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1. INTRODUCTION

Gaussian process priors provide a flexible, nonpara-
metric approach to modelling nonlinear systems. In
Murray-Smith and Sbarbaro (2002), the use of Gaus-
sian process priors allowed us to analytically obtain
a control law which perfectly minimises the expected
value of a quadratic cost function, without disregard-
ing the variance of the model prediction as an element
to be minimised. This led naturally and automatically
to a regularisingcaution in control behaviour in fol-
lowing the reference trajectory, depending on model
accuracy close to the current state. This paper expands
on the previous work by making the cost function
more flexible, using our recent results on inference
with uncertain states Girard et al. (2003) and allowing
control based on multistep predictions.

1.1 Background

Several authors have proposed the use of non-linear
models as a base to build nonlinear adaptive con-
trollers. Agarwal and Seborg (1987), for instance,
have proposed the use of known nonlinearities, cap-
turing the main characteristic of the process, to design
a Generalized Minimum Variance type of self-tuning
controller. In many applications, however, these non-
linearities are not known, and non-linear parameter-
ision must be used instead. A popular choice has
been the use of Artificial Neural Networks for es-
timating the nonlinearities of the system Narendra
and Parthasarathy (1990); Bittanti and Piroddi (1997).
These researchers adopted thecertainty equivalence
principle for designing the controllers, where the
model is used in the control law as if it were the true
system.



In order to improve the performance of nonlinear
adaptive controllers based on nonlinear models, the
accuracy of the model predictions should also be taken
into account. A common approach to consider the
uncertainty in the parameters, is to add an extra term
in the cost function of a Minimum Variance con-
troller, which penalizes the uncertainty in the parame-
ters of the nonlinear approximation Fabri and Kadirka-
manathan (1998). Another similar approach, based on
the minimization of two separate cost functions, has
been proposed in Filatov et al. (1997). The first one
is used to improve the parameter estimation and the
second one to drive the system output to follow a given
reference signal. This approach is calledbicriterial
and it has also be extended to deal with nonlinear
systems Sbarbaro et al. (1998).

The above ideas are closely related to the work done
on dual adaptive control Fel’dbaum (1960), where the
main effort has been concentrated on the analysis and
design of adaptive controllers based on the use of
the uncertainty associated with parameters of models
with fixed structure. The dual control literature has
struggled with the challenges of numerical integration
over high-dimensional spaces. Most approaches to
dual control have pursued approximations which lead
to sub-optimal solutions Wittenmark (1995); Filatov
and Unbehauen (2000).

1.2 Model structure – parametric vs. nonparametric?

Most control engineering applications are still based
on parametric models, where the functional form is
fully described by a finite number of parameters, often
a linear function of the parameters. Even in the cases
where flexible parametric models are used, such as
neural networks, spline-based models, multiple mod-
els etc, the uncertainty is usually expressed as uncer-
tainty of parameters (even though the parameters often
have no physical interpretation), and do not take into
account uncertainty about model structure, or distance
of current prediction point from training data used to
estimate parameters.

Non-parametric models retain the available data and
perform inference conditional on the current state and
local data (called ‘smoothing’ in some frameworks).
As the data are used directly in prediction, unlike the
parametric methods more commonly used in control
contexts, non-parametric methods have advantages for
off-equilibrium regions, since normally in these re-
gions the amount of data available for identification is
much smaller than that available in steady state. The
uncertainty of model predictions can be made depen-
dent on local data density, and the model complexity
automatically related to the amount and distribution
of available data (more complex models need more
evidence to make them likely). Both aspects are very
useful in sparsely-populated transient regimes.

2. GAUSSIAN PROCESS PRIORS

In a Bayesian framework the model is based on a
prior distribution over the infinite-dimensional space
of functions. As illustrated in O’Hagan (1978), such
priors can be defined as Gaussian processes. These
models have attracted a great deal of interest recently
– see for example reviews such as Williams (1998).
? showed empirically that Gaussian processes were
extremely competitive with leading nonlinear identi-
fication methods on a range of benchmark examples.
The further advantage that they provide analytic pre-
dictions of model uncertainty makes them very inter-
esting for control applications. Use of GPs in a control
systems context is discussed in Murray-Smith et al.
(1999); Leith et al. (2000). Integration of prior infor-
mation in the form of state or control linearisations
is presented in Solak et al. (2003). A simulation of
Model Predictive Control with GPs is presented in
Kocijan et al. (2003).

In the following, letx andy be theN input and output
pairs used for identification andx∗, y∗ the pair used
for prediction. Instead of parameterisingyi = f(xi)
as a parametric model, we can place a prior directly on
the space of functions wheref is assumed to belong. A
Gaussian process represents the simplest form of prior
over functions – we assume that anyp points have ap-
dimensional multivariate Normal distribution. We will
assume zero mean, so for the case with partitioned
datay andy∗ we will have the multivariate Normal
distribution
[

y

y∗

]

∼ N (0,ΣF ) , ΣF =

[

Σ k(x∗)

k(x∗)T C(x∗,x∗)

]

.

(1)
where ΣF is the full covariance matrix. Like the
Gaussian distribution, the Gaussian Process is fully
specified by a mean and its covariance function, so
we denote the distributionGP (µ, C). The covariance
functionC(xi,xj) expresses the covariance between
yi andyj.

2.1 The covariance function

The model’s prior expectations can be adapted to a
given application by altering the covariance function.
In this paper, we use a straightforward covariance
function,

C(xi,xj ; Θ) = v0ρ(|xi − xj |, α),

so that the hyperparameter vector isΘ = [v0, α1,..p]
T

andp is the dimension of vectorx. The functionρ(d)
is a distance measure, which should be one atd =
0 and which should be a monotonically decreasing
function ofd. The one used here was

ρ(|xi − xj |, α) = e−
1
2

∑

p

k=1
αk(xik−xjk)2 . (2)

In most cases we will only have uncertain knowledge
of Θ. With unknown hyperparameters, we can use
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Fig. 1. Sampling from a Gaussian Process. Sample
realisations are drawn from the Gaussian process
prior (left hand figure), and then sample functions
are drawn from prior conditioned on three train-
ing points (right hand figure).

maximum likelihood methods, with standard gradient-
based optimisation tools to optimise the log-likelihood
by adapting the hyperparameters. The hyperparame-
ters are usually given a vague prior distribution, such
as a gamma prior Neal (1997). Each hyperparameter
of the covariance function can be given an indepen-
dent prior distribution. The use of Gamma priors does
not add significant complexity to the optimisation, and
if used appropriately makes the model behaviour more
robust with small training sets, leading to increased
robustness and higher performance in the early stages
of adaptation, but the relative advantage decreases
with the amount of initial data available, as would be
expected.

2.2 Prediction

As in the multinormal case, we can divide the joint
probability into a marginal Gaussian process and
a conditional Gaussian process. The marginal term
gives us the probability of the training data,

P (y|x) = (2π)−
N
2 |ΣΣΣ|−

1
2 e−

1
2yTΣΣΣ−1y. (3)

The conditional part of the model, which best re-
lates to a traditional regression model, is therefore the
Gaussian process which gives us the output posterior
density function conditional on the training datax, y
and the test pointsx∗.

We havep(y∗|x,y,x∗) = p(y∗,y)
p(y) , that is

p(y∗|x,y,x∗) =
1

(2π)
1
2 |σ2(x∗)|

1
2

e
− 1

2
(y∗

−µ(x∗))2

σ2(x∗)

where

µ(x∗) = k(x∗)TΣΣΣ−1
y (4)

σ2(x∗) = C(x∗,x∗) − k(x∗)TΣΣΣ−1
k(x∗), (5)

with ki(x∗) = C(x∗,xi). So we can useµ(x∗) as the
expected model output, with a variance ofσ2(x∗).

2.2.1. Prediction at a random input If we now as-
sume that the test inputx∗ has a Gaussian distribution,
x∗ ∼ N (µµµx∗ ,ΣΣΣx∗), the predictive distribution is now
obtained by integrating overx∗:

p(y∗|µµµx∗ ,ΣΣΣx∗) =

∫

p(y∗|x,y,x∗)p(x∗)dx∗,

wherep(y∗|x,y,x∗) is as specified by (4) and (5).

In Girard et al. (2002, 2003); Quinonero-Candela et al.
(2003), we suggest an analytical Gaussian approxima-
tion to solve this integral, computing only the mean
and variance ofp(y∗|µµµx∗ ,ΣΣΣx∗). Assuming a covari-
ance function such as (2), we arrive at

m(µµµx∗ ,ΣΣΣx∗) = v0q
Tβββ (6)

v(µµµx∗ ,ΣΣΣx∗) = C(µµµx∗ ,µµµx∗) + v2
0Tr

[

(ββT −ΣΣΣ−1)Q
]

−m(µµµx∗ ,ΣΣΣx∗)2 (7)

whereβββ = ΣΣΣ−1
y, W = diag[α1, . . . , αp], I is the

p × p identity matrix and

qi = |W−1ΣΣΣx∗+I|−
1
2 e−

1
2 (µµµ

x
∗−xi)

T (ΣΣΣ
x
∗+W)−1(µµµ

x
∗−xi)

Qij = |2W−1ΣΣΣx∗ + I|−
1
2 e−

1
2 (xi−xj)

T (2W)−1(xi−xj)

e−
1
2 (xb−µµµ

x
∗ )T ( 1

2W+ΣΣΣ
x
∗ )−1(xb−µµµ

x
∗ ),

wherexb = (xi + xj)/2 (see Girard et al. (2002,
2003); Quinonero-Candela et al. (2003) for the de-
tailed calculations).

Note that asΣΣΣx∗ tends to zero we havem(µµµx∗ ,ΣΣΣx∗) →
µ(µµµx∗) and v(µµµx∗ ,ΣΣΣx∗) → σ2(µµµx∗), as we would
expect.

3. DERIVATION OF CONTROL LAW

The objective of this paper is to control a multi-input,
single-output, nonlinear system of the form,

y(t + 1) = f(x(t), u(t)) + e(t + 1) (8)

where x(t) is the state vector at timet, which in
this paper will be defined asx(t) = [y(t), . . . , y(t −
n), u(t− 1), . . . , u(t−m), v1(t), . . . , vl(t)], y(t + 1)
the output,u(t) the current control vector,vi(t), i =
1, . . . , l are external known signals,f is a smooth
nonlinear function, bounded away from zero. For no-
tational simplicity we consider single control input
systems, but extending the presentation to vectoru(t)
is trivial. The noise terme(t) is assumed zero mean
Gaussian, with unknown varianceσ2.

The cost function proposed is:

J = E{(yd(t + 1) − y(t + 1))
2



whereyd(t) is a bounded reference signal.1

Using the fact that Var{y} = E{y2} − µ2
y, where

µy = E{y}, the cost function can be written as:

J = (yd(t + 1) − E{y(t + 1)})2 + Var{y(t + 1)}.

With most models, estimation of Var{y}, and (as we

shall see below)∂Var{y}
∂u(t) would be difficult, forcing

the use of certainty equivalence assumptions, adding
extra terms to the cost function,or pursuing other sub-
optimal solutions Wittenmark (1995); Filatov and Un-
behauen (2000). With the Gaussian process prior (as-
suming smooth, differentiable covariance functions –
see O’Hagan (1992)) straightforward analytic solu-
tions can be obtained.

3.1 Multistep optimisation

In Murray-Smith and Sbarbaro (2002) we presented
the one-step ahead version of the controller, but at
T = 1 we do not get any ‘probing’ or ‘active learning’
benefit from the one-step controller–it only minimises
the loss at the next time-step, and we limited ourselves
to non minimum-phase systems. We now wish to use
multistep optimisation. The cost function proposed is:

JT =
1

T

T
∑

k=1

E{(yd(t + k) − y(t + k))
2} (10)

3.1.1. Multistep prediction We use the framework
described in section 2.2.1 to propagate model predic-
tions and uncertainties as we predict ahead in time.
That is, we computeE{y(t + k)} and Var{y(t +
k)} using equations (6) and (7) respectively.2 This
enables us to incorporate the uncertainty about inter-
mediate estimateŝy(t+k−1), . . . ŷ(t+k−n), which
affects both the expected value, and its variance at
t + k. See Girard et al. (2002) for more details on
the application of the prediction at a Gaussian random
input to time-series iterativek-step ahead prediction.

3.1.2. Sensitivity equations for GPs Given the cost
function (10), and observations to timet, if we wish to
find the optimalu(t), we need the derivative ofJT ,

1 It is straightforward to generalise this to more practical
cost function, such asJ = E{(yd(t + 1) − y(t + 1))2} +
(R(q−1)u(t))2 , where the polynomialR(q−1) is defined as:

R(q−1) = r0 + r1q−1 + . . . + rnr q−nr (9)

and its coefficients can be used as tuning parameters.
2 Note that fork = 1, x

∗ will be composed ofknown lagged
outputs so thatΣΣΣx

∗ = 0 and we can use (4) and (5).

∂JT

∂u(j)
=

t+T
∑

k=j+1

∂Jk

∂u(j)
(11)

∂Jk

∂u(j)
=−2 (yd(k + 1) − µy(k + 1))

∂µy(k + 1)

∂u(j)

+
∂Var{y(k + 1)}

∂u(j)
(12)

where

∂µy(k + 1)

∂u(j)
=

∂µy(k + 1)

∂µy(k)

∂µy(k)

∂u(j)
+

∂µy(k + 1)

∂Var{y(k)}

∂Var{y(k)}

∂u(j)
(13)

∂Var{y(k + 1)}

∂u(j)
=

∂Var{y(k + 1)}

∂µy(k)

∂µy(k)

∂u(j)
+

∂Var{y(k + 1)}

∂Var{y(k)}

∂Var{y(k)}

∂u(j)
(14)

The calculation of these terms requires use of the
sensitivity equations for a change tou(j), i.e. the
derivatives of model predictions of mean and variance
from k = j, . . . , T . This is relatively straightforward
for GPs with differentiable covariance functions, with
hyperparameters fixed during theT -step prediction. In
other models the sensitivity of the variance term would
be much more difficult to estimate than in the GP case.

Given the derivative∂JT /∂u(t) we can use standard
algorithms to optimise the values ofu(t), . . . , u(t +
T − 1) to maximiseJT , i.e. we find

Jopt = min
u(t),...,u(t+T−1)

1

T

T
∑

k=1

E{(yd(t + k) − y(t + k))
2}

This can then be repeated in a step-wise fashion to
produce aT -step-ahead model predictive controller.
An obvious issue is the computational effort needed in
each iteration of the optimisation, because of the need
to recalculate the inverse of the covariance matrix of
the training data, with each new training point.3

At ∂JT

∂u(t) = 0, the resulting optimal control signal is
significantly affected by the derivative of the variance
of the model over the prediction horizon. If we had
not included the variance term in cost function (10),
or if we were in a region of the state-space where the
variance was zero, the optimal control law would be
different, and designers typically have to tune control
effort damping parameters. The regularisation inher-
ent to the GP approach make a control effort penalty
constant, or regulariser unnecessary in many applica-
tions.

3 An alternative to optimisation is to integrate over the variables of
interest, by performing numerical integration of the jointdensity
of future y and u using Monte Carlo techniques. Possibly the
simplest strategy is the Metropolis method, which may be slow due
to very small possible proposal widths. A more promising method is
Hybrid Monte Carlo (HMC) Duane et al. (1987); MacKay (1998),
which takes the derivative of the density into account and avoids
slow random walk behaviour. HMC would be easilly implemented
since all the required derivatives are readily available, although the
computational cost will still be significant.



4. SIMULATION

The example considers the following non-linear func-
tions:

y(t + 1) =
y(t)y(t − 1)y(t − 2)u(t − 1)(y(t − 2) − 1) + u(t)

1 + y(t − 1)2 + y(t − 2)2
,

where x =
[

y(t) y(t − 1) y(t − 2) u(t − 1)
]T

,
from Narendra and Parthasarathy (1990). The obser-
vation noise has a varianceσ2 = 0.001, and we
had 5 initial data points. We simulated a tracking
experiment, where the model had to follow the refer-
ence trajectory (blue), while learning the behaviour of
the system. We used a standard optimisation routine
(MATLAB’s fminsearch) to find the optimal control
values at each point, and did not use explicit sensitivity
equations to estimate the gradient. At each timestep,
afteru(t) has been calculated, applied, and the output
observed, we add the informationx(t), u(t), y(t + 1)
to the training set, and the newΣ1 increases in size to
N +1×N +1. We then optimise the hyperparameters
of the covariance function to further refine the model.
The results are shown in Figure 2.

In simulation, including the variance term in the cost
function led to more robust control and also led to a
reduction in tracking error over the sample indicated
in the figure, when compared to an identical model
which had ignored the variance term in the cost func-
tion (the certainty equivalence approach).

T -step ahead predictions tend to show more caution
for larger values ofT . When the model state moves to-
wards higher uncertainty regions (due to system com-
plexity, or lack of training data), the control signal will
be appropriately damped, and provides a smoother
control signal. This leads to poorer immediate tracking
performance, but greater robustness in the face of un-
certainty. The choice of an appropriate prediction hori-
zon T is obviously very important. A feature of the
predictions is that asT increases, the mean prediction
eventually tends towards zero (for a zero mean GP),
and the variance of the prediction will also saturate at
prior levels.

The hyperparameters in Figure 2(b) make few rapid
changes, seeming well-behaved during learning.

5. CONCLUSIONS

Gaussian process priors can provide a flexible, general
modelling tool for adaptive nonlinear control prob-
lems. The framework provides analytic estimates of
model uncertainty and of derivatives of both model
mean and uncertainty. In this paper we presented an
approximate method for propagation of uncertainty
for multistep predictions, which also allows you to cal-
culate an analytic derivative of the cost function with
respect to control actions. The experimental compar-
isons presented here used numerical optimisation over
the prediction horizon, and found that the inclusion
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of the variance estimate, derived from estimates of
propagated errors improve tracking performance, and
robustness.

As a consequence of this multistep predictive con-
troller, and the retention of the model variance in
the cost function, we automatically get appropriate
regularising behaviour(caution)which adapts to the
uncertainty local to the current state.
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