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Abstract

Gaussian Process prior models, as used in Bayesian non-parametric statistical models methodology are ap-

plied to implement a nonlinear adaptive control law. The expected value of a quadratic cost function is minimised,

without ignoring the variance of the model predictions. This leads to implicit regularisation of the control signal

(caution) in areas of high uncertainty. As a consequence, the controller has dual features, since it both tracks a

reference signal and learns a model of the system from observed responses. The general method and its main

features are illustrated on simulation examples.

1 Introduction

Linear control algorithms have been successfully applied to control nonlinear systems, since they can adapt their

parameters to cope the nonlinear characteristics of real systems. However, their performance degrades as the system

undergo rapid and larger changes in its operating point. Several authors have proposed the use of non-linear models

as a base to build nonlinear adaptive controllers. Agarwal and Seborg (Agarwal and Seborg, 1987), for instance, have

proposed the use of known nonlinearities, capturing the main characteristic of the process, to design a Generalized

Minimum Variance type of self-tuning controller. In many applications, however, these nonlinearities are not known,

and non-linear parameterision must be used instead. A popular choice has been the use of Artificial Neural Networks

for estimating the nonlinearities of the system (Narendra and Parthasarathy, 1990; Liang and ElMargahy, 1994; Chen

and Khalil, 1995; Bittanti and Piroddi, 1997). All these works have adopted the certainty equivalence principle for
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designing the controllers, where the model is used in the control law as if it were the true system. In order to

improve the performance of nonlinear adaptive controllers based on a nonlinear models, the accuracy of the model

predictions should also be taken into account. A common approach to consider the uncertainty in the parameters, is

to add an extra term in the cost function of a Minimum Variance controller, which penalizes the uncertainty in the

parameters of the nonlinear approximation (Fabri and Kadirkamanathan, 1998). Another similar approach based on

the minimization of two separate cost functions, has been proposed in (Filatovet al., 1997), the first one is used to

improve the parameter estimation and the second one to drive the system output to follow a given reference signal.

This approach is called bicriterial and it has also be extended to deal with nonlinear systems (Sbarbaroet al., 1998).

Most of these engineering applications are still based on parametric models, where the functional form is fully

described by a finite number of parameters, often a linear function of the parameters. Even in the cases where flexible

parametric models are used, such as neural networks, spline-based models, multiple models etc, the uncertainty is

usually expressed as uncertainty of parameters (even though the parameters often have no physical interpretation),

and do not take into account uncertainty about model structure, or distance of current prediction point from training

data used to estimate parameters.

This paper describes an approach based on Gaussian process priors, as an example of a non-parametric model

with particularly nice analytic properties. This allow us to analytically obtain a control law which perfectly min-

imises the expected value of a quadratic cost function, which does not disregard the variance of the model prediction

as an element to be minimised. This leads naturally, and automatically to a suitable combination of regularisingcau-

tion in control behaviour in following the reference trajectory, depending on model accuracy. This paper expands

on previous work (Murray-Smith and Sbarbaro, 2002) by making the cost function more flexible, and investigating

modelling and control performance for nonlinear systems affine in control inputs.

The above ideas are closely related to the work done on dual adaptive control, where the main effort has been

concentrated on the analysis and design of adaptive controllers based on the use of the uncertainty associated with

parameters of models with fixed structure (Wittenmark, 1995; Filatov and Unbehauen, 2000).

The paper is organised as follows: section 2 describes the characteristics of non-parametric models. Section 3

introduces Gaussian Process priors. Section 4 illustrates how to design controllers based on the above representation.

In section 5, we illustrate the control behaviour via simulation. Finally, some conclusions and future directions are

outlined.
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2 Non-parametric models and uncertainty prediction

Non-parametric models retain the available data and perform inference conditional on the current state and local

data (called ‘smoothing’ in some frameworks). As the data are used directly in prediction, unlike the parametric

methods more commonly used in control contexts, non-parametric methods have advantages for off-equilibrium

regions, since normally in these regions the amount of data available for identification is much smaller than that

available in steady state. The uncertainty of model predictions can be made dependent on local data density, and

the model complexity automatically related to the amount and distribution of available data (more complex models

need more evidence to make them likely). Both aspects are very useful in sparsely-populated transient regimes.

Moreover, since weaker prior assumptions are typically applied in a non-parametric model, the bias is typically less

than in parametric models.

Non-parametric models are also well-suited to initial data analysis and exploration, as they are powerful models

of the data, with robust behaviour despite few prior structural assumptions.

3 Gaussian Process priors

In a Bayesian framework the model must be based on a prior distribution over the infinite-dimensional space of

functions. As illustrated in (O’Hagan, 1978), such priors can be defined as Gaussian processes. These models

have attracted a great deal of interest recently, in for example reviews such as (Williams, 1998). Rasmussen (1996)

showed empirically that Gaussian processes were extremely competitive with leading nonlinear identification meth-

ods on a range of benchmark examples. The further advantage that they provide analytic predictions of model

uncertainty makes them very interesting for control applications. Use of GPs in a control systems context is dis-

cussed in (Murray-Smithet al., 1999; Leithet al., 2000). A variation which can include ARMA noise models

is described in (Murray-Smith and Girard, 2001).k-step ahead prediction with GP’s is described in (Girardet

al., 2003) and integration of prior information in the form of state or control linearisations is presented in (Solaket

al., 2003).

In the following, the full matrix of state and control input vectors is denotedΦ Φ, and the vector of output

points isy. The discrete data of the regression model areφk = [x(t− 1) u(t− 1)] andyk = y(t). In the example

used in this paper,x(t − 1) = [y(t − 1), . . . , y(t − n), u(k − 2), . . . , u(t − m)]. The givenN1 data pairs used

for identification are stacked in matricesΦ1,y1 and theN2 data pairs used for prediction areΦ2,y2. Instead of

parameterisingy(t) = f(φ(t)) as a parametric model, we can place a prior directly on the space of functions where
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f is assumed to belong. A Gaussian process represents the simplest form of prior over functions – we assume that

anyp points have ap-dimensional multivariate Normal distribution. We will assume zero mean, so for the case with

partitioned datay1 andy2 we will have the multivariate Normal distribution (we will assume zero mean1),


 y1

y2


 ∼ N (0, Σ) , Σ =


 Σ1 Σ12

Σ21 Σ2


 . (1)

whereΣ is the full covariance matrix, and whereΣ21 = ΣT
12. Like the Gaussian distribution, the Gaussian Process

is fully specified by a mean and its covariance function, so we denote the distributionGP (µ,C). The covariance

functionC(xi,xj) expresses the expected covariance betweenyi andyj – we can therefore infery2’s from constant

Φ1,y1’s rather than building explicit parametric models.

As in the multinormal case, we can divide the joint probability into a marginal Gaussian process and a condi-

tional Gaussian process. The marginal term gives us the likelihood of the training data,

P (y1|Φ1) = (2π)−
N1
2 |Σ1|−

1
2 e(−

1
2
yT

1 Σ−1
1 y1). (2)

The conditional part of the model, which best relates to a traditional regression model is therefore the Gaussian

process, which gives us the output posterior density function conditional on the training dataΦ1,y1 and the test

pointsΦ2,

P (y2|Φ1,y1, Φ2) =
P (y2,y1)

P (y1)

=
e−

1
2
(y2−µ21)T Σ−1

21 (y2−µ21)

(2π)
N2
2 |Σ21| 12

,

where, as in the straightforward multinormal case described earlier,

µ2.1 = ΣT
12Σ

−1
1 y1 (3)

Σ2.1 = Σ2 − ΣT
12Σ

−1
1 Σ21, (4)

so we can usey(Φ2) = µ21 as the expected model output, with a variance ofσ(Φ2) = Σ21.

1Note, as explained in (Neal, 1997) the zero mean assumption does not mean that we expect the regression function to be spread equally

on either side of zero. If a covariance function had a large constant term the actual function could be always positive or always negative over

the range of interest. The zero mean reflects or ignorance as to what that sign will be. There are good numerical computational reasons for

transforming data to be zero mean.
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3.1 The covariance function

The Normal assumption may seem strangely restrictive initially, but represents a powerful tool since the model’s

prior expectations can be adapted to a given application by altering the covariance function. The choice of function

is only constrained in that it must always generate a non-negative definite covariance matrix for any inputsΦ, so

we can represent a spectrum of systems from very local nonlinear models, to standard linear models using the same

framework. The covariance function will also often be viewed as being the combination of a covariance function

due to the underlying modelCm and one due to measurement noiseCn. The entries of this matrix are then:

Σ1ij = Cm(Φ1i ,Φ1j ; Θ) + Cn(Φ1i , Φ1j ; Θ) (5)

whereCn() could beδijN (Φ1; Θ), which would be adding a noise modelN to the diagonal entries ofΣ1. We

discuss covariance functions for correlated noise models in (Murray-Smith and Girard, 2001).

In this paper, we use a straightforward covariance function,

C(xi,xj ; Θ) = v0ρ(|xi − xj |, α) +
p∑

k=1

akxikxjk + a0,

so that the parameter vectorΘ = [v0, α1,..p, a0]T andp is the dimension of vectorx . The functionρ(d) is a distance

measure, which should be one atd = 0 and which should be a monotonically decreasing function ofd. The one

used here was

ρ(|xi − xj |, α) = e−
1
2

Pp
k=1 αk(xik−xjk)2 . (6)

The αk’s determine how quickly the function varies in dimensionk. This estimates the relative smoothness

of different input dimensions, and can therefore be viewed as an automatic relevance detection (ARD) tool, which

helps weight the importance of different input dimensions. Other bases which included a nonlinear transformation

of x, like the RBF neural networks used in (Fabri and Kadirkamanathan, 1998), could be put into this framework.

The prior associated with this covariance function states that outputs associated withφ’s closer together should have

higher covariance than points further apart.

Since the output is an affine function of the control input, it is reasonable to add a covariance contribution from

the control inputs as an affine function as well:

Cm(φi, φj) = Cx(xi,xj) + Caff (φi, φj) (7)

whereCx = Cx(xi, xj) represents the contribution of the state vector and

Caff (φi, φj) = uiCu(xi,xj)uj (8)
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the contribution of the input signal. The covariance functionCu can be parameterised in any suitable way. Here, we

use the same structure as inCx above, but with different values of the hyperparameters to those used inCx.

The Gaussian Process approach to regression is simple and elegant, and can model nonlinear problems in a

probabilistic framework. There tend also to be far fewer parameters to identify in the Gaussian Process approach

than for competing approaches (such as e.g. artificial neural networks). The disadvantage is its computational

complexity, as estimating the meanµ21 = ŷ(x) requires a matrix inversion of theN1 × N1 covariance matrix,

which becomes problematic for identification data whereN1 > 1000. In transient regimes, however, we have very

few data points and we wish to make robust estimates of model behaviour, which are now possible. This suggests

that a multiple-model style partitioning of the state-space could make GPs more feasible in many applications (Shi

et al., 2003).

3.1.1 Adapting the covariance functions

The hyperparameter vectorΘ = [v0, α1,..p]T provides flexibility to define a family of covariance functions which

provide suitable prior distributions over functions. In most cases we will only have uncertain knowledge ofΘ.

Given unknown hyperparameters we can use numerical methods such as Markov-Chain Monte Carlo (MCMC) to

integrate over hyperparameters, or use maximum likelihood methods, with standard gradient-based optimisation

tools to optimise hyperparameters.

The log-likelihoodl of the training data can be calculated analytically as (Williams, 1998) :

l = −1
2

log det Σ1 − 1
2
yT

1 Σ−1
1 y1 − n

2
log 2π. (9)

The partial derivative of the log likelihood with respect to the hyperparameters is:

∂l

∂θi
= −1

2
tr

[
Σ−1

1

∂Σ1

∂θi

]
+

1
2
yT

1 Σ−1
1

∂Σ1

∂θi
Σ−1

1 y1. (10)

Given l and its derivative with respect toθi it is straightforward to use an efficient optimization program in order

to obtain a local maximum of the likelihood. If prior distributions on the hyperparameters, such as equation 11

are used then obviously these are included in the likelihood equations and the derivative terms. The use of gamma

priors does not add significant complexity to the optimisation, and if used appropriately makes the model behaviour

more robust with small numbers of training data.
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3.1.2 Hierarchical priors

The hyperparameters of the covariance function will rarely be known exactly in advance, so they are usually given

a vague prior distribution, such as a gamma prior (Neal, 1997).

p(φ) =
(a/2ω)a/2

Γ(a/2)
φ((a/2)−1) exp

(
−φa

2ω

)
(11)

whereφ = θ−2 for a hyperparameterθ. a is a positive shape parameter andω is the mean ofφ. Large values of

a produce priors forθ concentrated nearω−2 and small values lead to vague priors. Each hyperparameter of the

covariance function can be given an independent prior distribution.

3.2 Nonlinear regression example

As an illustrative example, we use a simple one-dimensional nonlinear function:

y = sin(10πx sin(x− 0.5)3),

corrupted with zero mean Gaussian noise, with standard deviation of0.05. To show how well the system copes with

small amounts of data only 30 points are used, which are sampled uniformly inx ∈ [0, 1]. In this range the function

has significantly varying derivatives. An interesting aspect of the Gaussian process is its ability to produce good

estimates of prediction variance. Figure 1 shows the mean and2σ contours fory givenx. Note how the2σ contours

change over the input-space depending on the proximity of training data.

4 Derivation of Control law

The objective of this paper is to control a multi-input, single-output, affine nonlinear system of the form,

y(t + 1) = f(x(t)) + g(x(t))u(t) + e(t + 1) (13)

wherex(t) is the state vector at timet, which in this paper will be defined asx(t) = [y(t), . . . , y(t − n), u(t −
1), . . . , u(t−m), v1(t), . . . , vl(t)], y(t+1) the output,u(t) the current control vector,vi(t), i = 1, . . . , l are external

known signals,f andg are smooth nonlinear functions, andg is bounded away from zero. In addition, it is also

assumed that the system is minimum phase, as defined in (Chen and Khalil, 1995). For notational simplicity we

consider single control input systems, but extending the presentation to vectoru(t) is trivial. The noise terme(t) is

assumed zero mean Gaussian, but with unknown varianceσ2.
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Figure 1: Modelling a nonlinear function using a Gaussian Process prior. Model mean and2σ contours, with target

function and training data
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The cost function proposed is:

J = E{(yd(t + 1)− y(t + 1))2}+ (R(q−1)u(t))2. (14)

whereyd(t) is a bounded reference signal, the polynomialR(q−1) is defined as:

R(q−1) = r0 + r1q
−1 + . . . + rnrq

−nr (15)

and its coefficients can be used as tuning parameters.

Using the fact that Var{y} = E{y2} − µ2
y, whereµy = E{y}, the cost function can be written as:

J = (yd(t + 1)− E{y(t + 1)})2 + Var{y(t + 1)}+ (R(q−1)u(t))2.

Note that we have not ‘added’ the model uncertainty term, Var{y(t + 1)}, to the classical quadratic cost function

– most conventional work has ‘ignored’ it, or have added extra terms to the cost function,or have pursued other

sub-optimal solutions (Wittenmark, 1995; Filatov and Unbehauen, 2000).

4.1 Calculation of optimal u(t)

Given the cost function (16), and observations to timet, if we wish to find the optimalu(t), we need the derivative

of J ,

∂J

∂u(t)
= −2 (yd(t + 1)− µy)

∂µy

∂u(t)
+

∂Var{y(t + 1)}
∂u(t)

+ 2r0R(q−1)u(t). (16)

With most models, estimation of Var{y}, or ∂Var{y}
∂u(t) would be difficult, but with the Gaussian process prior (as-

suming smooth, differentiable covariance functions – see (O’Hagan, 2001)) the following straightforward analytic

solutions can be obtained:

∂µy

∂u(t)
=

∂Σ21

∂u(t)
Σ−1

1 y1

Var{y} = Σ2 − Σ21Σ−1
1 ΣT

21,

∂Var{y}
∂u(t)

=
∂Σ2

∂u(t)
− (Σ21Σ−1

1

∂ΣT
21

∂u(t)
+

∂Σ21

∂u(t)
Σ−1

1 ΣT
21).

The covariance function is composed of the sum of two covariance functionsCx andCu with separate parameters,

C([x u], [x′ u′]) = Cx(x, x′) + uCu(x, x′)u′. (17)

The covariance matrixΣ21 andΣ2 can be expressed in terms of the independent control variableu(t) as follows:

Σ21 = Ω1 + u(t)Ω2 (18)

Σ2 = Ω3 + Ω4u(t)2, (19)
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whereΩ1 = Cx(x(t), Φ1), Ω2 = Cu(x(t), Φ1).∗U1, where.∗ indicates elementwise multiplication of two matrices.

Ω3 = Cx(x(t),x(t)), andΩ4 = Cu(x(t),x(t)).

The final expressions forµy and Var{y} are:

µy = Ω1Σ−1
1 y1 + Ω2Σ−1

1 y1u(t),

Var{y} = Ω3 + Ω4u(t)2 − (Ω1 + u(t)Ω2)Σ−1
1 (Ω1 + u(t)Ω2)T .

Taking the partial derivatives of the variance and the mean expressions and replacing their values in (16), it follows:

∂J

∂u(t)
= −2

(
yd(t + 1)− Ω1Σ−1

1 y1 − Ω2Σ−1
1 y1u(t)

)
(Ω2Σ−1

1 y1)T + 2Ω4u(t)−

2Ω1Σ−1
1 ΩT

2 − 2u(t)Ω2Σ−1
1 ΩT

2 ) + 2r0R(q−1)u(t). (20)

At ∂J
∂u(t) = 0, the optimal control signal is obtained as:

u(t) =
(yd(t + 1)− Ω1Σ−1

1 y1)(Ω2Σ−1
1 y1)T + Ω1Σ−1

1 ΩT
2 − r0(r1q

−1 + · · ·+ rnrq
−nr)u(t)

r2
0 + Ω4 − Ω2Σ−1

1 ΩT
2 + Ω2Σ−1

1 y1(Ω2Σ−1
1 y1)T

. (21)

Note that equation (21) can also be presented as

u(t) =
(yd(t + 1)− Ω1Σ−1

1 y1)(Ω2Σ−1
1 y1)T + α(t)− r0(r1q

−1 + · · ·+ rnrq
−nr)u(t)

r2
0 + β(t) + Ω2Σ−1

1 y1(Ω2Σ−1
1 y1)T

. (22)

whereα(t) = Ω1Σ−1
1 ΩT

2 , andβ(t) = Ω4 − Ω2Σ−1
1 ΩT

2 . If we had not included the variance term in cost function

(16), or if we were in a region of the state-space where the variance was zero, the optimal control law would be

equation (22) withα = β = 0. We can therefore see that analysing the values ofα andβ is a promising approach to

gaining insight into the behaviour of the new form of controller. These terms make a control effort penalty constant,

or regulariser unnecessary in many applications. In the experiments in this paper where we includeα(t) andβ(t),

we setr2
0 = 0.

For systems linear inu(t), β(t) does not vary withx(t), y(t) or yd(t), while α(t) varies withx(t).

4.2 Adapting control behaviour with new data

After u(t) has been calculated, applied, and the output observed, we add the informationx(t), u(t), y(t + 1) to the

training set, and the newΣ1 increases in size toN1+1×N1+1. We can then choose to optimise the hyperparameters

of the covariance function to further refine the model, or keep the covariance function fixed, and just use the extra

data points to improve model performance.

Obviously, given the expense of invertingΣ1 for largeN , this naive approach will only work for relatively small

data sets. For a more general solution, we can potentially incorporate elements of Relevance Vector Machines(Tipping,

2001), or use heuristics for selection of data for use in an active training set, as in e.g. (Seegeret al., 2003).
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5 Simulation results

To illustrate the feasibility of the approach we used it to control several target plants based on noisy observed

responses. We start off with onlytwo training points, and add subsequent data to the model during operation. The

model has had no prior adaptation to the system before the experiment. Model hyperparameters are adapted after

each iteration using a conjugate gradient descent optimisation algorithm. A gamma distribution was used for all

hyperparameters, withω set equal to the initial condition for each variable and shape parametera = 3, indicating

vague knowledge about the variable. The noise termσn, was given a tighter distribution, witha = 5. The covariance

functions chosen are the same for all the experiments.

5.1 Linear system

As an introductory example, if we have a GP to represent a linear model, for a target system of the form:

y(t + 1) = wT
1 x(t) + w2u(t) + e(t + 1).

In this case, the expressions for the mean and the variance are:

µy = = b1xT + b2u(t)

Var{y} = σn + xTC11x + xTC12u + uC21x + uc22u.

(23)

Using equation (16), the control signal is :

u(t) = ((yd(t + 1)− x(t)Tb1)b2 + x(t)TC12 − r0(r1q
−1 + · · ·+ rnrq

−nr)u(t))

(b2
2 + c22 + r2

0)
−1. (24)

To understand the behaviour of this control law we setR(q−1) = r0 and we will create two variablesα = x(t)TC12,

andβ = c22. In the experiments in this paperr2
0 = 0, thus the control signal is:

u = ((yd(t + 1)− x(t)Tb1)b2 + α)(b2
2 + β)−1.

Applying the above control law to the following system:

y(t + 1) = 0.5y(t− 1)− 0.3y(t− 2) + 0.2y(t− 3) + 2u(t)− 0.8u(t− 1) + e(t + 1)

the algorithm start off with only six training points, and add subsequent data to the model during the operation.

The model has no prior adaptation to the system before the experiments. Figure 2 shows the effects ofα andβ in
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the early stages of the closed loop response. Note the increases inβ(t) after the step changes, and the significant

decrease once the system covers the space betweenx = ±1.

If the hyperparameters are not updated, then the convergence is much slower, as can be seen in Figure 3.

5.2 Non-linear systems

5.2.1 Nonlinear system 1

Let non-linear system 1 be:

y(t + 1) = f(x(t)) + g(x(t))u(t) + e(t + 1)

wherex = y(t), f(x) = sin(y(t))+cos(3y(t)) andg(x) = 2+cos(y(t)), subject to noise with varianceσ2 = 0.001

(Fabri and Kadirkamanathan, 1998).

Note how in Figure 4β is large in the early stages of learning, but decreasing with the decrease in variance,

showing how the regularising effect enforces caution in the face of uncertainty, but reduces caution as the model

accuracy increases. In terms of the hyperparameters, most hyperparameters have converged by about 30 data points.

The noise parameterσn decreases with increasing levels of training data. After this point the control signalu is also

fairly smooth, despite the noisy nature of the data.α can be seen to be larger in higher variance regions, essentially

adding an excitatory component which decreases with the decrease in model uncertainty, and in this example plays

almost no role after about iteration 30.

Figure 5 shows control performance on the same system where the variance part of the cost function is ignored

(i.e. α andβ are removed from the control law. In order to achieve any reasonable control behaviour, we set

r0 = 0.5. As can be seen in the figure, the system still tracks the trajectory, and after iteration 30 there is little

visible difference between the two control laws, but ignoring the variance does lead to the use of greater control

effort, with larger model uncertainty in the early stages of learning. The hyperparameter estimates also fluctuate

much more in the early stages of learning, when variance is not considered, although both systems converge on

similar values after the initial stages. The constant nature ofr0 as a regularising term, as opposed to the dynamically

changingα(t), β(t) makes controller design more difficult, as we can see that in early stages of learning it tends to

be too small, reducing robustness, while later it is larger thanα(t), β(t) damaging performance.

We now plot the nonlinear mappings involved in non-linear system 1, to give the reader a clearer impression of

the adaptation of the system. The surfaces in figure 7 show the development in the mean mapping fromx(t), u(t) to

y(t + 1) as the system acquires data, taken from the simulation shown in figure 4 att = 3, 20, 99. For comparison,
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Figure 3: Simulation results on the identification and control of the linear system,without updating the hyperpa-

rameters, showing modelling accuracy, control signals, tracking behaviour and levels ofα andβ at each stage.
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Figure 4: Simulation results for nonlinear system 1, showing modelling accuracy, control signals, tracking behaviour

and levels ofα andβ at each stage.
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Figure 5: Simulation results on nonlinear system 1,without including theα andβ terms linked to the model variance

in the control law. Data shows modelling accuracy, control signals and tracking behaviour.
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Figure 6: True surface (mesh) of nonlinear system 1,y(t + 1) = f(x(t), u(t)) = sin(x(t)) + cos(3x(t)) + (2 +

cos(x(t)))u(t), over the spacex× u.

figure 5.2.1 shows the true mapping. Examining the surfaces in figure 7 we can see how the nonlinear mapping

adapts gradually given increasing numbers of data points, but we also see that the standard deviation of the mapping

also evolves in an appropriate manner, indicating clearly at each stage of adaptation the model uncertainty over

the state-space. In the final plot, Figure 7(f) we can see a uniformly low uncertainty in the areas covered by data,

but a rapid increase in uncertainty as we move beyond that in thex-axis. Note that the uncertainty grows much

more slowly in theu-axis because of the affine assumption inherent in the covariance function, which constrains the

freedom of the model.

5.2.2 Nonlinear system 2

The second nonlinear example considers the following non-linear functions:

f(x(t)) =
y(t)y(t− 1)y(t− 2)u(t− 1)(y(t− 2)− 1)

1 + y(t− 1)2 + y(t− 2)2

g(x) =
1

1 + y(t− 1)2 + y(t− 2)2
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Figure 7: Left-hand figures show mean surface (mesh)y(t + 1) = f(x(t), u(t)) of non-linear system 1 over the

spacex × u during the learning process. These can be compared to the true mapping in Figure 5.2.1. Right-hand

figures show condition standard deviationσ(x(t), u(t)) surfaces. Each figure also shows the available data at that

point in the learning process.
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, wherex =
[

y(t) y(t− 1) y(t− 2) u(t) u(t− 1)
]T

(Narendra and Parthasarathy, 1990). The system

noise has a varianceσ2 = 0.001, and we had 6 initial data points. The results are shown in Figure 8. Again, the

trend of decreasingα andβ can be seen, although they do increase in magnitude following changes in the system

state towards higher uncertainty regions, showing that the control signal will be appropriately damped when the

system moves to a less well-modelled area of the state-space. The hyperparameters in Figure 8(c) make few rapid

changes, seeming well-behaved during learning.

6 Conclusions

This work has presented a novel adaptive controller based on non-parametric models. The control design is based

on the expected value of a quadratic cost function, leading to a controller that not only will minimise the squared

difference between the reference signal and the expected value of the output, but will also try to minimise the

variance of the output, based on analytical estimates of model uncertainty. This leads to a robust control action

during adaptation, and when extended to multi-step ahead prediction, forms the basis of full dual control with

implicit excitatory components. Simulation results, considering linear and non-linear systems, demonstrate the

interesting characteristics of this type of adaptive control algorithm.

The GP models are capable of high performance, with or without priors being placed on their hyperparameters.

Use of gamma prior distributions led to increased robustness and higher performance in the early stages of adaptation

with very few data points, but the relative advantage decreases with the amount of initial data available, as would be

expected.

6.1 Outlook

GP’s have been successfully adopted from their statistics origins by the neural network community (Williams, 1998).

This paper is intended to bring the GP approach to the attention of the control community, and to show that the

basic approach is a competitive approach for modelling and control of nonlinear dynamic systems, even when little

attempt has been made to analyse the designer’s prior knowledge of the system – there is much more that can be

taken from the Bayesian approach to use in the dual control and nonlinear control areas.

Further work is underway to address the control of multivariable systems, nonminimum-phase systems and

implementation efficiency issues. The robust inference of the GP approach in sparsely populated spaces makes it

particularly promising in multivariable and high-order systems.
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Figure 8: Simulation results for nonlinear system 2, showing modelling accuracy, control signals, tracking behaviour

and levels ofα andβ at each stage.
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