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Abstract
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1 Introduction

Multiple model approaches to the empirical modelling of nonlinear systems have
been of interest for many years, and have seen more widespread use in the last ten
years. We reviewed the literature in (Johansen and Murray-Smith 1997), and re-
cent years have seen a number of applications of the theory. However, subsequent
work such as (Shortenet al. 1999, Leith and Leithead 1999) showed that there
were problems with identification of parameters for off-equilibrium models, and
that interpretation of local model parameters could often be misleading. This was
generalised to the fuzzy modelling literature in (Johansenet al. 2000, Johansen
and Babuska 2002). Sparseness of data in off-equilibrium regions of a nonlin-
ear system’s state-space often leads to high variance in location and parameters
of off-equilibrium local models. A Markov chain Monte Carlo (MCMC) imple-
mentation of Bayesian multiple linear spline models which also provide suitable
variance predictions is presented in (Holmeset al. 1999). In (Murray-Smithet
al. 1999) we compared the multiple linear model approach with a nonparamet-
ric statistical model, the Gaussian process prior. Gaussian process priors gave
high accuracy in model fit, combined with an accurate prediction of variance,
which is especially important off equilibrium. Initially proposed by O’Hagan in
(O’Hagan 1978), Gaussian process priors have recently been used in regression
and classification (see recent reviews (Williams 1998, MacKay 1999, Williams
and Barber 1998)). Mixtures of Gaussian processes have appeared in various
forms (Shiet al.2002, Rasmussen and Ghahramani 2002, Lemm 1999). However,
a major disadvantage of the Gaussian process approach is that the implementation
of the model requires the inversion of anN�N covariance matrix, for sample size
N of training data, which has computational complexity of orderO(N3), making
the approach impractical for large data-sets.

A separate issue, but one often related to training set size, is how to deal with
repeated groups or batches of measurements, where there is heterogeneity among
the different replications (or groups). In many areas of empirical modelling we are
faced with repeated experiments on similar objects and processes. In this paper,
following on from (Shiet al.2002), we propose a hierarchical model which deals
with the issues of both grouped data and large training sets. A major advantage
of this model and algorithm, is that it reduces the size of the covariance matrices
being inverted, as they now correspond to the size of the training data for individ-
ual groups. As a consequence, the computational burden decreases dramatically.
Inference for classification models based on Gaussian processes requires some
extra development of the theory. Previous use of Gaussian processes in classifi-
cation for single batches of data includes (Williams and Barber 1998), based on
Laplacian approximations, and (Neal 1997), based on MCMC methods. This pa-
per extends the hierarchical mixture approach to classification problems involving
multiple batches.
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2 The mixture model for regression

The model has a hierarchical structure: a lower-level model is applied separately
to each group to model the basic structure of the data; the set of lower-level mod-
els have similar structures but with some mutual heterogeneity, i.e. informally,
the groups are similar but slightly different, and a higher-level model is used
among groups to model the heterogeneity. The Gaussian process prior model
for regression or classification is used as the low-level model separately for each
group. A mixture model, representing a good semi-parametric approach (see e.g.
(Titterington et al. 1985)), is used for modelling the hierarchical structure. A
hybrid MCMC algorithm is used for implementing inference.

2.1 Gaussian process priors

We are givenN data points of training datafyn;xn; n = 1; � � � ; Ng, wherex
is aQ-dimensional vector ofinputs(independent variables), andy is theoutput
(dependent variable, target). A Gaussian process prior for regression is defined
in such a way thaty(x) has a Gaussian prior distribution with zero mean and
covariance functionC(xi;xj) = Cov(Y (xi); Y (xj)). An example of such a
covariance function is

C(xi;xj; �) = v0 exp

0
@�1

2

QX
q=1

wq(xiq � xjq)
2

1
A+a0+a1

QX
q=1

xiqxjq+Æij�
2
v ; (1)

where� = (w1; � � � ; wQ; v0; a0; a1; �
2
v), andÆij = 1 if i = j and 0 otherwise.

This covariance function is often used in practice. The first term recognises high
correlation between the outputs of cases with nearby inputs, while the rest are a
bias term, a linear regression term and a noise term respectively; see (O’Hagan
1978) and (Williams and Rasmussen 1996) among others. More discussion about
the choice of covariance function can be found in (MacKay 1999).

Given a covariance function, the log-likelihood of the training data is

L(�) = �
1

2
log j	j �

1

2
yT	�1y �

N

2
log 2�; (2)

where	 = 	(�) is the covariance matrix ofy = (y1; � � � ; yN)
T with dimen-

sionN �N . The maximum likelihood estimate (MLE) of� can be calculated by
maximizing the above log-likelihood. An iterative optimization method, such as
the conjugate gradient method, can be applied. It requires the evaluation of	

�1,
which takes timeO(N3). Efficient implementation with particular reference to
approximation of the matrix inversion has been well developed; see for exam-
ple (Gibbs 1997). However, it still becomes time-consuming and impractical for
larger sets of training data (e.g.N > 1000).

If prior information is to be incorporated, a Bayesian approach is generally used.
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Let p(�) be the prior density function of� and letD = fy;xg be the training
data. Then the posterior density of� given the training data is

p(�jD) / p(�)p(yjx; �); (3)

wherep(yjx; �) is the density function of anN -dimensional multivariate nor-
mal distribution with zero mean and covariance matrix	(�), as defined by (1),
for example. Since the form of the covariance function is complicated in terms
of �, it is infeasible to do any analytical inference based on the above poste-
rior distribution. A Markov chain Monte Carlo approach is generally used; see
(Neal 1997, MacKay 1999).

One major goal in engineering and other fields is to predict an output based on the
training data. This problem can be solved thanks to the nice analytical properties
of Gaussian processes. Letx� be the test inputs. The predictive distribution can be
obtained by conditioning on the observed outputs of theN training cases. Since
the joint distribution for the outputs of the training cases and test cases is Gaussian,
the predictive distribution is also Gaussian. Let	� be the covariance matrix of
(y1; � � � ; yN ; y

�), wherey� denotes the output givenx�. It is partitioned as

	
� =

�
	  (x�)

 T (x�) C(x�;x�)

�
;

where (x�) = (C(x�;x1); � � � ; C(x�;xN))
T . The predictive distribution ofy�

is therefore a Gaussian distribution with mean and variance given by

ŷ� =  T (x�)	�1y; (4)

�̂�2 = C(x�;x�)�  T (x�)	�1 (x�): (5)

The mean (4), evaluated at the MLE of�, is generally used as a prediction of
y�. An alternative way of predictingy� is to investigate its Bayesian predictive
density, given byp(y�jD;x�) =

R
p(y�jD;x�; �)p(�jD)d�: The integral can be

approximated by using a Markov chain to sample the posterior densityp(�jD).
Suppose a set of samplesf�(1); � � � ; �(S)g is generated fromp(�jD). Then the
predictive density is approximated byp(y�jD;x�) ' 1

S

PS
s=1 p(y

�jD;x�; �(s)):
The predictive mean is therefore

PS
s=1E(y�jD;x�; �(s))=S, whereE(y�jD;x�; �)

is given by (4) for the particular value�. The above quantity can be used as a
prediction.

2.2 Hierarchical mixture models

The lower-level basic models described in the previous section are defined to
fit the data corresponding to each replication (within a group) separately. The
structures of the basic models are similar but with some mutual heterogeneity; a
higher-level model is defined to model the heterogeneity among different replica-
tions (groups). In this section, we define a mixture regression model of Gaussian
processes.
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Figure 1: Hierarchical structure of model showing howM indicator variables
select from multiple sub-models (each a Gaussian process) conditioned onM
subsets of training data. Rectangles indicate observed values.

Suppose that there areM different groups of data (replications). In themth group,
Nm observations are collected. Let the observations beymn; m = 1; � � � ;M; n =
1; � � � ; Nm. In a hierarchical mixture model of Gaussian processes for regression
we have that

ymnjzm = k � GPk(�); (6)

wherezm is an unobservable latent indicator variable. Ifzm = k is given, the
model for groupm is a Gaussian process regression modelGPk(�). A special
case which we use here corresponds toGPk(�) = GP (�k), i.e., for different
GPk(�), they have exactly the same structure and covariance function, but with
different values of the parameter�k. The association among the different groups
is introduced by the latent variablezm, for which

P (zm = k) = �k; k = 1; � � � ; K; (7)

for eachm. K is the number of components of the mixture model. We assume
thatK has a fixed given value in this paper.

We adopt the Bayesian approach. Let� = (�1; � � � ; �K) and� = (�1; � � � ; �K),
and letD be the collection of training data. The posterior marginal density of the
unknown parameters is given by

p(�;�jD) / p(�;�)p(Dj�;�); (8)

wherep(Dj�;�) =
QM
m=1

PK
k=1 �kp(ymj�k;xm). We assume that,a priori, �

and� are independent, and the�k are independent and identically distributed, so
that p(�;�) = p(�)

QK
k=1 p(�k). We will use the covariance function defined

in (1), and adopt the priors given in (Rasmussen 1996); see also (Neal 1997)).
As in the general setting of mixture models, we assume that(�1; � � � ; �K) has a
Dirichlet distribution, i.e.p(�1; � � � ; �k) � D(Æ; � � � ; Æ); with Æ = 1, for example.
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Obviously, it is almost impossible to do analytical posterior analysis based on the
marginal density (8), so we use a hybrid MCMC algorithm. The main idea is to
generate a sample of(�;�) = f�k; �k; k = 1; � � � ; Kg from its marginal posterior
density (8). From our study, we found that the implementation is much more
simple and efficient if the latent variablez = (z1; � � � ; zM) is augmented along
with the unknown parameter� of interest. Each sweep of this procedure, based
on the Gibbs sampler, involves the following steps: (a) updatez from p(zj�;D)
given the current value of�; and (b) update� from p(�jz;D) given the current
value ofz. The details are given in (Shiet al.2002).

2.3 Posterior analysis and prediction

Using the algorithm discussed in the last subsection, we generate samples of the
parameter of interest� and the latent indicator variablez from their posterior
distribution. Denote the set of samples byf�(s)1 ; � � � ; �

(s)
K ; z(s); s = 1; � � � ; Sg.

From this set of samples, we approximate the predictive distribution for the output
from a test inputx� in themth group by

p(y�jD;x�) =
Z
p(y�jD;x�; �; zm)p(�; zmjD)d�dzm

'
1

S

SX
s=1

p(y�jD;x�; �(s); z(s)m ): (9)

The predictive distributionp(y�jD;x�; �(s); z(s)m ) is Gaussian with mean (4) and
variance (5). In general, we use as a prediction the predictive mean, which is

ŷ�m = (ŷ�(1)m + � � �+ ŷ�(S)m )=S; (10)

whereŷ�(s)m is given by (4) for the particular value�(s). The variance associated
with the prediction can be calculated similarly:

�̂�2m =
SX
s=1

�̂�2(s)m =S +
SX
s=1

(ŷ�(s)m )2=S � (ŷ�m)
2; (11)

where�̂�2(s)m is given by (5).

If we do not know to which particular group the test inputx� belongs, we may
suppose that this test point is in themth group with probabilityM�1 for all m =
1; � � � ;M . Therefore, the prediction is

ŷ� =
MX
m=1

ŷ�m=M (12)

and the variance is

�̂�2 =
MX
m=1

�̂�2m =M +
MX
m=1

ŷ�2m =M � ŷ�2; (13)

whereŷ�m and�̂�2m are given by (10) and (11) respectively. Note that�̂�2 is larger
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than the average of the variances,
PM

m=1 �̂
�2
m =M . More formally, a so calledallo-

cation modelcan be used to model the indicatorz by the information about each
group, such as the height, weight, age, the level of injury, the particular technique
used in standing-up and so on of a patient in the FES example discussed in the
next subsection.

2.4 Illustrative regression example

To illustrate this approach we provide a data-set of 5 standing-up trajectories for
a single paraplegic patient stimulated by Functional Electric Stimulation (Kamnik
and Bajd 1999, Shiet al. 2002). Six hundred data points are recorded for each
standing-up. The trajectories of the body centre of mass (COM) are presented in
Figure 2(a), which shows that the basic model structure for the five trajectories
should be the same, while heterogeneity is also obvious. Thus, our hierarchical
mixture model of Gaussian processes seems well suited to this problem. From the
whole data-set of 3000 data points, we randomly select one third of the data points
as training data; the rest are used as test data. The sample sizes of training data
for the five groups are 186, 212, 211, 196 and 195 respectively. We use the hier-
archical mixture model (6) and (7) with two components. The MCMC algorithm
converges quickly (after about 600 iterations), and 80 samples are taken to predict
the test data using equation (10). The close fit of the predictions to the measured
data is shown in Figure 2(b). The root mean squared error is rmse=1.6020, while
the sample correlation coefficient isr = 0:9992. For comparison, the results for
a single Gaussian process regression model with the same covariance function (1)
were poorer, with rmse=2.7123 andr = 0:9973.
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(a) COM for 5 trajectories for one patient. Note that although the runs are
qualitatively similar, there is heterogeneity among groups. This would be
even more pronounced if multiple patients were included.
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(b) Prediction results, with2� intervals, and observed data.

Figure 2: Data and model predictions for a single patient
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3 Mixture models for classification

3.1 Latent Gaussian process model

Models for classification problems can be defined in term of a Gaussian process
model for latent variables that are associated with each case. For binary classifi-
cation, the target is from the setf0; 1g, and the input may be a vector of covariates
x. If we assume that the observation isfti;xi; i = 1; � � � ; ng, a logistic model can
be defined in terms of continuous latent variableyi as follows:

P (ti = 1jyi) =
1

1 + exp(�yi)
: (14)

Another important model is the following probit model:

ti =
�

0 if yi < 0;
1 if yi � 0: (15)

yi is also a continuous latent variable.P (ti = 1) = P (yi � 0). We will use the
logistic model in this paper.

The latent valuesyi are given a Gaussian process prior:

y = (y1; � � � ; yn)
0 � N(0;C): (16)

A possible covariance function is (Neal 1997)

C(xi;xj; �) = v0 exp

0
@�1

2

QX
q=1

wq(xiq � xjq)
2

1
A+ ÆijJ

2; (17)

whereJ defines the amount of ‘jitter’, which is similar to the noise in a regression
model, included for improving the efficiency of sampling.

For multiple classification problems, the targets are from the setf0; 1; � � � ; V �1g.
An analogous model can be defined usingV latent variablesyi;v; v = 0; � � � ; V �1
as follows

P (ti = vjyi;0; � � � ; yi;V�1) =
exp(�yi;v)PV�1

u=0 exp(�yi;u)
: (18)

Here, theyi;v are assignedV independent Gaussian process priors as in (16).

3.2 Hierarchical mixture models for classication

Using a similar idea to that described in section 2.2, we propose to use a hierarchi-
cal mixture model to fit a large data set with repeated measurements for classifica-
tion problems. Assume the data are obtained fromM groups. Let the observations
bef(tmi;xmi); m = 1; � � � ;M; i = 1; � � � ; Nmg. V latent variablesymi;v can be
defined by (18). We apply a latent Gaussian process model as a lower-level model
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separately to each group:

ym;v = (ym1;v; � � � ; tmNm;v)
0jzm = k � GP (�k) (19)

independently forv = 0; 1; � � � ; V �1, whereGP (�k) is a Gaussian process model
as in (16) with unknown parameter�k. The heterogeneity among the different
groups is modelled by a mixture model as in equation (7), and we assume that the
associated(�1; � � � ; �K) has a Dirichlet prior distributionD(Æ; � � � ; Æ).

3.2.1 Implementation of MCMC

The above model is analysed by the Bayesian approach, implemented by an MCMC
algorithm. The basic idea is to generate a set of samples of the unknown param-
eter� = f�k;v; k = 1; � � � ; Kg, and the latent variablesz = (z1; � � � ; zM) andy,
from their posterior distributions. One sweep of the MCMC algorithm includes
the following steps:

(a) updatez from p(zjy;�;D);

(b) update� from p(�jy; z;D);

(c) updatey from p(yj�; z;D).

Here,D = (t;x) is the training data. The details of the subalgorithms are as
follows.

(a) Updating z from p(zjy;�;D)

Let ck be the number of observations for whichzm = k, over allm = 1; � � � ;M .
We use a sub-Gibbs sampler in this step by introducing� = (�1; � � � ; �K). Simi-
larly to the discussion in (Shiet al.2002), one sweep of the procedure for sampling
z and� is as follows:

(i) samplezm from p(zm = kjy;�;�) / �k
QV�1
v=0 p(ym;vj�k);

(ii) sample(�1; � � � ; �K) from p(�1; � � � ; �K) � D(Æ + c1; � � � ; Æ + cK).

In this approach, a sample of� is also generated.
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(b) Updating� from p(�jy; z;D)

If the prior distributions of�k are independent for differentk, the conditional
density function of� is

p(�jy; z;D) =
KY
k=1

p(�kjy; z;D)

with

p(�kjy; z;D) / p(�k)
Y

m2fzm=kg

V�1Y
v=0

p(ym;vj�k):

Thus the�k’s are conditionally independent, and we can deal with each of them
separately. For a particulark, a hybrid MCMC algorithm similar to the one dis-
cussed in (Shiet al.2002) can be used.

(c) Updating y from p(yj�; z;D)

Let ym be the collection of(ym1;v; � � � ; ymnm;v) for all v = 0; � � � ; V � 1, then

p(yj�; z;D) =
MY
m=1

p(ymj�zm;D) /
MY
m=1

p(ymj�zm)p(tmjym): (20)

The conditional distributions of theym are therefore independent form = 1; � � � ;M .
Within groupm,

p(ymj�; z;D) / p(ymj�zm)p(tmjym)

/
V�1Y
v=0

p(ym;vj�zm)
nmY
i=1

exp(ymi;tmi)PV�1
v=0 exp(ymi;v)

:

This is log-concave forymi;v (i.e., the log-density is concave). A Gibbs sampler
with adaptive rejection sampling (Gilks and Wild 1992) is a very efficient way of
samplingym from the above log-concave density function.

3.2.2 Prediction

The predictive probability at a new pointx� can be expressed as

P (t� = 1jx�;D) =
Z
P (t� = 1jy�)p(y�jx�;D)dy�: (21)

A Monte Carlo method is used to generate a set of samplesfy�(s); s = 1; � � � ; Sg
from p(y�jx�;D), and to approximate the integral required for calculatingP (t� =
1jx�;D) by

SX
s=1

P (t� = 1jy�(s))=S; (22)
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whereP (t� = 1jy�(s)) is given by (14).

The predictive distribution of the latent variablep(y�jx�;D) can be approximated
by (9). Therefore, if we know that the test point belongs to themth group, the
above predictive distribution is approximately a Gaussian distribution with mean
(10) and variance (11); otherwise, the mean and variance are given by (12) and
(13) respectively.

Applying the model in (18) and the above procedure toV � 1 independent latent
variablesyi;v; v = 0; � � � ; V�1, we can deal with multiple classification problems.

3.3 Classification example

An example of a synthetic three-way classification problem is constructed to demon-
strate the use of hierarchical mixture models. A similar example was used in
(Neal 1997) to illustrate a model for a single group of data. The data are gener-
ated as follows:xij is generated from the uniform distribution over the interval
(0; 1) independently forj = 1; � � � ; 4. The class of the itemti is then selected as
follows:

ti =

8<
:

0 Dis(xi;x0) � 0:35;
1 otherwise, if0:8xi1 + 1:8xi2 � c0;
2 otherwise.

whereDis(�; �) is the two-dimensional Euclidean distance of(xi1; xi2) from the
pointx0 = (x01; x02). Note thatxi3 andxi4 have no effect on the class.

We construct a model with two mixture components with slightly different clas-
sification mechanisms, one corresponding tox0 = (0:4; 0:5) andc0 = 0:6, and
the other corresponding tox0 = (0:5; 0:4) andc0 = 1:0. After the mixture com-
ponent is selected, 100 cases are generated, of which 40 are used as training data
and 60 as test data. Repeating the above steps ten times, we generate a data-set
with 10 groups (test data 1 in Table 1). Moreover, 5 new groups of data, each
with 60 cases, are generated as test data (test data 2 in Table 1). Two groups of
training cases are plotted in Figure 3, corresponding to the two different mixture
component classifications. The variety among the different groups is significant.
This is typical of many real life classification examples, where groups would have
inherent variability (e.g. different patients in a sample). As in real life, we treat
the group information to the mixture model as missing.

The major computational burden is that of calculating the inverse covariance ma-
trix in the MCMC algorithm discussed in Section 3. To make the algorithm ef-
ficient, we update the values of indicatorsz using 20 Gibbs sampling scans, and
update the latent valuesy using 100 Gibbs sampling scans, since this adds little
to the computation time. In each iteration, five of these combined Gibbs sampling
and updates of parameters� were done. The algorithm is very efficient – it takes
about 27 minutes on an i686 linux PC to run 1000 iterations (5000 updates of
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(a) Group 1
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(b) Group 2

Figure 3: Two groups of training data each with 40 training cases. Each case is
plotted according to its values forxi1 andxi2. The three different symbols stand
for three different classes. Note that the figure reveals the substantial variation
between the two groups.

parameters�).
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Figure 4: Progress of the values ofwq; q = 1; � � � ; 4 in (17) for one mixture com-
ponent in MCMC simulation. The values are plotted on a log scale. The upper
two curves correspond toxi1 andxi2, and the others correspond toxi3 andxi4.

One of the methods used to assess the convergence of the MCMC simulation is
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to check the values of the parameters over the course of the simulation. Figure 4
shows the values ofw1 to w4 in (17) corresponding to one of the two mixture
components. It shows that equilibrium has been achieved very rapidly, after about
40 iterations (corresponding to a total of 200 updates of parameters�). The val-
ues ofw3 andw4 are very small, which reflect the fact thatxi3 andxi4 have no
effect on the class – an example of the automatic relevance detection inherent
to the Gaussian process approach to modelling. The progress of the parameters
corresponding to the other mixture component is very similar.

The predicted class for a test case is that corresponding to the largest predictive
probability, which is calculated by (22). Both (21) and (22), involve the predictive
distribution of the latent value, and this takes quite a complicated form even with
the approximation (9). In practice, we can calculate the predictive mean and vari-
ance, and use the Gaussian distribution with the same mean and variance as the
predictive distribution. We use 100 sample points after the process has reached
equilibrium for calculating the predictive mean and variance. After this, 100 sam-
ples are generated from the Gaussian distribution, and are used to calculate the
predictive probability (22). The final results are listed in Table 1, and the den-
sity functions for each class are shown in Figure 5. For test data 1, the overall
classification error rate is11:8% which is comparable to the error rate of13% in
(Neal 1997) for a single model with a single group of data set with the same sam-
ple size, 400 training data cases. Even for the previously unseen test data 2, which
includes 5 new groups of test data, the error rate is about20:1%.

Classification error rate
test data 1 test data 2

group index prob. group index prob.
1 0.1333 11 0.2333
2 0.1000 12 0.1428
3 0.1667 13 0.2784
4 0.1333 14 0.2002
5 0.1500 15 0.1516
6 0.1333
7 0.1000
8 0.1000
9 0.0500
10 0.1167

overall 0.1183 0.2012
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Figure 5: Overlaid plots of probability densityP (t = ijx) for each classi, plot-
ted separately for each group. The example training data plotted previously in
Figure 3 are superimposed for comparison.
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4 Discussion

This paper has presented a hierarchical model which helps decompose the prob-
lems of regression and classification for batch data, and includes simulations
which illustrate the approach. The hierarchical model is much more efficient for
problems involving natural groups of training data. The hierarchical model deals
appropriately with heterogeneity among different groups of data, and thereby im-
proves modelling accuracy. A future extension would be to add a level of mod-
elling to predict explictly the groups of new test data, also known as an allocation
model (Fern´andez and Green 2000).

The use of a Bayesian approach, implemented using MCMC methods, typically
leads to more robust models than optimisation-based approaches. This can be
seen in the variation in the probability densities for the various groups of data.

The classification work we have presented is useful in its own right, and is an
example of the use of the divide-and-conquer approach that motivates multiple
model methods. It has, however, potential for general use in existing multiple
model systems. Multiple models must have a blending or gating function which
selects a blend of sub-models, conditional on the current state. This is essentially
the same as a multi-class classification problem, so the Gaussian process classi-
fier presented in this paper could provide a new mechanism for representing the
blending function for multiple linear models, or multiple Gaussian processes. The
robustness of the Bayesian MCMC approach, coupled with the hierarchical model
makes this especially interesting for obtaining more realistic estimates of model
variance in sparsely populated areas of the state space, as found in transient, off-
equilibrium regions in dynamic systems.
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