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ABSTRACT

We present a finger-tracking system for touch-based inter-
action which can track 3D finger angle in addition to posi-
tion, using low-resolution conventional capacitive sensors,
therefore compensating for the inaccuracy due to pose vari-
ation in conventional touch systems. Probabilistic inference
about the pose of the finger is carried out in real-time using
a particle filter; this results in an efficient and robust pose es-
timator which also gives appropriate uncertainty estimates.
We show empirically that tracking the full pose of the finger
results in greater accuracy in pointing tasks with small tar-
gets than competitive techniques. Our model can detect and
cope with different finger sizes and the use of either fingers
or thumbs, bringing a significant potential for improvement
in one-handed interaction with touch devices. In addition
to the gain in accuracy we also give examples of how this
technique could open up the space of novel interactions.
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INTRODUCTION

Touch sensing has rapidly become a major method of in-
teracting with computing devices, especially mobile phones.
However, a few minutes of use of even the most expensive
touch phones makes clear that there are problems with the
use of thumbs, as needed for single handed interaction [13],
and that even with fingers, users must adjust their tapping
behaviour to suit the constraints of the current sensor signal
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Figure 1. Yawing and pitching of the finger while the position of the

intended contact point remains unchanged.

processing technology. This is because the current devices’
sense of touch is impoverished compared to the quality of in-
formation that could be captured. Most capacitive touch de-
vices can measure one or more points of contact; but fingers
are not points floating in space. The pose of the finger en-
gaged in touching contains much salient information – from
static indications of grip (left hand or right hand? portrait
or landscape? thumb or index finger?) – to dynamic mo-
tions involving twisting or levering. Enhanced touch sensing
has been demonstrated elsewhere ([8, 20]), but such methods
rely on additional non-mobile (and quite complex) sensing.
In this paper we demonstrate rich pose detection using very
low-resolution capacitive sensors and sophisticated proba-
bilistic inference to extract every bit of information from the
sensors.

We extend the particle filtering work described in [16] to do
real-time tracking of finger angle – both pitch and yaw –
using a probabilistic model of the form of the finger as it ap-
pears to the sensor. Additionally, this model automatically
adapts to the small but significant variation in gross finger
shape among the population. The ability to infer these user-
and touch-specific variables in real time allows the system
to more accurately deduce the intended touch point. Exper-
iments in [8] demonstrated that varying pitch and yaw led
to consistent variation in sensed touch location for the same
intended touch location. By explicitly modelling these char-
acteristics, we demonstrate how it is possible to improve the
accuracy of pointing. These improvements open up the use
of smaller devices and denser control layouts, both as a result
of increased accuracy in determining intended touch points,
and because a range of new interaction techniques based on
finger angle detection can be implemented. This technique
works with multiple points of contact using small, coarse
sensor arrays.



The models in our system are fully probabilistic, and provide
distributions over finger parameters. When the sensing is in-
sufficient to reliably determine the position or orientation of
the finger, the distribution naturally represents the increasing
uncertainty. Applications using these methods can degrade
gracefully in a range of ways, from simply ignoring very
noisy inputs to gradually handing over autonomy to the sys-
tem as control quality decreases. This handover of control,
is referred to as the “H-metaphor” in [4], as a metaphor for
the relation between a horse and rider, and is explored in the
context of touch sensing in [16]. The availability of mean-
ingful uncertainty estimates is one of the major advantages
of this approach to touch interaction.

Current mobile touch technology exhibits reasonable accu-
racy in stationary settings with two-handed use. Performance
rapidly deteriorates when interacting one-handed or while
mobile. The ability to infer full finger pose with well-calibrated
uncertainty estimates offers potential improvements in such
scenarios. Improving the accuracy in tasks such as typing
on small onscreen keyboards whilst walking would substan-
tially improve the usability of many current mobile devices.

Literature

A number of papers have used sensing of finger positions
using a range of technologies to explore novel interaction
mechanisms. Rekimoto and colleagues’ Presense [14] sys-
tem used capacitive sensing to infer finger position above
a conventional keyboard, and explored its use for previews
and gestures. Alternatives to capacitive sensing in the liter-
ature include magnetic sensing [7], and vision systems [12].
[8] investigates the reliability of touch input using finger-
print scanners, and demonstrated consistent offsets ascrib-
able to variations in pitch, yaw and roll. [10] reviews single-
handed interaction. [11] describe problems with multitouch
gestures. [17] discusses techniques for one-handed data en-
try, and [6] expands on this. [18] shows how finger rolls
could be distinguished from slides, and provides a range of
interaction techniques. [1] discusses dual finger techniques
for precise selection, and their SimPress method used finger
rocking detection to activate certain interaction mechanisms.
Work on pen-based interaction, such as [5] is also relevant,
given the ready availability of proximity measures in many
pen input systems.

Particle filtering, the algorithm used in this work for prob-
abilistic tracking, is described extensively in the literature.
Particularly relevant and accessible is the work of Isard and
Blake [9], who used particle filters for visual tracking. The
technique is described more comprehensively in [15, 2].

THE MODEL

Key to our approach is the development of an explicit model
of a finger in contact with the sensor array. The model de-
scribes the finger position, the size of the contact area and the
finger’s pitch and yaw and we can infer each of these param-
eters in real time. This is made possible by the fact that ca-
pacitive proximity sensors (such as those shown in Figure 5)
detect parts of the finger that are not in physical contact with
the array – they detect the image of parts of the finger which
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Figure 2. The finger model. The finger is represented by a hinged
rectangle, here shown over a 6× 4 sensor array.

are not touching the sensors. With our relatively small sen-
sors, this gives a vertical range of approximately 15mm.

In our work, the finger is modelled as a hinged rectangular
surface. This can be seen in Figure 2. The model is de-
scribed by 5 parameters that we shall collectively describe
as θ. These five parameters correspond to x, y, w, θy, θp, as
shown in Figure 2. These are (respectively) the estimated in-
tended contact point, the finger width, the angle of yaw and
the angle of pitch. All of these parameters are inferred by
the system and in our experiments, the intended touch point
is taken as (x, y), the center of the w×w square. Because of
the size of the finger relative to the size of our hardware, we
assume that the rectangle is infinitely long although an addi-
tional parameter could be used. This model gives the system
the ability to infer a broad spectrum of different touch types
(i.e. left/right handed users through different yaws, differ-
ent finger sizes through different values of w, one- or two-
handed operation through combinations of all parameters).
It is possible to imagine more sophisticated models for a fin-
ger that would be suitable in this case – the model described
here is relatively crude. For example, one may wish to en-
code more of the physical constraints on finger positions by
modelling the jointed action of the finger. It is important to
note that the inference framework that we describe does not
preclude any such model and is certainly not unique to the
model we have chosen.

ORIENTATION TRACKING

Our implementation allows for real-time tracking of the fin-
ger pose [x, y, z, w, θy, θp] as touch is not a static process.
It seems reasonable to assume that if we knew the values
of θ, they would vary within a particular touch operation
(as the finger approaches the sensors and then leaves) and
across several touch operations (it is unlikely that a human
can perfectly reproduce a particular movement). In addition,
the characteristics of the touch (and therefore the values of
θ) vary depending on where the user is touching. As an ex-
ample, consider holding a touch-screen mobile phone in the
right hand and using the thumb of the same hand to touch
the top left of the screen and then the bottom right. The size
of the contact area (the skin in contact with the sensors) and
the thumb angle will be different in both cases. To further
complicate matters, different users will add an extra dimen-



sion of variability to the problem (as shown in [8]). The
parameters within θ obviously vary over time as the finger
pose varies, and so they must be inferred in real time from
the current state of the sensors.

Figure 3. Finger pose estimation, with the contact point and orientation

of the finger estimated in real-time.

Figure 3 shows a visualisation of the finger pose using our
filter implementation. The pose compared with the actual
and estimated sensor readings is shown in Figure 4. The
finger angle estimation has some non-linearity in the esti-
mated pitch angle due to the simplificiation of the finger into
a flat hinged surface, but still varies monotonically with ac-
tual pitch angle. The filter gives the full distribution over the
position and angles; as the finger is removed, the distribu-
tion expands as the sensing loses the ability to resolve the
finger accurately. The angle estimation loses some accuracy
towards the edge of the sensor array because there is insuffi-
cient coverage to distinguish different poses, but the increas-
ing variance of the filter distribution makes this clear. The
model is general enough to easily cope with multi-touch in-
teraction, simply by introducing additional parameters to es-
timate (although the physical size of the hardware platform
makes it hard to test multitouch beyond 2 contact points).
Figure 4(d), (e), (f) shows the system estimating the orienta-
tion and position of two fingers simultaneously.

The availability of these degrees of freedom has obvious po-
tential for designing new interfaces; effectively there is a
now a joystick everywhere on the touch surface. The orien-
tation estimation also directly improves the estimate of the
finger position, because the model is a better approximation
of the configuration of the the finger than orientation-less
models. We anticipate that we can also improve touch in-
teraction performance for dynamic gestures, such as distin-
guishing taps (which inherently involve some fingertip mo-
tion, which can be falsely interpreted as a dragging motions).
Thus, the conventional 2D tracking accuracy should be im-
proved by jointly tracking all the parameters of the model.

Inference

To infer the finger pose from the sensor values, we need a
theoretical sensor model: what will the sensor “see” when
the finger is in a given pose. In other words, a model that
will allow us to predict c (the vector of sensor values) from
θ. Comparing the theoretical values of c with the true value
would allow us to rank candidate values for θ or use more
sophisticated methods (as we shall describe below). In this
work, we use a method loosely based on the equation for the
capacitance of a 2-plate capacitor where the plates overlap
with an area A and are separated by a distance of D by a
medium with dielectric constant ǫ: C = Aǫ

D
. Broadly speak-
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Figure 4. The finger pose (a), as shown in the visualisation, along with

(b) the mean of the values the particle filter expected to observe – that

is the average of the sensor “image” for each particle, given its current

location and orientation, and (c) the the sensor values the that were
actually observed. Values are interpolated from the 6×4 grid to more

clearly show the finger shape. The numbers indicate the orientation.

(d), (e) and (f) show the same visualisation for multitouch interaction.

ing therefore, the capacitance is proportional to the overlap
area and is inversely related to the distance. Given θ and
the size and position of the individual sensors, we can eas-
ily compute the area of overlap between the finger rectangle
and each sensor. It is equally straightforward to compute the
height of the finger rectangle above any position within a
sensor (assuming that the rectangle is indeed above this po-
sition). Because the height will vary across each particular
sensor, we use a single value for each sensor, computed at its
centre. If the overlap for sensor i is Ai (expressed as a pro-
portion of total sensor area, 0 ≤ Ai ≤ 1) and the height of
the centre is given by hi, we compute the theoretical capaci-
tance of sensor i (zi) as: zi = Aih

−2

i where hi is clipped at a
minimum value of 1 to ensure 0 ≤ zi ≤ 1, and compatibility
with the sensor output values. hi is squared to compensate
for the nonlinear shape of the finger (it tends to get steeper)
and proved to give far superior empirical results to using hi.
Much like the finger model, this sensor model is quite crude
and could be improved. However, as we demonstrate later,
it gives excellent empirical performance.

The particle filter

Whilst it would be possible to use an optimisation routine
to find an optimal value of θ for each c, we follow [9] and
[16] and adopt a probabilistic approach. Rather than a single
value of θ, we will work with a probability density. In par-
ticular, p(θ|c,∆), the density of θ given the current sensor
readings (c) and any other necessary parameters (grouped
together in ∆). The two principle reasons for this are a) that
the probabilistic approach provides us with far more infor-
mation than simply optimising θ; information that can be



used by the current application to, for example, assist in the
handover of autonomy (‘H-metaphor’; see [16] for more dis-
cussion) and b) the tools exist to allow us to track the density,
in real-time rather than having to re-optimise each time the
sensors change. This reuse of information is important given
that fingers move, but probably not very far within the sam-
pling period of the sensors (which might be ca. 15-20ms).
Due to the nature of the theoretical sensor model, the density
p(θ|c,∆) cannot be computed analytically. As in [9] and
[16], we will use a particle filter to track it in real time. Par-
ticle filters (PFs) are from a family of techniques known col-
lectively as Stochastic Monte-Carlo techniques (SMC; see
[2]). Particle filters use a set of samples (particles) from
the density as a proxy for the actual density at a particu-
lar time. Given S particles at time t, the filter produces a
set of S particles at time t + 1 by sampling from the pop-
ulation at t with probability proportional to how good the
particles are – how well their theoretical sensor values agree
with the actual values – and modifying them according to a
pre-determined model of how we anticipate the finger (and
hence θ) changing – in other words a model of the dynam-
ics of the finger. At any time instant, these particles can be
passed to the current application as a proxy for the full den-
sity (as in [16]) or can be used to compute expectations. For
example, if a single value of θ is required, the particles can
be used to compute the mean of p(θ|c,∆). Similarly, if one
is interested in the covariance of the elements of θ, this is
also easily computed.

1. Initialise particle population

The first step, is populating the filter with a set of S parti-
cles. In the absence of any sensor information (and because
we have to start with something), these are drawn from a
prior density, p(θ). The form of this density should reflect
our belief in the poses that are possible. Although in re-
ality there are clear physical relationships between the ele-
ments of θ we assume independent priors on the different
elements, p(θ) = p(x, y)p(w)p(θp)p(θy). It is important to
realise that this does not imply that the elements will be in-
dependent in the posterior density p(θ|c,∆). For example,
we shall see that there are clear dependencies between the
position (x, y) and the two angles.

2. Particle weighting

Given a current population of S particles, θ1, . . . ,θS , they
are assigned weights representing how closely the particles
expected sensor values match the true sensor values. For
each particle (say θs), we compute its implied theoretical
sensor value for each of the C sensors using the equation for
the sensor model. This results in a vector zs = [zs1, . . . , zsC ]

T .
Each zs is then compared with the true sensor values c =
[c1, . . . , cC ]

T (0 ≤ ci ≤ 1) to produce a weight value w̃s

according to a Gaussian likelihood:

w̃s = K exp
{
−γ

∑C

i=1
(zsi − ci)

2

}
with precision (inverse

variance) γ and normalising constant K. The Gaussian like-
lihood suffices as a simple and tractable measure of similar-
ity. Finally, the weights are normalised so that they sum to 1

over the complete particle population: ws =
w̃s∑
S

t=1
w̃t

.

3. Particle re-sampling

Once the particles have been weighted according to their
quality, they can be used to create a new generation. The
new generation consists of two types of particle: R random
particles (drawn from the prior p(θ), as in step 1 above)
to ensure that the system can track very rapid changes and
(S − R) re-sampled from the current population. For each
of these (S −R) particles, a particle from the previous gen-
eration – say θs – is chosen with probability ws and then
modified to become a particle in the new generation – say
θs′ – according to some density p(θs′ |θ). This density en-
codes our belief in how the finger moves, and again here
we make the prior assumption of independence: p(θs′ |θ) =
p(xs′ , ys′ |xs, ys)p(ws′ |ws)p(θps′ |θps)p(θys′ |θys). Once the
particle population has been re-sampled, the system returns
to the particle weighting step (step 2) using the new current
sensor input.

Particle generations

An additional feature of the filter that we use in our exper-
iments is the generation of a particular particle. Randomly
produced particles (either at step 1 or as one of the R random
ones in step 3) are given a generation of 0. When a particle
is re-sampled, its generation is incremented. We use the av-
erage generation within the population to signal a press op-
eration - as the finger is temporarily stationary, the average
generation will be gradually increasing.

The model requires the choice of several densities; priors
and movement models. Rather than being a weakness, this
is a strength of the proposed approach. Take for example
the prior probability on particle position p(x, y). There will
often be information available to us from the current appli-
cation that can inform this choice – the position of targets,
buttons or links. Movement models are harder to pin down
but it is worth remembering that all we are interested in is
how far the finger is likely to move in a very small time in-
stant. As such, we have found that Gaussians with very low
variance are suitable for all parameters. This is not to say
that more realistic models (such as the minimum jerk model
of Flash and Hogan [3]) could not be used – the only restric-
tion on the choice of these densities is that we can sample
from them.

EXPERIMENTS

To determine the enhancements that better pose tracking can
provide, we ran two experiments using the particle filter model
described above. In these experiments, we sought to deter-
mine whether the pose information could be used to improve
the accuracy of targeting; in other words whether the sys-
tem could better interpret where users had intended to touch.
Our hypothesis is that our pose estimating particle filter will
yield higher accuracy – the estimated touch point will be
closer to the intended touch point – than naive interpretation
of the sensors. We did not conduct a formal study of people’s
ability to directly control the pitch and yaw of their fingers,
partly because of the difficulty in reliably controlling such an
experiment (as described in [8]), and partly because if ori-
entation tracking works well, this will be directly reflected
in the improvement in targeting accuracy. Two experiments



were performed, both intended to determine targeting accu-
racy on a simulated numeric keypad. Participants were asked
to touch marked points on a keypad layout (see Figure 5).
The data from these touches was captured, and the test al-
gorithms were run on this data to obtain the estimated touch
points. The system used in the experiments gave participants
no feedback as to how either of the algorithms being tested
interpreted the touch; this ensured that an entirely fair and
blind comparison of the algorithms could be made.
The first experiment involved participants “entering” a se-
quence of digits by touching marked points on a flat surface,
firstly with their fore-finger with the device resting on the ta-
ble, and secondly with their thumb while their hand gripped
the sensor in a phone-shaped case.
The second experiment involved participants entering sequences
of four digit groups (as in PIN entry for unlocking the de-
vice, a task often done single-handedly when users are en-
gaged with other tasks), again on the flat, marked surface.
The tasks in this experiment were performed with the thumb
only, and with two different sizes of target grid. The total
size of smaller target grid was smaller than most participants
thumbs.

Hardware

For experimental testing, an SK7 sensor pack from SAMH
Engineering1 was interfaced to the SK7-ExtCS1 capacitive
sensor array (see Figure 5). This array is a capacitance-
to-ground (loading mode) touch sensor with 24 individual
sensing pads in a 6 × 4 layout. This is in contrast to the
row-column sensors on many touch controllers. This has
the advantage of having a sensitive region which extends
further from the pads at the cost of reduced XY resolution.
The sensitive region measures 52mm×34mm. Each pad is
7mm×7mm with a 2mm gap between sensors. The capaci-
tance to ground on each pad is sampled at 5kHz with 16-bit
resolution and then low pass filtered and decimated. A no-
touch and full-touch level that are measured as part of an
initial calibration are applied to the data and the resulting
signals are sent to the PC as 8-bit resolution signals at 60Hz
using a USB connection.

A plexiglass sheet of 2mm thickness was attached to the top
side of the board with clear double-sided sticky tape, to en-
sure the absence of air bubbles. On to this sheet a 3×3 grid
of target points was marked, at the junctions where four ca-
pacitive pads meet. This pad measured 22mm×22mm. A
smaller 3×3 grid of 10mm×10mm was also laid out in-
side for testing extremely small target sizes. These grids
are visible in Figure 5). The entire board was mounted a
40mm thick foam block and placed inside a plastic enclo-
sure shaped like a mobile phone. This additional material
made it possible to hold the assembly with the hands at the
rear of the experimental hardware unduly interfering with
the capacitive sensing. The surface of the board was smooth
and featureless. The targets were only marked on visually.

Filter details

The details of the particular densities and parameters of the
filter used in the experiments are given below: The sensor
1http://code.google.com/p/shake-drivers/
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Figure 5. Left: the hardware used in this study. The 24 capacitive prox-

imity sensors are clearly visible. Right: Experimental grid, shown to

actual scale. The larger grid is marked with large dark crosses, smaller

grid with small light stars.

space is modelled as a 60× 90 discrete grid (1 grid division
= 0.67mm). All values given below correspond to this co-
ordinate system. We used a total of S = 1000 particles, of
which 20 percent were randomly sampled at each iteration
and the remaining were re-sampled from the previous popu-
lation. The individual components were defined as follows:

p(x, y) =

J∑

j=1

1

J
Nx(µxj , 1)Ny(µyj , 1) (1)

p(w) = Uw(10, 20) (2)

p(θy) = Uθr (0, π) , p(θp) = Uθe(0, π/2), (3)

where U(a, b) is a uniform density between a and b,N (µ, σ2)
is a Gaussian (normal) density with mean µ and variance σ2

and Equation 1 describes a J component mixture where J
denotes the number of buttons whose centres are defined by
µxj and µyj . Note that elevation is restricted to be between 0
(finger flat) and π/2 (finger vertical). Also, as the users were
only using the device in the upright orientation, the angle of
rotation was restricted to be between 0 and π (the finger can-
not approach from the top of the device).
We also assume prior independence across movement mod-
els. The individual movement models were all Gaussian
densities, centred on the previous particle value with small
variances. These gave excellent performance across a wide
range of users. The precision of the Gaussian likelihood was
set at a relatively high value of 1 × 105 although varying
this made little difference to the results. In our experiments,
we use the posterior average (the mean of p(θ|c,∆)) com-
puted after the weighting step and before the re-sampling

step as:θ̄ =
∑S

s=1
wsθs.

Experiment 1

Data was captured from 10 participants, 9 male, 1 female,
aged between 20 and 41, all members of the local Com-
puting Science Department. Subjects used their dominant
hand for all tasks: eight of the subjects were right-handed
(used their right index finger and thumb) and two (subjects
5 and 7) were left-handed (left index finger and thumb). All
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(a) All participants pressing digit ‘1’ with their index finger.
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(b) All participants pressing digit ‘1’ with their thumb.

Figure 6. Results of ten participants touching digit ‘1’ with their index finger. Blue circles show the model output and red squares the result of sensor
interpolation. Axes are labeled in millimetres. Notice the consistent bias below and to the right for all subjects except those who are left-handed (5

and 7).

had some familiarity with touch screen devices. Users were
not requested to touch in any particular manner and were
free to touch however they felt comfortable. Diversity in
touch styles was evident whilst observing the users and can
be clearly seen in Figure 6. Each participant was asked to
treat the dots marked on the larger 3×3 grid (shown to scale
in Figure 5) as a numeric keypad in telephone layout, con-
taining only digits 1 through 9. In each session, participants
had to enter a pseudo-random sequence of digits. During the
trial, the participant heard a numeral and were then asked to
place their finger on the appropriate point until they heard
a beep (≈ 100ms after touching). The touch location was
taken at the same time as the beep was heard. The use of
audio cues is intended to remove any effects from dividing
visual attention. The users received no feedback as to how
the system interpreted their press.

This continued until 90 digits had been entered. Each par-
ticipant completed this experiment twice, once using their
forefinger with the device resting on a desk and once with
their thumb whilst holding the device in the same hand (as
shown in Figure 5). The system logged both the model out-
put (θ) and the location determined by an interpolation of
sensor centres: if ri is the (x, y) location of the ith sensor,
and c̃ is the vector of sensor values normalised so as to sum
to 1, the interpolated position is given by: d =

∑C

i=1
c̃iri.

This was chosen as a baseline for comparison because the
conventional technique of finding the centroid of a blob on
a binary thresholded sensor image would be unreasonably
inaccurate on our low resolution grid. In the second experi-
ment (below) we show that interpolation provides a reason-
able approximation to the accuracy of state-of-the-art tech-
nology (the iPhone).

Figure 6 shows an example of the results obtained. The top
row shows the data for all users pressing digit ‘1’ with their
index finger and the lower row shows them all pressing digit
‘1’ with their thumbs. The units on the axis are millime-
tres. In each panel, the squares show the result of inter-
polation and the circles the position inferred by the model.
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Figure 7. Percentage accuracy versus virtual button size (radius of a

circular button). The model provides greater than 95% accuracy for

buttons of size 3mm for use with either thumb or forefinger.

Two things are immediately obvious. Firstly, there is a great
diversity amongst users (from left to right) and across fin-
ger/thumb for individual users (top to bottom). This con-
firms the observations in [8]. Secondly, the model provides
a far more accurate position estimate than interpolation.

The improvement provided by the model is best quantified
by computing the implied minimum button size that each
method can tolerate. Assuming that buttons are round, with
a particular radius, we can compute accuracy (percentage
of times the touch would have been within the correct but-
ton) for a range of radii across all digits and subjects. The
results are shown in Figure 7. The solid lines correspond
to the model (for finger and thumb respectively) and the
dashed lines to interpolation. The improvement offered by
the model is clear: for both finger and thumb, 95% accu-
racy is achievable for a button with radius 3mm (note that
because users sometimes entered the wrong digit, our ac-
curacy estimates are likely to be conservative). This com-
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Figure 8. (a) Comparison with an implementation of a previous particle filter approach (green diamonds) for one representative user. Their model

assumed that a finger could be represented as a point, as such a consistent bias is present. (b) and (c) Angles inferred for subject 5 when using finger

(b) and thumb (c). Lines show projection of finger rectangle onto sensor plane (shorter lines correspond to greater pitch). This subject is left-handed.

In (b) the lines are of a consistent length – when the device is on the table, the finger makes contact in roughly the same manner for each digit. In (c),

the restrictions in movement caused by one-handed operation are clearly visible with pitch varying dramatically across the array.

pares very favourably with the results presented in [8] where
a sensor radius of approximately 3mm (they show diame-
ter of ≈ 5.4 ± 1.4mm) was achieved, when correcting for
controlled pitch, roll and yaw variations. Note that interpola-
tion gives values of approximately 70% and 65% at 3mm for
finger and thumb respectively. Our results suggest that the
interpolation can achieve approximately 95% accuracy for
sensors of radius 5mm. This is significantly better than the
value of approximately 7mm presented in [8] and is likely
due to some of the extreme pitch, roll and yaw angles that
the users were asked to perform in that study. The improve-
ment that we see is a direct consequence of the explicit finger
model. When a user performs a touch, parts of the their fin-
ger towards the hand will cause a response from the sensors.
This response will naturally pull the interpolated value away
from the intended touch location. By modelling this addi-
tional signal, our approach is able to automatically correct
for this deviation.
Figure 9 plots the mean squared error for the model and in-
terpolation across all right handed subjects. It is clear that
the most consistent improvement is to be had (points further
from the line y = x) when the users have to reach further to
the target. Hence, the biggest overall improvement is for the
thumb reaching across to the digit 1 with high improvements
also seen for other digits towards the top and left of the grid.
The smallest improvement is for those digits towards the bot-
tom and right (9,7,6,3), where little of the thumb would be
over the sensor area. The pattern for left-handers is similar
(swap 1 for 3, 4 for 6, 7 for 9 etc) but not shown for space
reasons.

Experiment 2

The second experiment involved a more realistic data entry
task, where participants were asked to enter a sequence of
four digit numbers, again consisting of the digits 1 through
9 only. The hardware, particle filtering code and physical set
up was identical to the first experiment.
The experiment consisted of two tasks, the first performed
on a keypad of dimensions 18mm×18mm as in the first ex-
periment (large grid in Figure 5), and the second performed
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Figure 9. Mean squared error for model and interpolation across right
handed participants (note the asymmetric axis scales) for each digit
and thumb/forefinger. Plain (red) numbers correspond to the finger,

numbers followed by a ‘*’ (blue) correspond to thumb. Points above the

y = x line describe an improvement for the model over interpolation.

on a grid of 10mm×10mm (small grid in Figure 5). The task
was performed with the dominant thumb only, with the sen-
sor held in the same hand in the phone-shaped case shown
in Figure 5. Participants heard each four digit sequence read
by a synthetic voice. Each time a touch was registered, the
participants heard a beep. After four touches, the next four
digit sequence was heard. This continued for 36 four digit
groups (144 total digits). No feedback on the interpretation
of the touches was given. 6 participants took part in this part
of the study, 1 female, 5 male. 5 were right-handed and 1
left-handed, and again the tasks were performed with domi-
nant hand only.

iPhone version

To determine whether our alternative (linear interpolation)
algorithm was unreasonably poor compared to state-of-the-
art commercial touch sensing, we replicated our experiment
on a standard iPhone 3GS as accurately as possible. Raw
sensor values are not accessible on this platform so we used
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Figure 10. Comparison with the data from the iPhone (axes labeled in millimetres). (a) Raw iPhone data for subject A using their thumb on the

large grid. Model and interpolation values not shown as too many points overlap. (b) Subject B using their thumb on the small grid. For clarity

ellipses rather than raw data shown. Comparison of contact points for the model (Mo), Interpolation (In) and iPhone (iP). Here the model performs

consistently better than both alternatives.

the contact point returned by the API and we took precau-
tions to avoid the effect of any context sensitive target heuris-
tics. An application which displayed an exact, to-scale im-
age of the target grid was implemented. This was not an
implementation of our particle filter but rather a test to en-
sure that our interpolation baseline wasn’t unfairly inaccu-
rate. The application followed an identical experimental pro-
tocol: users again held the device in their dominant hand and
heard four digit sequences, whereupon they had to press on
the target with their thumb and hold until a beep was heard.
This was conducted for both the coarse and the fine target
grid. 36 sequences were again used for each grid. The re-
ported touch points on the iPhone were logged, and subse-
quently converted from pixels to mm. This gives a base-
line measure of the accuracy of a high-resolution capacitive
sensing system with post-processing. The results of this are
shown in Figure 10. In general the iPhone performance was
substantially better than the interpolation algorithm, but was
not nearly as good as the pose tracking particle filter.
Although these are very preliminary results with a very small
test population, it is worth noting that our system generally
outperforms the iPhone, despite having a very coarse sens-
ing array. The large sensor pad size in our hardware also
makes hover tracking out to 15mm or more feasible.

DISCUSSION

The filter model clearly performs well in tracking the in-
tended finger location with relatively coarse sensing hard-
ware. The results indicate that the performance is much bet-
ter than simple weighted interpolation of sensor locations in
terms of accuracy. Although looking at plots of touch points
for individual users would suggest a simple offset would
give high accuracy, in reality the offsets between sensed and
intended touch points vary across individuals and contexts.
The pooled variance in touch location for the interpolated
model is much larger than that given by our pose-tracking
model. The model copes easily with the variation in digit
width and orientation caused by using the device one-handedly.

Whilst in our experiments we have concentrated on touch
events, the dynamic tracking performance compares com-
petitively with the particle filter of [16], which does not model
full finger pose. It is difficult to perform a rigorous com-
parison with the iPhone (due to differing hardware and lack
of access to raw sensor values) but in the best comparison
we were able to do, the accuracy achieved by the model ex-
ceeded that of the iPhone.

NEW INTERACTION POSSIBILITIES

We now explore more innovative interaction mechanisms
based on finger pose dynamics – effectively giving users a
subtle, context-sensitive joystick.
Rolling Context Menus Touching a surface to select an op-
tion is direct and intuitive but is limited by the size of the
touching object. The initial finger position narrows down the
range of options, but a secondary interaction method could
open up controlled by pitch and bearing changes. For exam-
ple, in Figure 12(a) we show a rolling context menu, which is
controlled by changes in bearing. These techniques are sim-
ilar to methods proposed in [6], but benefit from the ability
to refine selection based on finger pose, rather than position
in [6], or roll in [18].
Occlusion As the filter tracks the whole finger with a rel-
atively high degree of accuracy, there are straightforward
ways of automatically avoiding the common issue of finger
occlusion. The work described in [19] could be enhanced
with the knowledge of the orientation of the finger. Text
could wrap around the “shadow” of the finger, adapting as
the orientation changes.
Hidden Flaps The emotional content of messages passed
between people changes the way such messages are opened.
We suggest an interaction style where users conceal the mes-
sage with their hand and reveal it carefully by levering the
cover with their hand to expose the message (see Figure
12(c)). Secret messages passed between classmates are hid-
den from view and unfolded discreetly.
High-precision pointing The sensed finger contacts can be
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Figure 11. Effective button sizes for experiment 2. (a) Accuracy as a function of button size for the large grid. Shown are the average curves for the

population as well as the specific performance for user A and the same users performance on the iPhone (data from Figure 10(a)). (b) As (a) but for

the small grid and also showing the individual performance for subject B (iPhone data as per Figure 10(c)).

Figure 12. Interaction concepts using tilt-sensitive touch sensing on mobile devices. Left-to-right: (a) Rolling context menus; (b) High-precision

bimanual pointing; (c) Peeking through message flaps using whole hand pitch angle detection; (d) 3D map navigation.

virtually “extended” like chopsticks emanating from the fin-
ger tips, similar to the work presented in [21]. The inter-
action techniques suggested in [20] for table-top interaction
could be adapted for devices with capacitive touch screens.
Figure 12(b) illustrates the concept.

CONCLUSIONS

Conventional touch sensing hardware is quite capable of ex-
tracting rich information about the pose and movement of
fingers above and in contact with it. Our approach explicitly
formulates a model of the finger and estimates the pose using
probabilistic particle filtering. The model clearly encodes
the assumptions about the physical nature of the fingers and
the sensors, and is easy to extend to different contexts. This
approach allows the extraction of additional degrees of free-
dom from the input, beyond simple 2D contact points. The
probabilistic nature of our model results in meaningful un-
certainty estimates as sensing degrades. It also makes for a
consistent framework for integrating uncertainty from higher
levels of the interface with and as a result the values mea-
sured by the sensor can be interpreted in the context of the
entire interaction, from electrical and biomechanical con-

straints to inference about complex intentions. The poten-
tial uses for increased precision and additional degrees of
freedom are numerous; we have identified several concepts
which could be implemented on small-screen devices.

We have experimentally demonstrated that properly estimat-
ing finger pose with both pitch and yaw is both feasible on
low-resolution capacitive sensor arrays, and significantly im-
proves targeting performance when 2D target positions are
estimated. The estimate of the point a user intended to touch
can be improved using more complete knowledge of how the
finger is posed in space. These targeting improvements mean
that devices can have dense control layouts using only cheap
and readily available electronics. The limitation on device
size is not human finger size, but the crude interpretation of
capacitive arrays in existing technologies. We have shown
that buttons densely packed at a spacing of 4mm can be made
usable with a sensor grid with a resolution of 6×4 pads in
an overall area of 34mm×55mm; even smaller layouts are
possible if coupled with appropriate secondary interaction
mechanisms, such as the rolling context menus. This size
of button is equivalent to that required for a QWERTY key-



board on a small touch screen and improving accuracy here
could have substantial usability benefits particularly when,
for example, only one hand is available or the user is walk-
ing. Our hardware comprised a small number of long range
capacitive sensors in contrast to the fine row-column style
prevalent in current devices. Our investigation suggests that
a shift towards the type of hardware that we have used could
offer significant accuracy advantages at very low cost. Het-
erogenous sensors composed of a spectrum of coarse long-
range sensors through ultra-fine but short range sensors with
regular or irregular shapes can easily be used with our algo-
rithms, unlike conventional approaches. Such sensor arrays
represent a simple way of extracting detailed 3D pose in-
formation across the entire surface of a device. Our current
implementation runs on a desktop system and has not been
optimised for mobile technology. We expect that an effi-
cient fixed point implementation could easily run on modern
smartphones at low CPU cost.

These probabilistic models demonstrate that by simply mod-
elling the problem in terms of the expected measurements
given known constraints, surprising amounts of relevant in-
formation can be extracted even from crude sensors. Wider
use of these techniques in HCI could dramatically extend the
capabilities of existing and yet-to-be-imagined hardware.
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