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Abstract

Local Model Networks are hybrid models which allow
the easy integration of a priori knowledge, as well as
the ability to learn from data to represent complex,
multidimensional dynamic systems from data. This
paper points out problems with global learning meth-
ods in Local Model Networks. The bias/variance
trade-offs for local and global learning are examined,
and 1t is illustrated that local learning has a regular-
izing effect that can make i1t favorable compared to
global learning in some cases.

1 Local Model Networks

The basic assumption underlying the use of learning
systems for modelling purposes is that the behaviour
of the system can be described in terms of a train-
ing set Dn = ((¢(1),y(1)), ..., (¥(N),y(N))) consist-
ing of its observed input vector v and corresponding
scalar output y. We assume the system output can
therefore be modelled as

y=[f() +e. (1)

where f is a function, and ¢ is independent random
measurement noise with zero mean and variance 2.

The modelling problem, as seen in this paper is to ro-
bustly estimate the function f from observation data,
having already used existing a prior: information to
pre-structure and parameterise the model structure
f. Typically, the model structure will not be able
to exactly describe the system, so a bias b(y) will
naturally be associated with f:

y=r(,07) +b(¢) +e¢ (2)

We define the optimal p-dimensional parameter vec-
tor 6* for the learning problem in equation (2) such
that the average bias is minimised over the domain
of interesting inputs

o = argminY” (708 - fE),0)

Unfortunately, since f is not known, we cannot find
these optimal parameters, but must look for an esti-
mate based on the data Dy.

The model function f can in general be pre-
structured and parameterized in a number of ways.
With a linear model, the data, learning and valida-
tion are all considered to be globally (i.e. over the
entire input domain) relevant. For non-linear mod-
els, however, it may be advantageous to partition
the input domain into multiple subsets — a strat-
egy inherent to local modelling techniques. Such lo-
cal model representations have therefore seen an up-
surge in interest in the form of Radial Basis Function
(RBF) Nets, Spline Networks (Kavli, 1992), Mod-
ular Networks (Jacobs et al., 1991) and Fuzzy Sys-
tems (Takagi and Sugeno, 1985). This locality can
be used to make models more interpretable and com-
putationally efficient.

Figure 1. Local Model Network

The Local Model Network
F@,0) =" fi(4,0:)pi (), (3)
i=1

can be viewed as an RBF network where the basis
function coefficients have been generalised to allow
not just a constant parameter to be associated with
each basis function, but a more powerful function of
the inputs . This means that a smaller number of
local models can cover larger areas of the input do-
main. The parameter vector is 67 = [67,...,6F ],
and gg defines the operating point of the system, usu-
ally given by a function ¢ = H (). This is a vector
which often can be defined on a lower dimensional
subspace of the input space which is covered by the
model’s basis functions. These can be seen as gating
or weighting functions for the local models (which are
defined on the full input space). The basis functions



used are defined,

p(2(d.c0.0))
E?ﬁp(d (‘57(‘%"1))

where p(-) is the underlying unnormalised basis func-
tion, e.g. a Gaussian p(d) = exp(—d?/2), and

1(5,c,0) =\/G—c)T oG —c)  (5)

is a weighted Euclidean distance metric which mea-
sures the distance of the current operating point gz;
from the basis function’s centre ¢;. The normalised
basis functions p;(-) now sum to unity. The local
models used are linear:

fiw,0:) = [1, ¢7] 6. (6)

pi(0) = (4)

The basic local model network structure (3)-(6)
was suggested in (Jones et al., 1989), followed up
by (Stokbro et al., 1990), (Barnes et al., 1991) and
(Johansen and Foss, 1993).  Reviews of applica-
tions and research can be found in (Johansen, 1994,
Murray-Smith, 1994). The Adaptive Expert net-
works in (Jacobs et al., 1991) are essentially also a
probablistic interpretation of local model systems.
(Priestley, 1988) describes State Dependent Models
which are similar to Local Model Networks. Certain
Fuzzy Systems can also be viewed as Local Model
Networks (Foss and Johansen, 1993).

In this paper we consider the learning of the param-
eters of the local models for a given model structure,
i.e. we are estimating # for an a priori given set of ¢, 0.
We recognize that the problem of pre-structuring or
learning the structure of the local model network is
perhaps the more important and challenging one, but
as we shall see, the parameter learning problem has
some interesting characteristics that are closely re-
lated to the structuring of the local model network.
This justifies a closer look at parameter learning
problem.

First, we briefly review the standard solution to this
problem, using a criterion that penalizes mismatch
between the training data and the global model out-
put. Thereafter, we describe an alternative solution
based on a number of weighted criteria that penal-
izes mismatch between the data and the local model
outputs. Finally, the properties of these two different
algorithms are discussed.

The general concept of local learning algorithms was
suggested in the context of non-parametric models
(Nadaraya, 1964),(Watson, 1964), (Benedetti, 1977)
and (Cleveland et al., 1988). The parametric
model form, as considered here, 1s seen In
(Bottou and Vapnik, 1992). The contribution of this
paper is an analysis of such an algorithm in the con-
text of local model networks, summarising and ex-
tending some results in (Murray-Smith, 1994).

2 Local and Global Learning
Algorithms

2.1 Global Learning

The local models are assumed linear in the parame-
ters, as in equation (6), so the learning problem is a
straightforward application of linear regression tech-
niques to find the parameters # which best matche
the data. Stacking the data into matrices, we get the
following regression model:

Y = ®6*+B+E&, (7)

where @ is the design matrix, the rows of which are

defined by

61 = [ BN W7 E). ... s (BN 07 (k)]
(8)
so that the design matrix @, vector of output mea-

surements Y, vector of biases B, and errors £ are

O= (ol ok ) Y =(y)uV))"
&

B=(b(1),...6(N) )", = (e(1),...e(N))"

The standard least squares criterion for this estima-
tion problem is

1
J(0) = 5 (V- ®0)T (Y — ®6). (9)
and the Moore-Penrose pseudoinverse of ®, &1 is
used to estimate the weights:

s = dtYy = (87®0)" 10Ty, (10)

The numerical algorithm used in the examples' to
calculate the pseudoinverse is the Singular Value De-
composition (SVD). The SVD algorithm decomposes
any N x p matrix @, such that ® = USVT and the
pseudoinverse of @ is:

o+t =vstu'. (11)

Once the singular values have been zeroed, the pa-
rameters solving the regression problem in equa-
tion (7) can be calculated.

s =VS'UTY. (12)
2.2 Local learning

The global learning approach is based on the assump-
tion that all of the parameters # would be learned in a

1We used the MATLAB function svd().
tails on SVD see the general treatment in books such as
(Golub and van Loan, 1989), or (Press et al., 1988). The
method is robust because it can, within limits, efficiently cope
with singular or poorly conditioned matrices. Diagonal ele-
ments of S that are less than a preset tolerance, are zeroed,
effectively reducing the degrees of freedom in the model.

For more de-



single regression operation. This may not always be
computationally feasible if a large number of training
patterns or local models are needed for a particular
problem (see Section 2.3). Perhaps more worrying,
the global nature of the learning also means that the
parameters of the local models cannot be interpreted
independently of neighbouring local models, which
means that they cannot be seen as local approxi-
mations to the underlying system. An alternative
to global learning which is less prone to these dis-
advantages is to locally estimate the parameters of
each of the local models (as defined in equation (6))
independently?. The parameters of the local mod-
els are then estimated using a set of local estimation
criteria for the i-th local model

B0 = 5 (V — @) Qi (Y~ 90), (13)

where 2 = 1,...,naq. Q; 18 an N x N diagonal weight-
ing matrix, where the diagonal elements are weights
a;(¥(1)), ..., a;(¥(N)), which are used to weight the
importance of the different samples in the training
set on the i-th local model. To achieve local learning
it is necessary to define a set of local criteria®. Qur
confidence in a given observation regarding its rele-
vance for the i-th local model is directly reflected in
the i-th basis function. A plausible local weighting
function is therefore a;(v) = pi(q;), which results in

Qi = diag (pi(d(1)), - pi(3(N))) . (14)

In this case the locally weighted least squares esti-
mate of the local model parameter vector 8; is given
by the minimum of J;. In matrix terms the operation
1S now

. N . T
Orrs = (H%LSJ: ceey H%LS,HM)

. —1

Orrs: = (27Qi®;) @7Q;Y,

where ®@; is an N X (ny + 1)-submatrix of ® corre-
sponding to the ith local model.  Often, a large
number of the diagonal elements in @); are zero, or
very close to zero. For practical purposes, the matri-
ces and vectors involved in each local learning prob-
lem can therefore be replaced by lower-dimensional
equivalent sub-matrices that only contain the train-
ing data samples that are relevant for each local
model. The number of such observations is denoted
N;. The local learning method is therefore to com-
pute naq locally weighted least squares regressions,
one for each local model, using only the subset of the
training data within the model’s receptive field, and
with only the bases related to the given local model’s
parameters.

i=1,2, ... . nm

2This assumes that the basis functions achieve a partition
of unity.

3 A side-effect of local learning is that it also allows more
flexibility in the use of learning algorithms, which will be es-
pecially useful with heterogeneouslocal model networks which
use a variety of optimisation algorithms (possibly also not lin-
ear in the parameters) are locally applied, each suited to the
individual local model type.

2.3 Computational effort

One important reason for using local learning meth-
ods 1s that the computational effort is dramatically
reduced. The effort needed to find the pseudoin-
verse using SVD for a (N x p) matrix? is roughly
(Noble and Daniel, 1988),

Oy =0 (sz + Np? + min (N, p)3) (15)

where p = nap (¢ + 1) = dim(f) is the number of
parameters in the model, which is clearly the crucial
factor with regard to computational effort. The local
effort Oy, 1s repeated nay times,

O, =0 (nM (NZ?mp + Nzni 4+ min (Ni, nw)?’)) )
(16)

where N; is usually significantly smaller than N.

2.4 Experiments on a 1-D noisy function

Local and global learning may lead to considerably
differing results. To show the effect of the two learn-
ing methods we use a simple one-dimensional exam-
ple. The arbitrarily chosen nonlinear function 1is

y = cos(69”) +£(4)), (17)

where the additive noise term e(¢) is Gaussian
with a varying standard deviation of o(¢) =
0.4 exp (—4.6 |1/; — %D The unnormalized basis-
function is the Gaussian, and qNS = 1. The function
is shown below in Figure 2. Both cases use the SVD
algorithm, zeroing singular values smaller than 1075,
For smaller training sets (Figure 2), the relative ro-
bustness of the local learning is immediately obvious,
both in the smoother response, and in the lower er-
ror on the training data. As the amount of data in-
creases, the global method’s accuracy improves, but
the ‘oscillating’ local models remain.

3 A closer look at Local and Global
Learning

3.1 Causes for Ill-conditioning

In local model networks using global learning, even
with robust identification algorithms, we sometimes
observe, as in Figure 2, that the local models do not
change behaviour smoothly as a function of the op-
erating point. Also, they cannot be viewed as local
approximations of the systems. This phenomenon of
“oscillating” local models;, where the negative con-
tribution of one local model is compensated for by
the positive contribution of the neighbouring local

4p = n g (ny +1) is equivalent to the cost of a homogeneous
local model net with linear local models, where n,, represents
the dimension of the model’s input space
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Figure 2: Experimental comparison of Global and Local
Learning for 101 training points. The left hand side shows
the target function, the noisy training data and the trained

network’s response. Local models used deviation inputs 1; =
%. The validation criterion in the figure titles, is the stan-

dard weighted mean square error, where the weighting func-
tion a(y) = ﬁ The validation criterion is evaluated on

the model’s deviation from the true function. The right hand
side of each figure shows the normalised basis functions and
the associated local linear models.

models, leads to a delicate balance which may min-
imise the global error on the training set, but need
not necessarily be robust when confronted with new
samples, i.e. the model generalises poorly, and is cer-
tainly more difficult to interpret. The use of such
non-smooth models can also be highly disadvanta-
geous in many applications®. We have identified two
potential causes of such ill-conditioned behavior:

1. Even the optimal parameters 6* may give such
behaviour, when there is a fundamental structural
mismatch between model f(, 6*) and the true sys-
tem f. One example of such a structural mis-
match is a discontinuous function f together with
smooth basis-functions. Another example of struc-
tural mismatch is a concentration of local models
in operating regions where the system has low com-
plexity, rather than in operating regions with high
complexity. The local model parameters in regions
corresponding to low system complexity are effec-
tively utilized to improve the fit in regions with
high system complexity and low model complex-
ity, which causes ill-conditioning because the corre-
sponding basis-functions are close to zero.

2. Alternatively, the cause may be overparameteriza-
tion, which gives an ill-conditioned ®T ® and a larger
parameter estimate variance, which obviously may
appear as large variability amoung neighbouring lo-
cal models’ parameters. For example, an increasing
number of local models (increasing model structure
complexity) will typically lead to higher condition

5For example, in model based predictive control, the con-
trol input is often found using gradient search methods, which,
if the model is not smooth, would then be subject to many
local minima and would lead to unreliable control.

number of ®7® (see below), and hence, larger vari-
ance on the parameter estimate. On the other hand,
the effect of an increasing number of local models on
the prediction performance depends on whether the
decrease 1n bias is more significant than the increase
in variance, as we shall see later.

3.2 Effect of Overlap factor on condition

Is the local model network structure particularly
prone to ill-conditioning due to overparameterisa-
tion? The fact that the bases of a local model net
are often effectively the same inputs weighted differ-
ently (see eqn. (8)), means that the higher the level of
overlap in local model nets, the higher level of corre-
lation of any model’s inputs with its neighbours. The
level of overlap thus becomes a major factor in the
poor conditioning of the design matrix in local model
nets. Reducing the overlap, however, leads to non-
smooth transitions between models.  Figure 3(a)
shows the increase in condition number with increas-
ing numbers of local models, when the relative over-
lap remains identical. To better understand the role
of overlap, Figure 3(b) shows the increase in condi-
tion number in the example used earlier with a fixed
number of local models (seven) when the overlap is
increased.

‘Coniion number for increasing overlap factor

0 1

5 E
Number o Local Models

(b) Varying Overlap. The
x-axis shows the scaling
factor for the basis func-
tion width. 1 represents

(a) Constant relative over-
lap, with uniform basis
functions evenly spaced,
o =|e1 — ezl

o =lc1 — ca.

Figure 3: Condition number increasing with number of local
models or with overlap.

The major effect of local learning on the cost func-
tional is to remove the interaction of neighbouring
local models’ parameters from the design matrix.

3.3 A statistical view on ill-conditioning

In this section we investigate from a statistical per-
spective the observed ill-conditioning using global
learning, and show that any ill-conditioning is ex-
pected to be reduced with local learning.

In order to make the following analysis simple and
transparent, we assume that the inputs (k) in the



design matrix ® are deterministic®. With global
learning (the least squares estimator), we have (e.g.

(Ljung, 1987))
Ebrs =6 + (87®)"*a" B (18)

E(éLS — EéLS)(éLS — EéLS)T = ((I>T(I>)_10'2 (19)

where F is expectation with respect to the probabil-
ity distribution of €. Moreover, we get the following
bias/variance decomposition of the expected squared
prediction error (e.g. (Hastie and Tibshirani, 1990))

PSErs = %E (Y - <I>5L5)T (Y - (I)éLS)

1 X X
= BV - ®FEbrs)" (Y — ®EfLs)

+%¢E <éLS - EéLS) (éLS - EéLS)T o7

1
= ﬁBT(I —®(®"®)"'0")B 4 ¢*

1 . I .
+Ntr (E(QLS — EHLS)(QLS — EQLS)T(I)T(P)

Substituting (19) into the last term, and observing
that the trace of the resulting identity matrix sim-
ply reduces to its dimension, p = dim(#), it follows
that with the least squares estimator we get, e.g.

(Hastie and Tibshirani, 1990)
PSErs = B*+0?4o’p/N. (20)
The bias term
g = %tr (I — ®(®"®)"'o")BBT)

is the average bias, while o?p/N is the effect of the
parameter estimator on the prediction. Hence, we
have the well known bias/variance trade-off, which
is essentially that the model variance can be reduced
at the cost of increased bias by reducing the degrees
of freedom in the model.

It is clear from (19) that an ill-conditioned matrix
®T® will lead to a large variability in some direc-
tions in the parameter space”. However, whether
the matrix ®7 ® is ill-conditioned or not has no im-
pact on the predicted squared error (PSE), cf. (20)
where only the number of parameters relative to the

number of training samples p/N is of importance®.

SNotice that qualitatively similar results also hold with a
random design matrix, although the analysis is considerably
more complicated.

"The condition of the ®7 & is in general important for the
robustness of the learning process. The condition number of a
square matrix A is defined to be the ratio between its largest
and smalles singular values. The larger the condition number,
the larger the effect of slight changes in the matrix A on the
solution of the pseudoinverse A7. As the weights are depen-
dent on A%, a slight change in data would lead to different
weights, so generalisation is likely to be poor.

8Notice that when the inputs 1 are viewed as stochastic
variables, the condition of ®7® may have some effect on the

PSE.

It also follows from (20) that the amount of overlap
does not affect the variance part of the PSE, while
it does greatly affect the variance of the parameter
estimate.

3.4 Regularising effect of local learning

The classic regularisation method as defined in regu-
larisation theory (Tikhonov and Arsenin, 1977) is to
extend the standard quadratic error criterion to be-
come a cost-complexity operator, including a non-
negative penalty functional which includes a pri-
ortinformation such as smoothness which makes the
learning problem better conditioned®. Local learning
is an alternative method that can be applied to elim-
inate, or at least strongly reduce the ill-conditioning
and oscillating local model phenomena that may be
caused by the reasons mentioned above. To illus-
trate the effect of local learning we observe that

Ebrrs = 0 40Lrs (21)
where the bias is defined by
(@TQ191)"'®1Q1Brrs,

frrs =

(@/TI;MQTLM@TLM)_1@7’LMQTLMBLLS,TLM
(22)
and Brrs,; is defined as

Brrsi =B+ (Qi — I)®;607 + Zqu)jQJ** (23)
it

Notice that the bias may tend to be larger with local
learning than with global learning. To understand
the effect of local learning on the variance, we exam-
ine the change in effective degrees of freedom in the
model. Notice that

nm
v = ZQz’q’igLLs,i = SY
i=1
where the smoothing matrix S is defined by

s = i@@i@?@ﬂ’ﬁ_lq’?@i

i=1

It is straightforward to show that,
(Hastie and Tibshirani, 1990)

PSErrs = B2 +0”+o’p/N (24)

where the average bias is redefined by

22 _ 1 T
pe = Ntr((I—S)(I—S)BB)

9Many neural network learning algorithms have implicitly
(often unplanned!) had a regularisation effect, in that they
do not find the ‘optimal’ (in the least squares sense) solution
to the posed optimisation problem. Methods such as weight
decay, stopping learning early (Sjoberg and Ljung, 1992), net-
work pruning, learning with noise (Bishop, 1994) are all ex-
amples of ad hoc attempts to produce a regularisation effect.



and the degrees of freedom are defined by
p = tr(SS)
A
= Ztr ((07Q:®:) 107 QiQi®i(®7 Qi®:) ' 87 Q:Q: ;)
=1

A

= Ztr((@?Q,“bi)_1Q?Qg@i(‘b?Qi‘bi)_l@?Qi‘bé
=1
—(®7Qi®:) ' O] Di®i (3] Qi®:) ' 0] QiQi%:
- (87Qi®:) 7107 Q:0:(®] Q)" 0] D;®;)

At
=p— Yt ((@7Qi®:) 10T Didi(07 Q%) 07 QiQ:;
=1
+ (@] Qi®) '] Dia;)

where D; = Q; — @Q;@;, which will always be positive
semi-definite, and p < p. The degrees of freedom in
the model are therefore less with local learning than
with global learning. This gives a reduced variance
o2p/N, at the possible cost of an increased bias Bz’
compared to global learning.

In the case when the overlap becomes very small,
it is clear that the pg(-) functions approach step-
functions, and @;Q; — @;. Hence, it follows from
the expression for p that p — p as the overlap pa-
rameter o; goes to zero. This can also be seen in-
tuitively, since there will be no interactions between
the parameters of the different local models. In the
opposite case, when the overlap parameter o; ap-
proaches infinity, it is easily seen that all the local
models are given the same weight uniformly over the
input domain, i.e. @Q; — I/N, where I is the N x N
identity matrix. We see from the equation for p that
p — p/N = 1+ ny. Again, this can be seen intu-
itively from the fact that the uniform weighting of
the naq local models effectively corresponds to only
one local model that covers the whole range.

4 Interaction between model
structure & learning method

In summary, the simple analysis in the previous sec-
tion has shown that local learning has a regularizing
effect, characterised by

1. A reduction of the degrees of freedom in the
model structure.

2. Reduced variance at the cost of increased bias
in the parameter estimate, compare (18) with

(21).

3. Reduced variance at the cost of increased bias
in the squared prediction error PSE, compare

(20) with (24).

With some model structures there i1s a trade-off
between smoothly changing local model behaviour,
and small expected squared prediction error (PSE).

These model structures are typically characterised
by over-parameterisation or fundamental structural
mismatch. If the cause of the ill-conditioning in a
trained local model net is due to overparameterisa-
tion, local learning has the beneficial effect of reduc-
ing the variance and therefore minimising the PSE
(generalisation error), since the degrees of freedom
in the model structure have effectively been reduced
by the implicit regularisation in local learning. If|
on the other hand, there is a fundamental structural
mismatch between the model and the underlying pro-
cess, the use of local learning will lead to extra bias
being introduced and if this is more significant than
the reduction in variance, then local learning will
lead to an increase in PSE. However, local learning
willreduce the variability of the parameter estimate,
avoiding the oscillations and leading to more trans-
parent local models.

5 Conclusions

Global parameter optimisation methods were found
to be computationally expensive, and non-robust
with over-parameterised or poorly structured local
model networks, leading to non-transparent local
models with sometimes poor prediction performance.
On the other hand, it should be stressed that when
the model structure is well chosen, global learning
is more accurate. Local learning is very relevant for
the practical application of the architecture, as the
development of a model structure based on train-
ing data will often lead to non-optimal structures,
and it is important that the parameter estimation
methods should robust with regards to poor model
strucure. The trade-off is therefore between the use
of the less variable local learning with a necessarily
extended model structure, and a more powerful, ex-
pensive and variable global learning method, with a
reduced model structure.

Analysis of local learning showed that it can be seen
as a simple form of regularisation, meaning that the
local methods often produce models with higher ac-
curacy, and greater robustness than global learning
methods. The level of overlap between local models
was found to play a major role in the ill-conditioning
of the learning problem, as it is the parameter that
determines the amount of regularization. The analy-
sis of individual local models as local approximations
to the underlying process is in general only valid with
local learning.

The analysis of the computational complexity shows
that local learning is faster than global learning,
where the effort increases cubically with number of
models. Even ignoring the speed-up gained by the
reduced number of points (as N; < N), the local
variant will be faster. The effort for local learning
also increases linearly in naq as opposed to the cube
of (nam(ny + 1)), which makes local learning more



suitable for larger problems.
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