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Abstract. The control of an unknown multivariable nonlinear process
represents a challenging problem. Model based approaches, like General-
ized Minimum Variance, provide a flexible framework for addressing the
main issues arising in the control of complex nonlinear systems. However,
the final performance will depend heavily on the models representing the
system. This work presents a comparative analysis of two modelling ap-
proaches for nonlinear systems, namely Artificial Neural Network (ANN)
and Gaussian processes. Their advantages and disadvantages as building
blocks of a GMV controller are illustrated by simulation.

1 Introduction

The control of a nonlinear multivariable system is a difficult task due to the num-
ber of variables involved and the complex coupling among inputs and outputs.
This problem is even worse if the model of the system is unknown.

The use of a flexible modelling technique, such as artificial neural networks
(ANN), for controlling Multivariable Nonlinear systems has been addressed from
a theoretical point of view and illustrated by simulation in [4]. A design method-
ology based on the idea of a model reference and ANN is also developed. Gener-
alized Minimum Variance control approach is a versatile and very popular for-
malism for designing linear self-tuning controllers [1], Gawthrop has also shown
that model reference and self-tuning controllers are closely related. The GMV
controllers can be enhanced to deal with nonlinear systems if nonlinear models
are considered. ANN models, in this context, were first proposed by [2]. In [3]
an extension to a multivariable system is presented, but in this case a linear
model extended by a ANN was considered. A typical assumption used in these
approaches is the ”Certainty Equivalence principle” under which the controller
is designed in terms of the identified model as if the model were the real process.

There has been an increase of interest in the use of Gaussian Process priors as
alternative to ANN [9,5,8]. Mackay describes in his seminal paper the similarity
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and differences of both approaches from a statistical perspective [5]. In [6] a MV
adaptive controller for single-input single-output system based on GP is pre-
sented. One of the main advantages of this modelling approach is that provides
a direct estimation of the output variance, which is normally ignored by other
methods. This is a relevant information for control design, since it allows the
design of self-tuning controllers without resorting to the Certainty Equivalence
principle.

Without losing generality, this work considers the MIMO systems as multi-
loop systems, consisting of several SISO systems where coupling effects are con-
sidered as disturbances.

This paper is organized as follows: section 2 describes the GMV approach
for control design. Section 3 presents briefly models used to approximate the
system and the resulting expression for GMV controllers. Section 4 illustrates by
performing simulations, the main characteristics of both modelling approaches.
Some final remarks are given in section 5.

2 Multivariable Generalized Minimum Variance
Controller

Let us consider the Multivariable nonlinear system described by the following
affine in the control structure:

Y(k + 1) = F (X(k)) + G(X(k))U(k) + Ξ(k) (1)

where Ξ is a vector of Gaussian zero mean random noise, Y(k) = [y1(k) . . . yn(k)]T ,
U(k) = [u1(k) . . . um(k)]T , n the number of outputs and m the number of inputs.
The vector X represents a vector with all the past information as described by:

XT (k) = [Y(k)T Y(k − 1)T . . .Y(k − r)T U(k − 1)T U(k − 2)T . . .U(k − s)T ]
(2)

The integers r and s are the number of delayed inputs and outputs respectively
necessary for describing the system. As pointed out in [2] the affinity property
represents more an advantage for designing the controller, rather than a mod-
elling constraint. In the generalized minimum variance control approach, the
performance index is:

J = E{E(k + 1)T QE(k + 1)} + U(k)T R(q−1)U(k) (3)

where E(k +1) = Yd(k +1)−Y(k +1), the matrix Q is definite positive matrix
and R is polynomial matrix in the backward shift operator q−1 . The expected
value of the quadratic error term can be expanded in terms of the variance and
the mean values as follows:

E{E(k + 1)T QE(k + 1)} = (4)
(Yd(k + 1) − µY (k + 1))T Q(Yd(k + 1) − µY (k + 1))

+
n∑

j=1

qjjvar{yj(k)} +
n∑

i=1

n∑

j=1

qijcovar{yi(k)yj(k)}
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where µY represents a vector having the mean value of each output; i.e. µY =
[µy1 . . . µyn

]T .
Without losing generality we will consider Q = diag[q1 . . . qn] and R(q−1) =

diag[R1(q−1) . . . Rn(q−1)]. The necessary condition for ui(k) being a minimum
of the cost function 3 is:

E(k + 1)T Q
∂E(k + 1)

∂ui(k)
+ Ri(q−1)ui(k) +

n∑

j=1

qjj
∂var{yj(k)}

∂ui(k)
= 0. (5)

3 Modelling Approaches

3.1 ANN Models

Every output of the nonlinear system is represented by a set of ANNs structured
as follows:

yj(k + 1) = NNj,0(k) +
m∑

l=1

NNj,l(k)ul(k) (6)

where

NNj,l(k) = Wj,lσ(Vj,lX(k)). (7)

The uncertainty associated with each output can be estimated by several stan-
dard confidence bound estimation algorithms [7], [10] which normally gave sat-
isfactory results. However, the size of the estimated confidence interval could be
biased [11]. A more important issue that hamper the application of these esti-
mates in a control algorithm is the fact that they depends on a Jacobian matrix
in a very complex form, making impossible their use in the control algorithm. In
addition, they are usually expressed as uncertainty of parameters (even though
the parameters often have no physical interpretation), and do not take into ac-
count uncertainty about model structure, or distance of current prediction point
from training data used to estimate parameters. Thus, we will consider the out-
puts of the ANN as if they were the real output; i.e. we will apply the “certainty
equivalence principle”. In this way, equation (5):

n∑

j=1

qjj

[
yd

j (k + 1) − NNj,0(k) +
m∑

l=1

NNj,l(k)ul(k)

]
NNj,i + Ri(q−1)ui(k) = 0

(8)

From this set of equations we can obtain the control as follows:

U(k) = M(k)−1




∑n
j=1 qjj

[
yd

j (k + 1) − NNj,0(k)
]
NNj,i(k) − R̄1(q−1)u1(k)

...∑n
j=1 qjj

[
yd

j (k + 1) − NNj,0(k)
]
NNj,m(k) − R̄m(q−1)um(k)




(9)
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M(k) =




r10 +

∑m
j=1 qjjNNj,1(k)2 . . .

∑m
j=1 qjjNNj,m(k)NNj,1(k)

...∑m
j=1 qjjNNj,1(k)NNj,m(k) . . . rm0 +

∑m
j=1 qjjNNj,m(k)2





(10)

where R̄i(q−1) = ri0 + ri1q
−1... is a polynomial of order p.

3.2 GP Models

Let us consider the jth output of the system be described as:

yj(k + 1) = Fj(φ(k)) + εi(k) (11)

where φ(k)T = [XT (k) UT (k)]T . Instead of parameterising the system (1) as a
parametric model, we can place a prior directly on the space of functions where
Fj is assumed to belong. A Gaussian process represents the simplest form of
prior over functions, we assume that any p points have a p-dimensional multi-
variate Normal distribution. Let the input and output sequence be stacked in the
following matrix ΦN and vector yN , respectively. We will assume zero mean, so
for the case with partitioned data yN and y(k +1) we will have the multivariate
Normal distribution,

[
yN

y(k + 1)

]
∼ N (0,CN+1) , CN+1 =

[
CN K
KT κ

]
. (12)

where CN+1 is the full covariance matrix. Like the Gaussian distribution, the
Gaussian Process is fully specified by a mean and its covariance function, so
we denote the distribution GP (µ, C). The covariance function C(φ(k), φ(l)) ex-
presses the expected covariance between y(k +1) and y(l+1). We can therefore,
infer y(l +1)’s from the N data pairs ΦN and yN ’s rather than building explicit
parametric models.

As in the multinormal case, we can divide the joint probability into a marginal
Gaussian process and a conditional Gaussian process. The marginal term gives
us the likelihood of the training data,

P (yN |ΦN ) = (2π)− N
2 |CN |− 1

2 e(− 1
2yT

NC−1
N yN). (13)

The conditional part of the model, which best relates to a traditional regression
model is therefore, the Gaussian process, which gives us the output posterior
density function conditional on the training data ΦN ,yN and the test points
φ(k),

P (y(k + 1)|ΦN ,yN , φ(k)) =
P (y(k + 1),yN )

P (yN )
=

1
(2πσ̂2

y)
1
2
e
− (y(k+1)−µ̂y)2

2σ̂2
y ,

where, as in the straightforward multinormal case described earlier,

µ̂yi = KT C−1
N yN var{yi} = σ̂2

y = κ − KT C−1
N K, (14)
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so we can use µ̂(φ(k)) as the expected model output, with a variance of σ̂(φ(k))2.
These expressions can be simplified [6] to obtain:

µ̂yj = ωj,0 +
m∑

l=1

ωj,lul(k) = ωj,0 + ΩT
j U(k) (15)

var{yj} = σj,0 +
m∑

l=1

γj,lu(l) +
m∑

i=1

m∑

l=1

σj,ilul(k)ui(k) (16)

= σj,0 + U(k)T Γj + U(k)T ΣjU(k). (17)

where σj,0, ωj,0, Γj , and Σj are all functions of time depending on the data
gathered up to time k and the set of parameters associated to the covariance
functions. Thus, the control signal is obtained as:

U(k) = M(k)−1




∑n
j=1 qjj

[
yd

j (k + 1) − ωj,0(k)
]
ωj,1(k) + γj,1 − R̄1(q−1)u1(k)

...∑n
j=1 qjj

[
yd

j (k + 1) − ωj,0(k)
]
ωj,m(k) + γj,m − R̄m(q−1)um(k)




(18)

M(k) =




r10 +
∑m

j=1 qjjωj,1(k)2 + σj,11 . . .
∑m

j=1 qjjωj,m(k)ωj,1(k) + σj,1m

...∑m
j=1 qjjωj,1(k)ωj,m(k) + σj,m1 . . . rm0 +

∑m
j=1 qjjωj,m(k)2 + σj,mm




(19)

Notice that equations (18) and (19) have additional terms compared to (9) and
(10). As pointed out in [6] these terms provide extra robustness in the face of
uncertainty in the output estimation.

4 Simulations

In order to illustrate the main characteristics of both models, the following mul-
tivariable nonlinear system was considered:

y1(k) = 0.7y1(k−1)y1(k−2)
1+y1(k−1)2+y2(k−2)2 + 10−4u2(k−1)

1+3y1(k−2)2+y2(k−1)2 + u1(k − 1) + (20)

.25u1(k − 2) + 0.5u2(k − 2)

y2(k) = 0.5y2(k−1)sin(y2(k−2))
1+y2(k−1)2+y1(k−2)2 + 0.5u2(k − 2) + .3u1(k − 2) + (21)

+u2(k − 1)(0.1u2(k − 2) − 1.5)

The nonlinear functions were approximated by four ANNs with 8 units in the
hidden layer and the following structure :

yi(k) = NNi,0(k − 1) + NNi,1(k − 1)ui(k − 1) i = 1, 2 (22)

where
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NNj,l(k) = Wj,l tanh(Vj,lX(k)) l = 0, 1 j = 1, 2 (23)

and X = [y1(k) y1(k−1) y2(k) y2(k−1) u2(k−1) u1(k−1)]T . The initial param-
eters were all set to small positive random numbers. The algorithm for updating
the parameters was a standard backpropagation algorithm. The weighting poly-
nomial associated with the control signal was selected as: R(q−1) = λ(1 − q−1);
i.e. weights the control deviations, the parameter was λ = .05. This model struc-
ture is suitable for on-line learning, as shown in the simulations. The polynomial
R(q−1) introduces a certain degree of regularization on the control signal, avoid-
ing extremely large excursions of the system output. Nevertheless, we can still
see in figure 1(a) some large values. The convergence is quite slow and after
800 sampling steps the controller does not quite compensate for the coupling
between the systems.
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Fig. 1. Simulation results for both models

The GP model considered two covariance function with the following struc-
ture for each output:

C1(φ1(i), φ1(j)) = C(X(i),X(j); Θ1,0) + u1(i)C(X(i),X(j); Θ1,1)u1(j) (24)
C2(φ2(i), φ2(j)) = C(X(i),X(j); Θ2,0) + u2(i)C(X(i),X(j); Θ2,1)u2(j)

where φ1(k) = [y1(k) y1(k − 1) y2(k) y2(k − 1) u2(k − 1) u1(k − 1) u1(k)]T ,
φ2(k) = [y1(k) y1(k − 1) y2(k) y2(k − 1) u2(k − 1) u1(k − 1) u2(k)]T , and

C(X(i),X(j); Θlz) = vlze
− 1

2

∑p
k=1 αk,lz(xk(i)−xk(j))2 + alz. (25)

The parameters of the covariance function were adjusted by maximizing a like-
lihood function two times during the simulation, at time k = 15 and k = 25.
In addition, the first ten samples were used to do an off-line identification and
after that the control loop was closed. Figure 1(b) shows these initial steps. It is
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worth pointing out that, in this case, with very few observations, the controller
is able to handle the system quite well. It can also be noticed that there are no
abrupt changes when the controller enters in operation; this is due to the extra
terms that provide a regularization of the control signal. As seen in figure 1(b)
the long run behaviour of the controller is also quite acceptable.

5 Conclusions

The comparative study carried out in this paper shows that GP models are
suitable models to be used as building blocks of a GMV controller. The use
of ANN, in this context, is limited since it is not possible to have a simple
expression of the uncertainty bounds associated with the output. The use of the
weighting polynomial plays an important role in smoothing the control action
in both approaches.
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