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ABSTRACT
We outline the role of forward and inverse modelling approaches in the design of systems to support
human–computer interaction. Causal, forward models tend to be easier to specify and simulate, but
the inverse problem is what typically needs to be solved in an HCI context.

Figure 1: Forward and inverse models in a
finger sensing task

INTRODUCTION
Interactive systems must be able to sense and interpret human actions to infer their intentions.
HCI research continually explores novel sensors for novel forms of interaction, but lacks a coherent,
consistent framework for characterising this process with incrementally improving precision for
different sensors and different human behaviours. We argue that for the field to make consistent
incremental progress, we need a more general, formal framework for characterisation of the pathway
from human intent to sensor state. This pathway can include formal, computational models of human
elements such as cognition and physiological processes, as well as purely technical elements such as
the characterisation of the physical processes of the sensor, and eventually the forward model could
include the anticipated impact of the feedback from the interface on the forward process.

Forward models and inverse problems in HCI
Scientific theories let us make predictions. If we have a complete mathematical model of a physical
system we can predict the outcome of measurements of states of that system. The forward problem
is this problem of predicting measurements. Solution of the inverse problem uses measurements to
infer hidden parameters that characterise the system or its inputs [18]. In many cases, scientists can
simulate a system better than they can practically observe it.
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The forward problem tends to have a unique solution, but the inverse problem does not.1 For1If our model parameters, structures or inputs
are uncertain, then we have a distribution of
solutions, but for each sample of the uncertain
variables we can generate a deterministic pre-
diction.

example, take something as simple as a nonlinear saturation effect in the forward model 2. We can
predict the forward values with precision, but there are infinitely many possible solutions to the
inverse problem in the saturated areas. This means that solution of inverse problems requires explicit
use of a priori information about the system, and careful consideration of uncertainty in the data.

Figure 2: A saturation effect is one poten-
tial cause of ill-posedness. Distinguished
world states (finger poses) are projected to
identical sensor states.

We propose a dual approach where we model both the forward and the inverse problems, and
fuse them consistently via a probabilistic framework. The core ideas is that there are two types of
uncertainty that pervades interaction: epistemic uncertainty where a lack of knowledge means we
unsure as to whether a model of the user, sensor or world is valid, and aleatoric uncertainty where
measurements are noisy and subject to random variation [14]. First-principles models are an attractive
way of approaching HCI problems but it is hard for simple, elegant models to represent messy human
behaviour. Data driven approaches have the advantage that they are precisely tailored to specific real
interactions, but struggle to generalise robustly, so we consider a construction which divides up the
problem of modelling interaction into two streams, forward and inverse.2

2 Forward, first-principles models of interac-
tion derived from physics, physiology and psy-
chology, where parameters are not fully known,
with epistemic uncertainty and unique solu-
tions, e.g. implementing an executable simu-
lation of what sensor vector we would observe
for a given finger pose.
Inverse, data-driven models of interaction,
learned from observed interaction with ma-
chine learning, with aleatoric uncertainty and
non-unique solutions, e.g. training a regression
model to predict pose from a touch sensor vec-
tor.

This splits the modelling task into two parts with complementary strengths, bringing generalisable,
testable simulation models into the forward construction and powerful machine learned predictive
models into the inverse construction. We show that this is both an intellectually appealing way of
partitioning the interaction problem, and concretely demonstrate that probabilistic fusion of forward
and inverse models leads to performance which exceeds either approach alone.

BACKGROUND
Forward/inverse models in HCI
How does this relate to the study of Human–Computer Interaction? Forward models of human or
sensor behaviour tend to be more straightforward to specify theoretically and to acquire empirical data
from their associated behaviour, and as described above, they more frequently have a unique mapping.
Interface designers, however, if they want the computer to be able to respond to the human behaviour,
need inverse models which can let them determine the intention behind the sensed observations.

Forward and inverse models can address different subproblems in interaction; some problems are
easy to model and simulate underpinned with strong scientific knowledge, and some are much more
easily formulated as a black-box learning problems that can be fed to machine learning algorithms.
Combining these approaches allows us to fall back when one approach fails. For example a sensor
might exceeds theoretically expected bound and not be well predicted by a forward model; or an
action may be sensed in a context that lies outside the space of training data used to implement a
classifier and be poorly inverted by a black box inverse model.
These inverse problems often have non-unique solutions, and are based on incomplete and noisy

observations. E.g., we can specify models of human physiology relating to movements of the arm and
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hand, and gradually improve their fidelity via theoretical insight, a range of experimental techniques
and high-fidelity sensors in carefully controlled lab settings. Advanced sensors like those used in
Brain Computer Interfaces explicitly include forward models of the skull to infer the brain state from
EEG sensors, but the same principle can be applied in all interactive systems. The challenge for the
interface designer is, however, to infer from some possibly cheap and low fidelity sensor information
which human intentions were associated with movements of their body, which led to the series of
sensor readings.

Similarly, on the engineering side, for a user-interface sensor input system we can often predict the
behaviour of the forward model of the system from knowledge of the technical specifications of the
series of components used. However, it is difficult to predict whether these will be sensitive enough to
be good enough for the interaction requirements, without either building the system and testing it,
or by finding inverse models which let us predict the expected accuracy of the resulting system, for
typical inputs. The ability to create such a model computationally, in advance of construction would
be a useful tool in the design stage of a project.
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Figure 3: A particle filter architecture
which uses a forwardmodel to propose hy-
pothesized hidden states, and reweights
using a machine-learned inverse model.

Inverse problems in human behaviour. Collaborative efforts to generate executable computational
models of human behaviour include [7, 10, 13]. Applications of such models in HCI include [2, 3, 15].
[11] introduced the use of computationally efficient Approximate Bayesian Computation (ABC)
approaches to solve inverse problems in HCI. Their approach did not specify an explicit forward model
a priori, but rather learned a forward model for human cognitive processes which would optimise a
plausible cost function.

EXAMPLE: 3D TOUCH INFERENCE TASK
As an example, imagine designing an interaction solution for a novel capacitive screen sensor. Progress
in design of capacitive screen technology has led to the ability to sense the user’s fingers up to several
centimetres above the screen. The ability to sense finger position and pose accurately a distance from
the device screen allows designers to create novel interaction styles, and researchers to better track,
analyse and understand human touch behaviour. However, the inference of position and pose is a
classic example of an ill-posed inverse problem, given only the readings from the two-dimensional
capacitive sensor pads, making the solutions inherently uncertain.
To infer finger pose and position away from the touch surface we need a) a sensing technology

which can detect the human hand at a distance from the screen and b) an inference mechanism which
can estimate the pose and position given the raw sensor readings. The sensor technologies involved
will rarely provide a simple reading which will return the position (x ,y, z) and pose (pitch, roll and
yaw – θ ,ϕ,ψ ). Inferring these values can be done with three general approaches.

(1) Bayesian analysis, integrating over mod-
els of conditional distributions.

(2) The creation of a complex nonlinear,
multivariable regression mapping.
This is an inverse model from a possibly
high-dimensional sensor-space X to the
original (x ,y, z,θ ,ϕ,ψ ) vector.

(3) The creation of a causal forward
model from (x ,y, z,θ ,ψ ) to image space
X , which can then be differentiated to
find the values of (x ,y, z,θ ,ψ ) which
minimise the difference between the ob-
served sensor readings X and the in-
ferred readings X̂ .
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FORWARD & BACKWARD COMBINATIONS
One approach to combine the forward (‘causal’) and inverse (or ‘regression’) modelling approaches is
via the use of the regression model to create an initial condition for the optimisation algorithm or a
particle filter approaches to refine. Particle filters use forward and inverse models, and have been used
in a range of computer vision [5] and HCI applications [4, 16]. A particle filter can perform stateful
tracking; i.e. track the inferred finger pose over time. The particle filter (or sequential Monte Carlo
filter) is a probabilistic predictor-corrector, which maintains an estimate of distribution over possible
finger poses P (yt) , yt = [xt ,yt , zt ,θt ,ϕt ] as a set of discrete samples. It updates this distribution by
weighting samples according to how close their expected sensor state would be to true observations
of the sensor X. Internal dynamics which model the potential evolution of inferred finger poses allow
the filter to predict likely future states when observations are noisy or incomplete. We use both
our forward model which predicts X̂ given y (to predict the sensor states we would expect from
an estimated internal state) and our inverse model which predicts ŷ from X in the filter. Figure 3
illustrates a particle filter architecture which naturally combines forward and inverse models.

NEXT STEPS IN INTEGRATING FORWARD AND INVERSE MODELS
Practical computational models
Often, scientific knowledge and models will be locked into legacy code or commercially confidential
software, such that the forward models are essentially black-box models which can be executed
to generate data, but cannot be conveniently interrogated internally. The availability of flexible
algorithmically differentiable models which can learn from data, such as those used in deep learning
environments such as Tensorflow, means that if we can stimulate the forward model sufficiently to be
able to machine learn a ‘clone’ of it, we also have an analytically differentiable model.3

3 Black-box models of complex simulations:
Flexible statistical models have been used to
create more efficient representations of compu-
tationally complex simulators [6, 12, 17]. This
requires initial simulation to generate training
data for a machine learning solution, which
can then run more rapidly than the original
data – it can be viewed as a ‘glorified lookup
table’ which performs inference between the
observations to avoid exponential explosions
of required storage. We can represent the
simulator in the form of a function y = f (x).
Each run of the simulator is defined to be
the process of producing one set of outputs y
for one particular input configuration x . We
assume that the simulator is deterministic,
that is, running the simulator for the same x
twice will yield the same y.

Transfer learning: In many machine
learning tasks it is possible to get a lot of
data for a closely related task. The forward
simulation approach has the advantage that
we can simulate the capacitance for an ideal
sensor without disturbances due to sensor
noise. This is potentially useful as part of the
representation learning process, as it can help
the forward model generate the appropriate
structures. Furthermore, we can simulate a
wide range of finger types, poses and positions,
but the simulated model will always be an
approximation of the real sensors.

Accelerated, differentiable and invertible simulation
Machine learningmodels can be used to create a computationally efficient, accelerated implementation
of the forward, or causal model implemented by e.g. an electrostatic simulation (or from physical
experiments) which is also algorithmically differentiable. This can then be used in real-time to infer the
most likely inputs, by performing gradient-based optimisation to minimise the distance between the
current sensed values and those of the model output. It also means that, as shown in Figure 4, we can
concatenate a series of simulation tools, ‘clone’ them with machine learning tools and then efficiently
differentiate the models for optimisation or control purposes This simulation pipeline for the sensor
hardware can be augmented with biophysical models of human movement, e.g. [3, 15].
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Further recent activity in the machine learning community has explored analytically invertible
deep neural networks [1, 8, 9], which have the potential to learn both forward and inverse models
simultaneously, in a differentiable structure. 44An advantage of the conversion of gen-

eral simulation code to a deep network run-
ning on a Tensorflow graph is the ease
with which we can analytically calculate
the model gradients – a simple call to
tf.gradients(loss, model.input) suffices.
This is useful, e.g. when inferring which inputs
might have caused an observed sensor vector.
Starting from a random initial guess, x0, and
adapting x ∝ ∂L

∂x , for our loss function L, we
can converge on a plausible input vector x .

Cognitive model Physiological/ 
kinematic model Sensor modelIntentional/Mental 

States Sensed Data

Forward, causal modelling

Inverse modelling, differentiation 
 and inference

ML cloned model ML cloned model ML cloned model

Figure 4: Concatenated differentiable models to solve forward and inverse problems in HCI contexts.

CONCLUSIONS
If the inverse problem for a particular task and interface combination is difficult to solve, it means
the interface is likely to become difficult to use because the system cannot reliably infer intention
from sensed data. We suggest to computationally design interfaces to make them easy to invert; such
that smooth, natural, predictable interactions on the part of a user correspond to efficient tours of
the information space, augmented with rich, human-centric feedback. We can design systems such
that tools that humans are good at controlling can generate intention signals that are easy to reliably
identify, and we can do so in simulation.

When designing novel systems it would be advantageous to be able to create a simulation pipeline
from which we can predict the performance of different physical sensor systems and the associated
algorithms for inference of intention from human movements. Furthermore, theoretical models and
physical observations can be combined with modern machine learning models to create accurate
differentiable and invertible models, simplifying the inference of intent from sensed signals.
Systematic application of forward and inverse models has the potential to turn the analysis and

design of input systems for human–computer interaction from an art into a science.
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