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Abstract: This paper addresses the problem of controlling a class of unknown
nonlinear systems with unstable inverse, by using a generalized minimum variance
approach. We highlight the limitations of the classic cost function used in
this context and we propose a new one based on the Generalized Feedback
Linearization concept. The adaptive control algorithm uses a nonparametric
model, which provides an estimate of the mean and variance of the system
output. Simulation examples illustrate the main characteristics and limitation of
the proposed approach. Copyright c©2005 IFAC.
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1. INTRODUCTION

Adaptive control of discrete nonlinear systems
using flexible nonlinear parameterization like Ar-
tificial Neural Networks (Jagannathan and Lewis,
1996; Chen and Khalil, 1995; Narendra and
Parthasarathy, 1990) and nonparametric models
(Murray-Smith and Sbarbaro, 2002; Portier and
Oulidi, 2000; Kocijan et al., 2004) have received
some attention. Most of these works have relied
on the assumption that the system has stable
inverse, even though in discrete systems, nonmin-
imum phase behavior can even be brought by the
sampling rate selection, as in the linear case.

(Talebi et al., 2000) describes an output redefini-
tion strategy which is only applicable to a class
of open-loop stable nonminimum phase systems.
A more general approach based on the Inter-

nal Model theory is presented in (Aoyama et
al., 1996), but as in the previous case it is only
applicable to open-loop stable systems. In (Yue et
al., 1997) and (Zhu et al., 1999) a method based on
a model which has linear and a residual nonlinear
part is proposed, the main underlying assumption
is that the nonlinear part has no hidden nonmin-
imum phase effect. This assumption can only be
met if the nonminimum phase effect is due to a
linear system, limiting its application to many real
systems.

The Generalized Minimum Variance control strat-
egy for nonlinear system has been proposed by
several authors (Bittanti and Piroddi, 1997; Yue
et al., 1997; Liang and ElMargahy, 1994) and
more recently (Zhu and Guo, 2004). This strategy
provides several degrees of freedom for tackling
the control of different systems. However, it can



be demonstrated that, unlike in the linear case,
this extra flexibility is not enough to deal with
nonlinear inverse dynamics. A simple additional
enhancement, based on the idea of Generalized
Feedback Linearization (Goodwin et al., 2001)
can be included to deal with a broader class of
systems, having nonlinear inverse dynamic. These
ideas are used in the framework of nonparamet-
ric adaptive controllers (Murray-Smith and Sbar-
baro, 2002) for expanding the range of systems
which can be controlled by this approach without
increasing its complexity.

This work is organized as follows: section 2 de-
scribes the limitation of the GMV strategy and
proposes an enhanced cost function which also
considers the error between the desired control ac-
tion and the one applied to the process. Section 3
describes a nonparametric modelling approach for
modelling the system and the model uncertainty,
and in section 4 two controllers are derived from
different cost functions. Section 5 illustrates, by
simulation examples, the advantages and limita-
tions of the proposed control approach.

2. GENERALIZED MINIMUM VARIANCE
CONTROLLERS

The objective of this paper is to control a single-
input, single-output, affine nonlinear system of the
form,

y(t + d) = f(x(t)) + g(x(t))u(t) + ε(t + d), (1)

where d is defined as the relative degree of the
system (Chen and Khalil, 1995), x(t) is the state
vector at a discrete time t, which in this paper
will be defined as x(t) = [y(t), . . . , y(t− n), u(t−
1), ..., u(t − m)], y(t + 1) the output, u(t) the
current control vector, f and g are unknown
smooth nonlinear functions. A special case is
represented by the following equation:

y(t+ d) = f(x(t))+
m∑

i=0

gi(x(t))u(t− i)+ ε(t+ d),

(2)
where x(t) is the state vector defined as x(t) =
[y(t), . . . , y(t − n)]. We also assume that g0 and
g are bounded away from zero. This type of
system represents for instance Takagi-Sugeno type
of models (Ying, 1999).

The noise term ε(t) is assumed zero mean Gaus-
sian, but with unknown variance σ2

n. The GMV
control strategy consists in choosing a control
variable u(t) to minimize the following cost func-
tion:

J1 = E{(yd(t + d)− y(t + d))2}
+(R(q−1)u(t))2, (3)

where yd(t) is a bounded reference signal, the
polynomial R(q−1) is defined as:

R(q−1) = r0 + r1q
−1 + . . . + rnr

q−nr (4)

where q−1 is a unit backward shift operator. The
polynomial coefficients can be used as tuning
parameters.

Using the fact that Var{y} = E{y2} − µ2
y, where

µy = E{y}, the cost function can be written as:

J1 = (yd(t + d)− E{y(t + d)})2 +

Var{y(t + 1)}+ (R(q−1)u(t))2. (5)

An enhanced version of the GMV controller can
be obtained by considering the idea of Generalized
linearizing controller proposed (Goodwin et al.,
2001). The cost function represents a combination
of two terms:

J2 = (1− λ)E{(yd − y(t + d))2}+

λ(R(q−1)u(t)− ud)2 (6)

where ud is the input associated to yd, the coef-
ficients of R(q−1) and λ are tuning parameters.
Clearly when λ = 0 the cost function corresponds
to the minimum variance cost function, and when
λ = 1 the minimum of the cost function cor-
responds to a simple feedforward control. If the
system is only open loop unstable then λ = 0 can
stabilize the system. On the other hand if the open
loop system is stable but with unstable inverse,
then naturally λ = 1 will provide a stable con-
troller. Fortunately, many real systems can be in-
cluded in these two categories. Summarizing, the
parameter λ provides the possibility to balance
the combination of a feedforward and feedback
control. For systems described by Takagi-Sugeno
type of models, equation (2), a simple expression
can be obtained for ud:

ud =
yd − f(xd)∑m

i=0 gi(xd)
(7)

where xd = [yd, . . . , yd].

3. A NONPARAMETRIC MODEL

Let us consider the output of the system be
described as:

yj(t + 1) = F (φ(t)) + εi(t) (8)

where φ(t)T = [XT (t) UT (t)]T . Instead of param-
eterising the system (1) as a parametric model,
we can place a prior directly on the space of func-
tions where F is assumed to belong. A Gaussian
process represents the simplest form of prior over
functions, we assume that any p points have a p-
dimensional multivariate Normal distribution. Let
the input and output sequence be stacked in the



following matrix ΦN and vector yN , respectively.
We will assume zero mean, so for the case with
partitioned data yN and y(t +1) we will have the
multivariate Normal distribution,[

yN

y(t + 1)

]
∼ N (0,CN+1) , CN+1 =

[
CN k
kT κ

]
.

where CN+1 is the full covariance matrix. Like
the Gaussian distribution, the Gaussian Process
is fully specified by a mean and its covariance
function, so we denote the distribution GP (µ,C).
The covariance function C(φ(t), φ(l)) expresses
the expected covariance between y(t + 1) and
y(l+1). We can therefore, infer y(l+1)’s from the
N data pairs ΦN and yN ’s rather than building
explicit parametric models. The values of the
mean and variance of y(t + 1) are:

µ̂y = kT C−1
N yN (9)

Var{y} = σ̂2
y = κ− kT C−1

N k, (10)

so we can use µ̂(φ(t)) as the expected model
output, with a variance of σ̂(φ(t))2. In order
to simplify notation the following variables are
defined:

ω0 = Cx(x(t), ΦN , Θx)T C−1
N yN

ω1 = (Cx(x(t), ΦN , Θu). ∗ UN )T C−1
N yN

γ0 = Cx(x(t),x(t), Θx)−
Cx(x(t), ΦN , Θx)T C−1

N Cx(x(t), ΦN , Θx)

γ1 = −2(Cx(x(t), ΦN , Θu). ∗ UN )T C−1
N Cx(x(t), ΦN , Θx)

γ2 = Cx(x(t),x(t), Θu)−
(Cx(x(t), ΦN , Θu). ∗ UN )T C−1

N (Cx(x(t), ΦN , Θu). ∗ UN ),

where .∗ represents elementwise matrix multipli-
cation. These new variables in turn lead to these
new expressions:

µ̂y = ω0(x(t)) + ω1(x(t))u(t)

Var{y}= γ0(x(t)) + γ1(x(t))u(t) +

γ2(x(t))u(t)2.

Since the output is an affine function of the control
input, it is reasonable to propose a covariance
function with a contribution from control inputs
as an affine function as well:

K(φ(i), φ(j);Θ) = Cx(x(i),x(j); Θx) +

u(i)Cx(x(i),x(j); Θu)u(j)

where the first term represents the contribution of
the state vector and the second one the contribu-
tion of the input signal.

The covariance function for Cx represents a
straightforward covariance function, as used in
(Williams, 1998), which has been empirically
demonstrated to work well in practice:

Cx(x(i),x(j);Θ) = v0e
− 1

2

∑p

k=1
αk(xk(i)−xk(j))2

+a0, (11)

so that the parameter vector Θ = log[v0, α1,..p, a0]T

(the log is applied elementwise) and p is the di-
mension of vector x . The parameters are defined
to be the log of the variable in equation (11) since
these are positive scale-parameters.

The covariance function will also be often viewed
as being the combination of a covariance function
due to the underlying model K and one due
to measurement noise Cn. The entries ij of this
matrix are then:

CNij = K(ΦNi , ΦNj ; Θ) + Cn(ΦNi , ΦNj ; Θn)

where Θ denotes a set of parameters, which in the
GP framework are also called hyperparameters.
It is convenient to specify priors in terms of the
hyperparameters, which then can be adapted as
the model is fit to the identification data. The
covariance associated to the noise Cn() could be
δijN (ΦN ; Θn), which would be adding a noise
model N to the diagonal entries of CN . This
framework allows to easily include different noise
models, as discussed in (Murray-Smith and Gi-
rard, 2001).

The Gaussian Process approach to regression is
simple to implement. The disadvantage is its com-
putational complexity, as estimating the mean
µ̂y requires a matrix inversion of the N × N
covariance matrix, which becomes troublesome
for identification data where N > 1000; how-
ever, there are efficient techniques to deal with
this issue (Seeger et al., 2003), and for dynamic
systems, data close to equilibrium can often be
summarised as linearisations which can be inter-
preted as ’derivative observations’ leading to a
much more efficient implementation of the Gaus-
sian Process prior (Solak et al., 2003).

The hyperparameter vector Θ provides flexibility
to define a family of covariance functions which
provide suitable prior distributions over func-
tions. In most cases we will only have uncertain
knowledge of Θ. Given unknown hyperparameters
we can use numerical methods such as standard
gradient-based optimisation tools to optimise hy-
perparameters.

The log-likelihood l of the training data can be
calculated analytically as (Williams, 1998) :

l = −1
2

log detCN−1
2
yT

NC−1
N yN−n

2
log 2π. (12)

The partial derivative of the log-likelihood with
respect to the hyperparameters is:

∂l

∂θi
= −1

2
tr

[
C−1

N

∂CN

∂θi

]
+

1
2
yT

NC−1
N

∂CN

∂θi
C−1

N yN .

(13)



Given l and its derivative with respect to θi it
is straightforward to use an efficient optimization
program in order to obtain a local maximum of
the likelihood.

4. THE CONTROLLERS

Taking the partial derivatives of the variance and
the mean expressions, replacing their values in (3),
and minimizing with respect to u(t) it follows:

u(t) =
(yd(t + d)− ω0)ω1 + γ1 − r0R̄(q−1)u(t)

r2
0 + γ2 + ω2

1

,(14)

where R̄(q−1) = R(q−1)− ro.

In the same way, for the cost function defined as
(5), we obtain:

u(t) =
(1− λ)[(yd(t + d)− ω0)ω1 + γ1]

λr2
0 − (1− λ)[γ2 + ω2

1 ]
−

λr0(R̄(q−1)u(t)− ud)
λr2

0 + (1− λ)[γ2 + ω2
1 ]

. (15)

If we had not included the variance term in cost
functions, or if we were in a region of the state-
space where the variance was zero, the optimal
control law would be equation (14) or (15) with
γ1 = γ2 = 0. These terms make a control effort
penalty constant, or regulariser unnecessary in
many applications.

5. SIMULATION RESULTS

5.1 Nonlinear system 1 – linear inverse dynamics

The first nonlinear system represents a discrete
time system with linear inverse dynamics de-
scribed by the following equations:

f(x(t)) =
y(t)y(t− 1)(y(t− 2) + 1)
1 + y(t− 1)2 + y(t− 2)2

+ 2.8u(t− 1)

g(x(t)) = 1,

where x =
[
y(t) y(t− 1) y(t− 2) u(t− 1)

]T .
The polynomial R(q−1) in the cost function (3)
was selected as R(q−1) = 2.1− 2.1q−1; by simple
inspection it can be seen that these parameters
are enough for stabilizing the nominal inverse
dynamic. The results obtained for the nominal
system are shown in Figure 1. Next, we consider
the system as unknown and a system noise with
a variance σ2

n = 0.001. The adaptive controller
described by equation (14) is able, after some
transient, to bring the system to the set-point by
a bounded control signal, as seen in figure 2. In
this simulation, the controller considered just 10
initial data points.
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Fig. 1. Control of 1st nonlinear system with linear
inverse dynamics.
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Fig. 2. Adaptive control of 1st nonlinear system
with linear inverse dynamics. Control initi-
ated from k = 10. The upper plot shows the
expected output ye± 2 standard deviations.

5.2 Nonlinear system 2 – nonlinear inverse dynamics

The second nonlinear example considers a more
complex system described by the following non-
linear functions:

f(x(t)) =
y(t)y(t− 1)u(t− 1)(y(t− 2) + 1)

1 + y(t− 1)2 + y(t− 2)2

g(x(t)) =
1

1 + y(t− 1)2 + y(t− 2)2
,

where x =
[
y(t) y(t− 1) y(t− 2) u(t− 1)

]T .
We also assume that the set-point will always be
positive. In this case, it is not possible to use the
polynomial R(q−1) in cost function (3) to stabilize
the inverse dynamic, since for different output
references, it will be necessary to have different
coefficients. However, by using the cost function
(5) it is possible, with λ = 0.6, to have a stable
closed loop response for a set of set-points, as
shown in figure 3.
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Fig. 3. Control of 2nd nonlinear system with
nonlinear inverse dynamics
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Fig. 4. Adaptive control of 2nd nonlinear system
with nonlinear inverse dynamics. Control ini-
tiated from k = 10. The upper plot shows the
expected output ye± 2 standard deviations.

In order to simulate the adaptive controller, we
consider the system noise with a variance σ2

n =
0.001, and 10 initial data points, for starting the
controller. The value of ud was calculated from
the identified model. In this case, the system takes
more time to converge to the nominal response, as
seen in figure 4, since the control output depends
also on the estimation of ud. As in previous
example, the control signal is bounded and well
behaved.

5.3 Nonlinear system 3 – output multiplicities

Even though we have extended the class of system
to be controlled by this simple strategy, there is
still some work to be done. There are systems
having output multiplicities; i.e. for fixed steady
state values of the input variable, more than one
value of the output variable is produced, which
represent a more challenging control problem. Let
us consider the following (third) nonlinear system:
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Fig. 5. Static characteristics for the third system,
with output multiplicities.
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Fig. 6. Control of 3rd nonlinear system with non-
linear inverse dynamics and output multiplic-
ities.

f(x(t)) =
y(t)y(t− 1)y(t− 2)u(t− 1)(y(t− 2)− 1)

1 + y(t− 1)2 + y(t− 2)2

g(x(t)) =
1

1 + y(t− 1)2 + y(t− 2)2
;

As seen in figure 6, for a given input there are two
output values which can be reached by the same
input value. By using the cost function (5) with
yd = 1.8, ud = 3.74 and λ = 0.7, we have a stable
closed loop response but the system stabilizes at a
different point, figure 6. This result was expected,
since the system static characteristic has output
multiplicity, which leads to a non-unique solution
for the necessary condition given by ∂J2

∂u(t) = 0.
Notice that the system at the desired set-point is
unstable and has an unstable inverse as well, as
we pointed out in section 2 the proposed approach
may not work in these cases. For dealing with this
type of system, further refinements are necessary,
which are our current interest.



6. FINAL REMARKS

This work has proposed and analyzed the advan-
tages and limitations of a new cost function for
a GMV controller, which can be used to con-
trol a broader class of nonlinear system than the
conventional GMV cost function. For a system
having linear inverse dynamics, the conventional
GMV approach can be used. However, if the static
characteristics of the process do not have output
multiplicities and the inverse dynamic is nonlin-
ear, then the approach proposed provides a simple
way to control the process. The results obtained
by combining the GMV controller with a nonpara-
metric identification algorithm based on Gaussian
Process priors demonstrate the viability of this
approach for controlling an unknown nonlinear
system. These results can also be extended to
parametric models.

The use of Gaussian Process priors provides vari-
ance estimates for model predictions, which mean
we no longer need make the certainty equivalence
assumption. The GP also allows adaptive control,
where the model complexity can adapt the de-
grees of freedom continuously and flexibly online,
depending on the data, unlike parametric models,
which require a discrete model selection process.
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