(1)
Here, y(t) is the system output, u(¢) the input and e(#) is a zero-mean disturbance
term. We restrict attention to single-input single-output systems so that y(¢) €



Y CR,u(t) €U CR and e(t) € E C R. k represents a time delay. This type of
model is known as the NARMAX (Nonlinear ARMAX) model [1] and has been

studied widely in nonlinear systems identification.
When we define the information vector as

Yp—1)=[yt—1),...y{t—ny),u(t—k),.. . ut—k—ny),et—1),.. .e(t—ne)(];)

then the system (1) can be written as

y(t) = F($(t = 1)) +e(t). (3)

The T in (2) denotes the transpose operator. The aim in empirical modelling is
to find a parameterised structure which emulates the nonlinear function f.

1.2 Linear Models

Standard linear approaches to modelling consider a linearisation of (1) about a
nominal operating point (e.g. by taking a first-order Taylor series expansion)
which results in the linear ARMAX model

y(t) = ¢a,(t = 1)8 +e(t) (4)
where

Gar (t—1) = [—y(t-=1),.. —y(t—ny),u(t—k),.. . u(t—k—ny),e(t-1),.. .e(t—nez];),

and

9:[al,...any,bo,...bnu,cl,...cne]T (6)

is a constant parameter vector. Note that in (4)—(5) all signals now strictly
represent deviations from the nominal operating point. With the definitions (5)
and (6) the linear system (4) can be written in the familiar transfer-function
form

¢ *B(¢™")
Alg=1)

e(t). (7)

y(t) =

1

Here, ¢~ is the unit delay operator and the polynomials A, B and C are

A(q_l) =l4aqg'+.. .+ an,q ",
Blg™" ) =bo+big” 4+ .. 4 b g,
Cle7Yy=T4cig 4. +en g (8)



1.3 Local Model Networks

Linear, or other simple models, can be used in a more general way, so that a more
general class of systems can be represented. A number of such simple models,
each weighted by a basis function associated with a different area of the input
space, can be combined to create a globally complex model

g=f) = Z fi($)pi(9), (9)

where q; defines the operating point of the system. The network form of equa-
tion (9) is shown in Fig. 1. The trained network structure can be viewed as a
decomposition of the complex, nonlinear system into a set of naq locally accu-
rate sub-models, which are then smoothly integrated by their associated basis
functions. To illustrate the workings of a local model network, a one dimensional

Fig. 1. Local Model Basis Function network

function is mapped using local models in Fig. 2.

The basis, or model validity functions used in this work are radial, i.e. they
use a distance metric d(q;; ¢;, ;) which measures the distance of the current oper-
ating point ¢ from the basis function’s centre ¢;, relative to the width variable o;.
See Fig. 3 for a simple representation of operating regimes in a two dimensional
operating space. The overlapping operating regimes allow the basis functions
to smooth the transfer from one region of the model structure to the next. As
there is a limited amount of overlap, however, there is a limited number of local
models associated with any point in the input space, making the full model more
interpretable.
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Fig.2. An example of local models representing a one dimensional function. The top
plot shows the target function and the model’s approximation, while the basis functions
and associated local models are shown below.

For modelling tasks the basis functions should form a partition of unity for
the input space, i.e. at any point in the input space, the sum of all basis function
activations should be 1. This is a necessary requirement for the network to be
able to globally approximate systems as complex as the basis functions’ local
models. In many applications the network’s basis functions are normalised to

achieve the partition of unity, i.e.
P (d (q;a Ck, Uk))

pr(0) = STF (d (qz’c%ai)) (10)

where p() is the general unnormalised basis function, so that the normalised
basis functions pg () sum to unity,

z“p (4 (b.cie)) = 1. (1)

[2] discusses the advantages of normalisation in RBF nets, promoting somewhat

simplistically the advantages of a partition of unity produced by normalisation.
Normalisation can be important for basis function nets, often making the model
less sensitive to poor choice of basis functions, but it also has a number of side-
effects which we discussed in detail in [3]. These side-effects make the argument
for or against the use of normalisation more complicated than is often assumed.

The use of local basis functions means that the structure has the advantages
inherent to the local nature of the basis functions while, because of the more



0]

Fig. 3. Local Model Operating Regimes. Each local model is associated with an op-
erating regime. These regimes overlap, and the gradual decay of ‘validity’ provides
interpolation between models.

powerful local models associated with the basis functions, not requiring as many
basis functions as a simple RBF net (e.g. as used in [4]) to achieve the desired ac-
curacy. This improvement is more significant in higher dimensional and dynamic
problems.

1.4 Pre-structuring Local Model Nets with a prior: knowledge

A major advantage of local model nets is that they are not only useful archi-
tectures for general learning tasks, but that it is relatively easy to introduce a
priort knowledge about a particular problem. This leads to more interpretable
models which can be more reliably identified from a limited amount of observed
data.

Incorporating local models based on a priori knowledge If the knowledge
is available, local models could be physically motivated models, possibly requir-
ing only a subset of their variables to be identified, thus allowing the engineer
to easily create grey-bozr models. The most general form of information is the
expected dynamic order of the process, and the form of model to be identified
(e.g. simple linear ARX models, where 6; is a local parameter vector correspond-
ing to linearisation about a local nominal operating point). A generalised form
outlined later allows the designer to specify a pool of feasible local models, which
could be locally tested for suitability in the various operating regimes defined
by the basis functions.

In many cases, there will not be sufficient data to train the model throughout
the input space. This is especially true in areas outside normal desired operation,
where the model may have to be very robust, and well understood. These situ-
ations can be covered by fixing a priori models in the given areas, and applying
learning techniques only where the data is available and reliable.



Incorporating a priori knowledge into the basis functions Locality of rep-
resentation provides advantages for learning efficiency, generalisation and trans-
parency. It is, however, very difficult to automatically find the ‘correct’ level of
locality for a given subspace of an arbitrary problem.

For a fixed density of basis functions, the total number of local models re-
quired rises — as the ‘curse of dimensionality’ would have us expect — exponen-
tially with the input dimension. This does not rule out the use of local methods,
however, as many nonlinear systems in the real world have smooth nonlinearities
which can be represented by relatively few local models (this becomes even more
relevant with more powerful local models). Also, as the system being modelled
is often only active or of interest in a small region of the input space, a further
saving of redundancy can be found by only placing basis functions in regions
where the system operates. Constructive learning algorithms which automati-
cally attempt this are described in section 2.3, but it is still important to use the
available knowledge to limit the size of the search space faced by the learning
algorithm.

The problems of dimensionality can be reduced in many systems with a large
number of inputs, as there are often combinations of input dimensions which are
of no interest, or which are additively or linearly related. The problem can then
be decomposed, if the user already has the necessary a prior: knowledge, so
that the system can be approximated over an additive combination of lower
dimensional sub-models (e.g. the theory of additive modelling techniques [5, 6]
was developed to support such decompositions).

The Local Model net can thus be generalised to cater for possible redundancy
in the operating point for certain operating regimes; some operating regimes
may be specified by only a sub-vector of the operating vector. To allow this the
argument to each p;(-), which we will now call ¢;*, is defined as belonging to a
set @;¥ defined on a subspace of R"%, i.e. ;" € &;F C R"*" | with nger < nj.
The generalised local model network, or GLMN, 1s defined as

i) = F(¥) = 3 Fi)m(é7). (12)

Using the above framework, the strong links between Fuzzy membership
functions and Basis Functions (see [7, 8]) become even more apparent. A priori
knowledge of how best to decompose the problem could therefore be expressed
as fuzzy rules with accompanying basis/membership functions.

In summary, for many high-dimensional nonlinear dynamic processes, al-
though the system may be globally strongly nonlinearly dependent on the in-
puts, it may now be possible to use the most important subset of the inputs
to partition the input space into subspaces which are more manageable for the
automated learning algorithm.



2 Learning in Local Model Nets

2.1 Parameter estimation in Local Model Nets

The problem of parameter estimation for systems which are linear in the pa-
rameters i1s reasonably well understood, with a variety of efficient optimisa-
tion algorithms existing to optimise the parameters 6 of local models ﬁ() in
equation (9) to minimise the cost functional J(6, M, D) for a given local model
structure M, where M = (¢,0,nm, M1 n,,) (i.e. the basis functions’ centre
locations and basis function sizes, as well as local model types) and training
set D = (Yt —1),y(t)),t = 1..N. Parameter optimisation for a given model
structure finds the optimal cost J*

J*(M,D):mginJ(H,M,D). (13)

The methods described in the literature are usually global optimisation meth-
ods based on the assumption that all of the parameters § can be optimised
simultaneously with a single linear regression operation,

Y =0 (14)
where @ is the design matrix, where the rows are defined by
b = |p1(6:)[1 i, - il Prne (D)1 i, - il (15)
so that the design matrix @, and vector of output measurements Y are

&, Y1
Y= (16)

3N YN
The Moore-Penrose pseudoinverse of @, @7 is then used to estimate the weights,
6 =0tY = (070)"'0TY (17)

but this is not always computationally feasible for larger problems. A further
problem is that the global nature of the observation can lead to the trained
network being less transparent, as the parameters of the local models cannot be
interpreted independently of neighbouring nodes. Also, even with robust identifi-
cation algorithmes, ill-conditioning in the design matrix can lead to the ‘optimal’
network parameters consisting of delicately balancing large positive and negative
weights which minimise the output error on the training set, but which are not
robust when confronted with new examples — i.e. the model generalises poorly.

The lack of independence in globally trained local models is significant for
later use in Local Coniroller Networks (described in section 3.1).



Local learning An alternative to global learning is to locally estimate the pa-
rameters of each of the local models independently! using the basis functions as
local weighting criteria. This results in a set of local estimation criteria for the
i-th local model (where i = 1..npq) of

T0) = 2 pildin) (s — ), (18)

where N; is the number of examples in the local training set D; limited to the
receptive field of local model ¢, and g;, is the output from local model ¢, for data
point k£ from D;. In this case the estimate of the local model parameter vector
f; is given by él = argmin J;(6;). In matrix terms the operation is now

b; = (BT Q:0;) "' 07 QY (19)
where &@; is an N; x (ny + 1) vector,
iy

P N P N (20)

Pin

where the k refers to the kth example in local training set D;. ); is an N; x N;
diagonal matrix, where the diagonal elements are the activations of the basis
function of the ith model over the training set D;,

i

pi(di) 0 0 0
0  pi(¢s,) O 0
0, pi(®is) | (21)
0 0 " 9
0 0 0 pildiy,)

The local learning method involves the computation of naq locally weighted
least squares regressions, one for each local model, using only the training data
D; within the model’s receptive field, and with only the bases related to the
given local model’s parameters.

2.2 Structure Identification in Local Model Nets

The use of existing a prior: knowledge, as described in Section 1.4, to define
the model structure is important, but as many problems are not well enough
understood for the model structure to be fully specified in advance, it will often
be necessary to adapt the structure for a given problem, based on information in
the training data. The optimisation of the network structure M is an important
but difficult non-convex optimisation problem. For a review of structure identi-
fication algorithms see [9] or the paper by Johansen and Foss in this volume.

! This assumes that the basis functions achieve a partition of unity.



The goal of the structure identification procedure is to provide a problem-
adaptive learning scheme which automatically relates the complexity of the local
models, and the density and overlap of basis functions to the local complexity and
importance of the system being modelled. The desirable features of a structure
identification algorithm are:

— Consistency — as the number of training points increases the algorithm should
produce models which approximate the real process more accurately.

— Parsimony — the model structure produced by the algorithm should be the
simplest possible which can represent the process to the required accuracy.

— Robustness — the model structures produced should be as robust as possible
with regard to noisy data or missing data.

— Interpretability — the model structure produced should ideally be as inter-
pretable as possible, given the available data, local models and basis func-
tions.

The aim 1is therefore to find a model structure M which allows the network
to best minimise the given cost function in a robust manner, taking the above
points into consideration. Minimising J* (M, D), from equation (13), over the
range of possible model structures leads to the ‘super-optimal’ cost, using a
priort knowledge about the process structure Kg,

J*(D,Ks) = minJ* (M, D). (22)

The robustness i1s an important aspect, as constructive structure identifica-
tion algorithms can obviously be very powerful, enabling the network to represent
the training data very accurately by using a large number of parameters, but
usually then leading to a high variance. The choice of model structure plays a
major role in the bias-variance trade-off (see [10] for details about the trade-
off), and this should be reflected in the cost functions Jand J* (from equa-
tion (13)) in the form of regularisation terms for .J and terms which penalise
over-parameterisation in the structure functional J*.

2.3 The constructive approach

The constructive method is to start off with a simple model, to estimate its
parameters, determine where the representation is still unsatisfactory and to
dynamically add new models to the network. This leads to a sequence of model
structures My — My — ... — M, ,,, where M; — M, indicates an increase
in the representational ability (more degrees of freedom) in the model structure
followed by a parameter identification and confidence estimation stage. Con-
structive techniques which gradually enhance the model representation in this
manner have a number of advantages. They automate the learning process by
letting the network grow to fit the complexity of the target system, but they
do this robustly, by forcing growth to be guided by the availability of data and
the complexity of the local models. This automatically determines the size of



the network needed to approximate the function adequately, while preventing
overfitting. Two such constructive algorithms are described in [11] and [12].

The construction becomes a multi-step process: At each step various options
are constructed, the model parameters optimised, and the structure with the
best cost-complexity value chosen. The procedure is then repeated at the next
stage of construction. Unfortunately the search space is usually very large and
such algorithms therefore suffer from the ‘curse of dimensionality’ and scale up
badly to larger problems.

The Multi-Resolution Constructive Algorithm To produce efficient, prac-
tical algorithms the following observations about the modelling problem should
be noted:

1. Although highly desirable, the distribution of training data will probably
not be directly related to the complexity of the observed process.

2. The process will probably have varying levels of complexity throughout dif-
ferent areas of the input space.

3. The training data will not be uniformly distributed, and there will be areas
of the input space which cannot be filled with data.

The first point implies that we should consider the local complexity of the pro-
cess output when altering model structure, as opposed to unsupervised learning
techniques, which only consider the density of the input data, regardless of the
output response. The second point implies the need for a multi-resolution tech-
nique which will find model structure representing varying volumes of the input
space (varying levels of ‘locality’). The third point lets us reduce the volume of
the input space we consider for new local models to only points covered by the
available training data.

The MRC algorithm differs from other constructive algorithms in a number
of ways. The conventional methods tend to basically apply search techniques
to find a model structure which minimises the cost-complexity functional. The
method used here is to use a ‘model mismatch’ or ‘complexity heuristic’ to
indicate the areas of the input space where the current model differs most from
the underlying process, i.e. where the greatest complexity is. The model structure
is then developed in these areas. The options for model structure extension are
also drastically reduced by restricting the possible positions of basis function
centres to be on input points in the training set. This leads to a relatively simple
method for extending the model structure which expends its effort in predicting
where new structure would be useful, rather than trying out the options and
selecting the best of them. The process is described below:

1. The model starts off with a minimal representation (perhaps only one linear
model, depending on the state of the a priori knowledge) and searches for
‘coarse’ complexity. It refines the model structure at ever increasing levels of
resolution until the desired accuracy has been achieved, or the training data
has been exhausted.



2. To determine where to add extra representation the ‘complexity’ heuristic
is needed. This decides where new models should be placed, based on a
weighted local statistic of the training data, or from measured model resid-
uals. To enforce the gradual nature of the approximation the new centres
must be a minimum distance d,,;, from existing centres.?

3. Given the suggested location of the new model centre the desired overlap
with neighbouring regions is determined, thus completing the basis function
optimisation for this stage of the model construction.

4. If a pool of local model structures has been defined, the best fitting local
model for each basis function can be chosen by estimating the local model
parameters for the new model structure and running cross-validation runs.
If the receptive field of any given basis function has too few units to reli-
ably estimate the associated local model parameters it can be removed (and
Step 3 is repeated), or the local model structure simplified.

. If the model is still not accurate enough, the search for the next most ‘com-
plex’ area of the input space is then restarted. This is repeated until either
no further local models can be added, or the added models do not bring any
improvement, whereupon the scale of the ‘complexity window’ is reduced,
and the search is restarted at the finer resolution.

ot

The constructive procedure is illustrated in Fig. 4 where the model complex-
ity is increased gradually for a two-dimensional function approximation problem.

Complexity detection — where are extra units needed? The ‘complexity
detection’ heuristic used to place new local models was inspired by the Vector
Field Approach to Cluster Analysis [13]. Observation 3 above indicates that we
should simplify the search task by assuming that the training data covers the
significant areas of the input space adequately for the initial search (an assump-
tion which must be true for any degree of learning to take place). Initially, all
training points which are a minimum distance dp,;n, = Y0yin from existing cen-
tres are viewed as possible centres cj., for the new basis function. The centre
Cnew € R™%, and the ‘complexity’ of the mapping in a windowed area, where
p(+) is the windowing function® around this point is measured using

N
1 ~
Ftotal(ca O-win) = N Z P(d(ﬁbz, C, Jwin))eia (23)

i=1

where N is the number of neighbouring data points used, e; can be a general
error statistic, but which is often simply

e = lyi — 9l (24)

2 dumin is related to the current resolution of search ouin.
3 In this work a Gaussian bell was used.



Fig.4. A gradual approach to constructing a model. The model responses are shown
for a series of stages in model development, shown by the contour plots of the basis
functions. The right hand column shows the training data used — note that the set is
expanded with the model structure.

The function d(-) is a distance measure. The complexity is estimated by an
analogy to the concepts of forces acting on a mass in physics. The weighting
of the forces depends on their associated error statistic (e;). The windowing
function focusses the heuristic’s attention on the level of locality currently being
examined. The larger the level of Fi,4;, the larger the estimated complexity. The
windowing function operates at different scales o4;,, starting off by searching
for coarse complexity and refining the search as learning progresses.

As new models must be a certain minimum distance away from previous
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Fig.5. Windowed Complexity Estimate. The weighting function p(-) weights the error
measures e; at points ¢; around the prototype centre. The window function is usually
chosen such that points further from the centre have less effect on the outcome of the
complexity estimate.

models, the input space will gradually be filled with basis functions, the density
being determined by the current resolution. Once no more basis functions can
be inserted at this resolution the algorithm moves on to the next, finer search
stage *.

The major disadvantage of the complexity heuristic is its computational load.
It can require a maximum of N2 calculations of the weighting function and the
associated offset for each prototype centre. However, as extra basis functions are
added for any given resolution, the number of potential centres sinks, due to
the distance constraint d,,;, covering a higher percentage of the training points.
This means that the search for complexity gets faster as the model grows. The
computational effort can also be reduced by limiting the search by using only
a subset of the training data as potential with active selection of the training
data.

Overlap determination The conventional method for overlap determination
is to set the radius o; proportional to the average distance of the k nearest
neighbours from the centre ¢;. In many cases this will be unsatisfactory, as
the resulting level of overlap with the neighbouring basis functions would vary
greatly®. One alternative method is to observe that a covariance matrix o;, can

* To prevent non-complex areas of the input space being unnecessarily filled with
local models, the search at a given resolution is abandoned if over a window of
Ncutof f SUCCEssive Insertions no improvement in mean cross-validation error is made
(ncutors = 4 was used for the experiments in this work).

® Too much overlap leads to problems with poor estimation and singularities in the re-
gression process. With too little overlap and normalisation the mapping loses smooth
interpolation between local models, and the behaviour further away from the centre
becomes unpredictable, because of the interaction with other basis functions. In [9]



be estimated using a heuristic which calculates the ‘covariance’ of a selected set
of centres ¢, surrounding6 the chosen centre ¢; (which serves as the ‘mean’ in
the calculation). The inverse of the ‘covariance’ estimate can then be used to
define the distance function:

o; x B, [(cn —ci)(en — ci)T] , (25)

where F, is the expected value over the set of chosen neighbouring centres ¢, .

Local model structure selection & Preventing overfitting The problem
of differentiating between errors due to noise on the training data and errors
due to bias caused by an inadequate model structure is often a difficult one.
Overfitting is the result of extending the structure so far that noise is learned,
instead of system structure. Earlier we discussed ways of reducing the variance in
the parameter estimation phase. It is also possible to reduce variance by limiting
the model structure, which can be done by stopping growth, pruning structure,
or careful selection of local model structures.

Local Model Structures need not be homogeneous — the user can define a pool
of possible local models which can then be inserted into a given operating regime,
with the ‘best’ one being chosen. This would allow a more robust fitting of models
to operating regimes, taking the amount of data and the local process complexity
into account?. Such methods encourage the algorithm to choose simpler models
when data is sparse, and stopping growth can be viewed as the extension of this
local structure selection to the case of preferring no increase in model structure.
The most basic constraint on the structure identification algorithm is to require
a minimum number of data points within the receptive field of a given local
model for it to be considered viable, i.e. only if piotar, > Nmin, Where Npip is
the minimum number of training points needed and piotar, = Ef\il p;(&i) is a
heuristic ‘count’ of the local data points for smoothly overlapping basis functions.
Nmin 18 dependent on the level of noise on the data and the complexity of the
local model.

A further method is to use pruning technigues, which merge neighbouring
local models if their parameters are similar enough®, have also been successfully

it was shown that the condition of the design matrix is highly dependent on the level
of overlap between basis functions.
It is important to choose the neighbours in as wide a range of directions as possible,
see [9] for details.
The resulting local model net will be a heterogeneous structure, where each local
model could be different. If all local models are linear in the parameters, the stan-

-

dard global optimisation techniques remain valid. This will be true in the most
straightforward example of heterogeneous LMN’s, where the local models are linear,
but with varying dynamic order. If some local models require nonlinear optimisation
techniques, a variety of local learning methods can be used.

The distance between the local model parameter vectors is then calculated 65 =
|§; — 6x| , and the most similar min §;;,7,7 = 1..n ¢ local models were merged into
one, and the new basis function centred between the old ones.



applied to simplify the networks. These rely on the use of local learning tech-
niques, as described earlier, to ensure that the parameters have a strictly local
interpretation.

3 Control Based on Local and Time-varying Models

We turn our attention now to control methods based upon the local model
network. In Section 3.1 a direct analogue of the local model network, the lo-
cal controller network, is considered. In Section 3.2 on-line adaptive control is
considered. This is based upon a linear time-varying interpretation of the local
model network, coupled with control redesign and perhaps on-line parameter
update. Further details of the control designs discussed here can be found in

Zbikowski et al [14].

3.1 Local Controller Networks
We postulate a general nonlinear controller for the system (1):

ut) = Clu(t —1),...ult—nS),yt),...y(t —nf),r(t),...r(t —n,)). (26)

The signal r(t) is a reference value while C' is the nonlinear function character-
ising the controller. The controller can be written more compactly as

u(t) = C(¥° (1)), (27)

where

1/)C(t) =[u(t—=1),...u(t —ng),y(t), Syt = n?),r(t), r(t— nr)]T. (28)

Note that when the controller is designed on the basis of a model which is valid
around some operating point the signals in the preceding equations represent
deviations from the operating point.

By directly exploiting the structure of the local model network a local con-
troller network (LCN) can be defined. For each operating regime ®; the system
is characterised by the local model fl, to a degree given by the validity func-
tion p;. It is natural to exploit the given partition of the operating set and for
each operating regime to design a local controller C; whose validity is also given
by the same p;. The overall controller is then defined analogously to the local
model network by using the validity functions as smooth interpolators. The local
controller network is described by

u(t) = C (1) = Y Ci(vC (= 1)pi(67") (29)

and this should be compared to equation (12). For linear local models of the
form ﬁ(i/)(t —1)) = ¢T(t — 1)8;, linear local controllers are natural;

Ci (€ (1)) = v 6¢. (30)



The 6§ are the local controller parameters which can be directly obtained from
some linear control design algorithm mapping the local model parameters;

0F = =(0;,7F). (31)

Here, = denotes the mapping of the linear control design algorithm, while J£ is
a set, of local control design specifications.
The LCN can be rearranged by combining equations (29) and (30) to give

u(t) = CC (1) = v Y07 pi(657). (32)

This can be interpreted as a linear controller with operating-point-dependent
parameters:

u(t) = 476 (1)), (33)

with §€ ((5(15)) = S""M O pi(¢57). Here the controller parameters g€ are obtained
by interpolating the local controller parameters 8¢ using the validity functions
pi(#;7). This is clearly very similar to gain scheduling control [15, 16], whereby
the LCN structure provides a more general framework and a systematic way
to do the actual scheduling. Further details of the link to gain scheduling are
discussed in [14]. Other special cases of the LCN structure include the modular
control architecture of Jacobs and Jordan [17], and the heterogeneous control
approach of Kuipers and Astrém [18]. As mentioned earlier, there is also a direct
link with fuzzy control and this is discussed in depth in [19, 20, 21, 22].

In the case of linear local models it is natural to propose a network of linear
local controllers. A local two-degrees-of-freedom control structure for each local

model is defined by

1
u(t) = S(g~Hr(t) = Glg~Hyt)), 34
(t) H(q_l)( (a7 )r(t) = Glg™)u(t)) (34)
where the polynomials G, H and S have the form

Sl ) =so4+s1g7 4. 4 sn,q7 ", (35)

-1 -1 -n? .
Gl )=go+g10" +...+ gacq ", (36)

-1 -1 -n¢ .
H(g7 ) =14+hig7 + ...+ hyoq "=, (37)

The controller (34) can be expressed as
u(t) = —H'(¢"Yu(t) = Ga™")y(t) + S(a~")r(t) (38)

where H'(qg=') = H(q™') — 1. This structure can furthermore be expressed in
the vector form of equation (30) as

u(t) = €7 ¢°¢ (39)



where the controller parameter vector # has the form
0C¢ = [~hy,...— hnpc,—ga, ... — nc S0, - - R (40)

When we have a local model network representation of the nonlinear system this
controller structure is repeated naq times and there exist naq local controller pa-
rameter vectors §F . Each local controller is designed for the local linear model.
The model parameter vectors 8; can be decoded to give a local polynomial rep-
resentation A;, B;, C; of the form (7). The above control structure then defines
a notional characteristic equation for each model/controller pair. This has the
form

Ailg™ W Hi(e™ ) + ¢ *Bi(¢)Gilg™") = Ti(q 7). (41)

The local controller polynomials ;, H; whose coefficients form part of the 8¢ are
solutions to this linear equation. The desired characteristic polynomial T;(q~1)
can be set in a number of ways, e.g. by directly choosing closed-loop poles or
by minimising a cost function (7; are then given by spectral factorisation). The
remaining controller polynomials S; (which act on the reference signal r) can be
designed to achieve desirable command tracking properties.

3.2 Adaptive Control Interpretation

An alternative approach is to interpret a nonlinear local model network as a
linear time-varying system [23, 24]. Standard linear control design, of the form
outlined above, can then be repeatedly applied on-line to the time varying linear
model. This can also be done in conjunction with on-line parameter estimation
for update of the LMN parameters. This scheme then becomes strongly remi-
niscent of standard self-tuning control. To see how this works consider the LMN
based upon linear local models:

) = 97 - 1) Y i)+ clt) (42

with
Pt -1 =[ylt—-1),...yt —ny),ult—k),...ult—k- n,))7. (43)

The system can be written in a linear form with time-varying parameters,

y(t) = 7 (t = 1)0(3(2)) + e(?). (44)
The time-varying parameter vector g is defined as
6 = [a1((t)), - -an, (6(1)), bo(6(1)), .. .bu, (S (45)

The individual coefficients have the specific parameterisation

a1(a(t)) = Zf)z’,wi(qﬁ?p), (46)



=2 bim pl67), (47)

& Zgz ny+1pz ) , (48)

29 nytnt+10i(070). (49)

When the time-delay is £ = 1 the predictive form of the system equation can be
expressed as

y(t) = ar(6(t))y(t — 1) + ...+ an, (3(1))y(t — ny) +
bo(d(t))u(t — 1) + ...+ bn, (B())u(t — 1 —ny) + e(t). (50)

Note that the procedure can be easily generalised to arbitrary k, but for ease
of notation we restrict attention to the case ¥ = 1. From this model the time-
varying A and B polynomials of a linear ARX-type model can be identified:

Al =1—ai(6(t)g™ — ... —an, (6(t)g",
B(q™") = bo(6(t)) + ...+ bn, ((t))g ™" (51)
These A and B polynomials then form the basis for redesign.

3.3 Example

We now illustrate the LCN of Section 3.1 with a simple example. The problem of
controlling the lateral deviation of a car on a straight road is considered [25, 26].
The model is given by:

y=v( + B)
b= ;)
A=u

The variables in this model are:

— y — lane centre offset (to be controlled),

— 1) — vehicle yaw angle and road course angle difference,
G — sideslip angle,

— X — steering angle (control input),



— v — vehicle speed,

and the constants are: m = 5800 kg - vehicle mass, a = 4.25 m - wheel base and
k = 150 kN/rad - lateral friction.

The task is to regulate the offset to zero by appropriate manipulation of
the steering angle. It can be seen from the above equations that the model
(the transfer-function between steering angle and offset) is a linear time-varying
system; the model parameters depend on the vehicle speed ». This is therefore a
prime candidate for control with the LCN structure using speed as the scheduling
variable. Note that this system is unstable (3 poles at s = 0).

First, we illustrate the difficulty of attempting to control this system with a
fixed linear controller. A linear controller was designed for an operating speed of
20m/s. A simple pole-assignment regulator based on a pair of dominant closed-
loop poles giving a rise-time of 5s was designed. The response of this controller
at a speed of 20m/s to initial offsets of 1m and 0.4m is shown in Fig. 6. With this

Lane offset - initially 1m or 0.4m
T T T T T

L L L
22 24 26 28 30

Fig. 6. Linear controller, v = 20m/s

same controller the car was controlled at a speed of 15m/s. Although reasonable
offset correction was still achieved, the control input was unacceptably active.
This is illustrated in Fig. 7 where the steering angle for an initial offset of 1m
is plotted. Note that for speeds lower than 15m/s or higher than 24m/s the
controller became unstable.

A local controller network was then designed based upon linear models for a
number of operating speeds. For each operating point the control specification
was the same, i.e. the system should have a rise-time of 5s in reponse to step-
like offsets. The controller response for this LCN system was consistent over
all speeds. An example is illustrated in Fig. 8(a) for v = 10m/s (the single
linear controller designed at 20m/s was unstable for this condition). The system
responds to the initial offset with the desired speed, and the response is visually
indistinguishable from that shown in Fig. 6 even though the vehicle speed is very
much lower.
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Fig. 7. Linear controller, v = 15m/s
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(a) Lane offset (b) Steering angle

Fig. 8. LCN controller, v = 10m/s

4 Conclusions

Local Model Nets Local Model networks are practical learning architectures
for use in real problems. The structure is general enough to be applicable to a
wide range of processes, while being relatively simple to understand, and lending
itself well to the interpretation of results and introduction of a prior: knowledge
to simplify training. The use of constructive learning algorithms, as described in
this paper, provides the user a way of automatically creating a model structure
capable, given the training data, of representing the target process.

Constructive Learning Algorithms Constructive techniques which gradu-
ally enhance the model representation in this manner have a number of advan-



tages. The network first allocates representation where most needed, according
to the complexity heuristic. The main features of a process are captured first,
then the details. This is an implicit style of regularisation, as the model con-
struction process can now be seen as a gradual increase in variance and decrease
in bias. Learning continues until the desired level of bias-variance trade-off is
achieved. Modelling accuracy and generalisation ability tend to be improved, as
the model structure is extended as a far as possible to fit the data, while the
overfitting protection inherent to the constructive algorithm limits overtraining.
A further important point is that a prior: knowledge can be introduced in the
form of a pool of local model structures, so that the local model structure best
suited to a local area of the input space is chosen. This automatically creates a
heterogeneous model structure.

Local Controller Networks Once the Local Model Net (LMN) structure has
been estimated during learning it is relatively straightforward to produce a
matching Local Controller Net (L CN) using standard linear control design meth-
ods. The method requires, however, that the linear local model be a local approx-
imation of the system in question, so a local learning method should be used
during construction of the Local Model Net. This forces the algorithm to ex-
tend the model structure so that the local models can become independent local
approximations of the target system, rather than the smaller model structures
produced by global learning which cannot be interpreted individually.

The results were applied to a simple simulation of a car steering problem to
illustrate the easy applicability of the ideas, but it should be remembered that
the problems associated with conventional gain scheduling [15] are also relevant
to LCNs.
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