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Abstract: Nonparametric Gaussian Process prior models, taken from Bayesian statistics
methodology are used to implement a nonlinear adaptive control law. The expected value of a
quadratic cost function is minimised, without ignoring the variance of the model predictions.
This leads to implicit regularisation of the control signal (caution), and excitation of the
system. The controller has dual features, since it is both tracking a reference signal and
learning a model of the system from observed responses. The general method and its main
features are illustrated on a simulation example. Copyrightc2002 IFAC.
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1. INTRODUCTION

Many authors have proposed the use of non-linear
models as a base to build nonlinear adaptive con-
trollers. In many applications, however, these non-
linearities are not known, and non-linear parameter-
ision must be used instead. A popular choice has
been the use of artificial neural networks for esti-
mating the nonlinearities of the system (Narendra
and Parthasarathy, 1990; Liang and ElMargahy, 1994;
Chen and Khalil, 1995; Bittanti and Piroddi, 1997).
All these works have adopted for controller design,
the certainty equivalence principle, where the model
is used in the control law, as if it were the true sys-
tem. In order to improve the performance of nonlinear
adaptive controllers based on a nonlinear models, the
accuracy of the model predictions should also be taken
into account.

Most engineering applications are still based on para-
metric models, where the functional form is fully de-
scribed by a finite number of parameters, often a linear
function. Even in the cases where flexible paramet-
ric models are used, such as neural networks, spline-

based models, multiple models etc, the uncertainty is
usually expressed as uncertainty of parameters (even
though the parameters often have no physical interpre-
tation), and do not take into account uncertainty about
model structure, or distance of current prediction point
from training data used to estimate parameters. This
paper describes an approach based on Gaussian pro-
cess priors, as an example of a non-parametric model
with useful analytic properties. These allow us to an-
alytically obtain a control law which perfectly min-
imises the expected value of a quadratic cost func-
tion, which does not disregard the variance of the
model prediction as an element to be minimised. This
leads naturally, and automatically to a suitable com-
bination of regularisingcaution in control behaviour
in following the reference trajectory, and excitation
of control effort, depending on model accuracy. The
above ideas are closely related to the work done on
dual adaptive control, where the main effort has been
concentrated on the analysis and design of adaptive
controllers based on the use of the uncertainty asso-
ciated to parameters of models with fixed structure
(Wittenmark, 1995; Filatov and Unbehauen, 2000).



2. NON-PARAMETRIC MODELS AND
UNCERTAINTY PREDICTION

Parametric models commonly used in control contexts
assume that the system’s functional form can be de-
scribed by a finite set of parameters. Non-parametric
models (called ‘smoothing’ in some frameworks) do
not constrain the model to a pre-specified functional
form, and do not project the observed data down to a
finite parameterisation. The weaker prior assumptions
and flexible form typically applied in a non-parametric
model make the approach well-suited for initial data
analysis and exploration.

A significant advantage when modelling nonlinear dy-
namic systems is that nonparametric approaches retain
the available data and perform inference conditional
on the current state and local data. This is advanta-
geous in off-equilibrium regions, since normally in
these regions the amount of data available for iden-
tification is much smaller than that available close
to equilibrium conditions. The uncertainty of model
predictions can be made dependent on local data den-
sity, and the local model complexity automatically
related to the amount of available data (more complex
models need more evidence to make them likely).
Both aspects are very useful when modelling sparsely-
populated transient regimes in dynamic systems, and
will have significant effects on control behaviour.

3. GAUSSIAN PROCESS PRIORS

An example of the use of a flexible non-parametric
model with uncertainty predictions is aGaussian Pro-
cess prior, introduced in (O’Hagan, 1978) and re-
cently reviewed in (Williams, 1998). Use of GPs in a
control systems context is discussed in (Murray-Smith
et al., 1999; Leithet al., 2000). A variation which can
include ARMA noise models is described in (Murray-
Smith and Girard, 2001).

In the following, the full matrix of state and control
input vectors is denoted by�, and the vector of output
points isy. The discrete data of the regression model
are�k = [x(t);u(t)] andyk = y(t). In the example
used in this paper,x(t) = [~y(t�1); : : : ; ~y(t�n)], and
u(t) = [u(t � 1); : : : ; u(t �m)]. The givenN1 data
pairs used for identification are stacked in matrices
�1;y1 and theN2 data pairs used for prediction are
�2;y2. Instead of parameterisingy(t) = f(�(t)) as a
parametric model, we can place a prior directly on the
space of functions wheref is assumed to belong. A
Gaussian process represents the simplest form of prior
over functions – we assume that anyp points have
a p-dimensional multivariate Normal distribution. We
will assume zero mean, so for the case with partitioned
datay1 andy2 we will have the multivariate Normal
distribution (we will assume zero mean),�

y1
y2

�
� N (0;�) ; � =

�
�1 �12

�21 �2

�
: (1)

where� is the full covariance matrix for the training
inputs �1, and where�21 = �T

12 for the cross-
covariance between�1 and�2. Like the Gaussian
distribution, the Gaussian Process is fully specified by
a mean� and its covariance function. The covariance
functionC(�i; �j) expresses the expected covariance
betweenyi andyj – we can therefore infery2’s from
constant given�1;y1’s rather than building explicit
parametric models.

As in the multinormal case, we can divide the joint
probability into a marginal Gaussian process and
a conditional Gaussian process. The marginal term
gives us the likelihood of the training data,
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The conditional part of the model, which best relates
to a traditional regression model is therefore the Gaus-
sian process, which gives us the output posterior den-
sity function conditional on the training data�1;y1
and the test points�2,

P (y2j�1;y1;�2) =
P (y2;y1)

P (y1)

=
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where, as in the straightforward multinormal case
described earlier,

�2:1 =�T
12�

�1
1 y1 (3)

�2:1 =�2 ��T
12�

�1
1 �21; (4)

so we can usey(�2) = �21 as the expected model
output, with a variance of�(�2) = �21.

3.1 The covariance function

The multivariate normal assumption may seem re-
strictive, but we can actually model a wide range of
functions, depending on the choice of covariance func-
tion. The model’s prior over possible functions can be
adapted to a given application by altering the structure
or parameters of the covariance function. The choice
of function is only constrained in that it must always
generate a non-negative definite covariance matrix for
any inputs�, so we can represent a spectrum of sys-
tems from very nonlinear models, to standard linear
models using the same framework. The covariance
function will also often be viewed as being the combi-
nation of a covariance function due to the underlying
modelCm and one due to measurement noiseCn. The
entries of this matrix are then:

�1ij = Cm(�1i ;�1j ; �) + Cn(�1i ;�1j ; �)(5)

whereCn() could be�ijN (�1; �), which would be
adding a noise modelN to the diagonal entries of�1.



We discuss covariance functions for correlated noise
models in (Murray-Smith and Girard, 2001).

In this paper, we use a straightforward covariance
function,

C(xi; xj ; �) = v0�(jxi � xj j; l) +

pX
k=1

akxikxjk + a0;

so that the parameter vector� = [v0; l1;::p; a0]
T .

�(d; l) is a distance measure, which should be one
at d = 0 and which should be a monotonically
decreasing function ofd. The one used here was

�(jxi � xj j; l) = e
� 1

2

P
p

k=1
lk(xik�xjk)

2

: (6)

Thelk ’s determine how quickly the function varies in
dimensionk. This estimates the relative smoothness
of different input dimensions, and can therefore be
viewed as an automatic relevance detection (ARD)
tool, which helps weight the importance of different
input dimensions. Other bases which include a nonlin-
ear transformation ofx, like the RBF neural networks
used in (Fabri and Kadirkamanathan, 1998), could be
put into this framework. The parameter vector� =
[v0; l1;::p; a0;:::p]

T can be adapted to maximise the
likelihood using standard gradient-based optimisation
algorithms. The prior associated with this covariance
function states that outputs associated with�’s closer
together should have higher covariance than points
further apart.

3.2 Nonlinear regression example

As an illustrative example, we use a simple one-
dimensional nonlinear function

y = sin(10�x sin(x� 0:5)3) (7)

corrupted with zero mean Gaussian noise, with stan-
dard deviation of0:05. To show how well the system
copes with small amounts of data only 30 points are
used, which are sampled uniformly inx 2 [0; 1].
In this range the function has significantly varying
derivatives. An interesting aspect of the Gaussian pro-
cess is its ability to produce good estimates of predic-
tion variance. Figure 1 shows the mean and2� con-
tours fory givenx. Note how the2� contours change
over the input-space depending on the proximity of
training data.

4. DERIVATION OF CONTROL LAW

The objective of this paper is to control a multi-input,
single-output, affine nonlinear system of the form,

y(t+ 1) = f(x(t)) + g(x(t))u(t) + e(t+ 1)(8)

where x(t) is the state vector at timet, which in
this paper will be defined asx(t) = [y(t); : : : ; y(t �
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Fig. 1. Modelling a nonlinear function using a Gaus-
sian Process prior. Model mean and2� contours,
with target function and training data

n); u(t � 1); : : : ; u(t � m)], y(t + 1) the output,
u(t) the current control vector,f and g are smooth
nonlinear functions, andg is bounded away from
zero. In addition, it is also assumed that the system
is minimum phase, as defined in (Chen and Khalil,
1995). The noise terme(t) is assumed zero mean
Gaussian, but with unknown variance�2.

The cost function proposed is the mean squared error
from a bounded reference signalyd(t), with a penalty
term� on the control effort:

J =Ef(yd(t+ 1)� y(t+ 1))2g+ �u(t)2: (9)

Using the fact that Varfyg = Efy2g � �2y, where
�y = Efyg, the cost function can be written as:

J = (yd(t+ 1)�Efy(t+ 1)g)2 +

Varfy(t+ 1)g+ �u(t)2:

Note that we have not ‘added’ the model uncertainty
term, Varfy(t + 1)g, to the classical quadratic cost
function – most conventional work has ignored it, or
have added extra terms to the cost function,or have
pursued other sub-optimal solutions (Wittenmark,
1995; Filatov and Unbehauen, 2000).

If we now wish to find the optimalu(t), we need the
derivative ofJ ,

@J

@u(t)
=�2 (yd(t+ 1)� �y)

@�y

@u(t)
+

@Varfy(t+ 1)g

@u(t)
+ 2�u(t): (10)

With most models, estimation of Varfy(t + 1)g, or
@Varfy(t+1)g

@u(t) would be difficult, but with the Gaussian
process prior (assuming smooth, differentiable covari-
ance functions – see (O’Hagan, 1992)) the following
straightforward analytic solutions can be obtained:
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4.1 Example: linear in parameters GP

As an introductory example, if we have a GP to
represent a linear model, for a target system of the
form

y(t+ 1)=w1x(t) + w2u(t) + e(t+ 1)

= [w1w2]�
T (t) + e(t+ 1)

where�1 = �nI + �1�w�
T
1 , and�21 = ��w�1,

where in this case we use the simple linear basis
�(t) =

�
x(t) u(t)

�
, and�w is a diagonal matrix with

the vectorw2 as elements

�y = ��w�1�
�1
1 y = �Tb =

�
x(t) u(t)

� � b1
b2

�

Varfyg= �n + ��w�
T � ��w�

T
1 �

�1
1 �1�w�

T ;

= �V�T (11)

where,

b=�w�
T��1

1 y

V=

�
v11 v12
v21 v22

�
= �w ��w�

T
1 �

�1
1 �1�w

for notational convenience.v21 = v12 (SISO).

@Varfy(t+ 1)g

@u(t)
= x(t)v12 + u(t)v22

@J

@u(t)
=�2(

�
yd(t+ 1)�

�
x(t) u(t)

�
b
�
bT2

+x(t)v12 + u(t)v22 + �u(t))

At @J
@u(t) = 0,

u(t) = ((yd(t+ 1)� x(t)b1)b
T
2 + x(t)v12)

(b2b
T
2 + v22 + �)�1 (12)

To understand the effect of the variance term in the
cost function on the behaviour of the control law we
will create two variables� = x(t)v12, and� = v22.
� is independent of the current�(t); y(t); yd(t + 1).
Note that the� term makes the use of a regularising
constant� redundant in many applications. Only when
there is no model uncertainty will� = 0. In the
experiments in this paper� = 0.

u = ((yd(t+ 1)� x(t)b1)b
T
2 + �)(b2b

T
2 + � + �)�1

After u(t) has been calculated, applied, and the output
observed, we add the informationx(t); u(t); y(t + 1)

to the training set, and the new�1 increases in size to
(N1 + 1)� (N1 + 1). Obviously, this naive approach
will only work for relatively small data sets, and for a
more general solution, expected utility based selection
of data for use in an active training set will be used.

4.2 Gaussian Process, nonlinear inx

If to model systems of the form,

y(t+ 1) = f(x(t)) + wu(t) + e(t+ 1)

we use a covariance function which is the sum of the
linear one used above, and one nonlinear in the state
x(t), but not in control inputu(t). I.e. C(�i; �j) =
Cnl(xi; xj) + Clin(ui; uj), so�1 = N1 + L1, where
L1 = U1�wU

T
1 is the covariance matrix ofClin for all

u in the training set, andN1 is the covariance matrix
of Cnl for all x in the training set. The variance of the
output is:

Varfy(t + 1)g = N2 + L2 � (N21 + L21)�
�1

1
(N12 + L12)

= u(t)Vu(t)T � 2N21�
�1

1
U1�wu(t)

T

+N2 �N21�
�1

1
N12

= u(t)Vu(t)T � 2�u(t) +N2 �N21�
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1
N12

@J

@u(t)
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yd(t + 1) �N21�
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1
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�
bT

��+ u(t)V + �u(t));

where� = N21�
�1
1 U1�w and

V = �w � �wU
T
1 ��1

1 U1�w. Taking the partial
derivative:

@J

@u(t)
= 2

�
yd(t+ 1)�N21�

�1
1 y1 � u(t)b

�
bT ;

��+ u(t)� + �u(t));

the constant� and the vectorb are defined as� = V,
andb = @L21

@u(t)�
�1
1 y = �wU

T
1 ��1

1 y. At @J
@u(t) = 0,

u(t) = ((yd(t+ 1)�N21�
�1
1 y1)b

T � �)

(bbT + � + �)�1:

4.3 Affine inu, for givenx

The above was for a linear weighting of the control
y(t + 1) = f(x(t)) + wu(t) with the control input
affecting the output through the covariance function
Clin(ui; uj) which is thenU�wU

T . In the case of
a weighting dependent onx, y(t + 1) = f(x(t)) +
g(x(t))u(t), we can make the covariance contribu-
tion from the control inputs an affine function where
the gradient will wander with statex(t). I.e. �w =
C(xi; xj), so

Caff (�i; �j) = uiCu(xi; xj)uj (13)

The covariance functionCu can be parameterised in
any suitable way. Here we use the same structure



as inCnl above but we use different values of the
hyperparameters to those used inCnl.

5. SIMULATION RESULTS

To illustrate the feasibility of the approach we used it
to control a simple system based on noisy observed re-
sponses. We start off with onlytwo training points, and
add subsequent data to the model during operation.
The model has had no prior adaptation to the system
before the experiment, and the covariance functions
chosen are very general. Model hyperparameters are
adapted after each iteration using a conjugate descent
algorithm. The priority here is to show that the GP
models are capable of adaptive nonlinear control, even
when no priors have been placed on their hyperpa-
rameters. A more complete Bayesian approach would
be to use the full prior structure in O’Hagan (1978),
which would also lead to increased robustness and
higher performance in the early stages of adaptation.
Let the non-linear system be:

y(t+ 1)= f(x(t)) + g(x(t))u(t) + e(t+ 1)

wherex = y(t), f(x) = sin(y(t)) + cos(3y(t)) and
g(x) = 2, subject to noise with variance�2 = 0:001
(Fabri and Kadirkamanathan, 1998).

Note how in Figure 2� is large in the early stages of
learning, but decreasing with the decrease in variance,
showing how the regularising effect enforces caution
in the face of model uncertainty, but reduces caution
as the model accuracy increases.� is also larger in the
early stages of learning, essentially adding an excita-
tory component. We expect� will play a more sig-
nificant role when the covariance of the control signal
depends on the state. Figure 3 shows the development
in the mean mapping fromx(t); u(t) to y(t+1) as the
system acquires data.

6. CONCLUSIONS

This work has presented a novel adaptive controller
based on non-parametric models. The control design
is based on the expected value of a quadratic cost
function, leading to a controller that not only will
minimise the squared difference between the reference
signal and the expected value of the output, but will
also try to minimise the variance of the output. This
leads to a robust control action during adaptation.
Simulation results, considering linear and non-linear
systems, demonstrate the interesting characteristics of
this type of adaptive control algorithm.

GP’s have been successfully adopted from their statis-
tics origins by the neural network community (Williams,
1998). This paper is intended to bring the GP approach
to the attention of the control community, and to show
that the basic approach is a competitive approach for
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Fig. 2. Simulation results showing modelling accu-
racy, control signals, tracking behaviour and lev-
els of� and� at each stage.

modelling and control of nonlinear dynamic systems,
even when little attempt has been made to analyse
the designer’s prior knowledge of the system – there
is much more that can be taken from the Bayesian
approach to use in the dual control and nonlinear
control areas, e.g. use of the framework suggested in
(O’Hagan, 1978) for optimal experiment design with
Gaussian process priors could improve exploration.

The Gaussian Process approach to regression is simple
and elegant, and can model nonlinear problems in a
probabilistic framework. The disadvantage is its com-
putational complexity, as estimating the mean�21 =
ŷ(�) requires a matrix inversion of theN1 � N1 co-
variance matrix, which becomes problematic for iden-
tification data whereN1 > 1000. In transient regimes,
however, we have very few data points and we wish
to make robust estimates of model behaviour, which
are now possible. The robust inference of the GP ap-
proach in sparsely populated spaces makes it partic-
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Fig. 3. Mean surface (mesh)y(t+ 1) = f(x(t); u(t))
over the spacex � u, with �(x(t); u(t)) uncer-
tainty surfaces.

ularly promising in multivariable and high-order sys-
tems. Further work is underway to address the control
of multivariable systems, nonminimum-phase systems
and implementation efficiency issues.
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