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Abstract

Mixture models have very wide application. However, the problem of determining

the number of components, K say, is one of the challenging problems in this area.

There are several approaches in the literature for testing K for di�erent values. A

recent alternative approach is to treat K as unknown, and to model K and the mix-
ture component parameters jointly; see for example Richardson and Green (1997).

In this paper, we propose an approach based on a birth-death process. In contrast

with the approach in Stephens(2000), we make use of the latent indicators so that

the approach can be used to solve the problems with missing data when calculation

of the likelihood requires knowledge of the unobservable latent variables. Speci�-

cally, we use the method to analyse hidden Markov models with unknown numbers

of states. The model and the algorithm are illustrated by some real examples.
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1 Introduction

Mixture models �nd many applications in di�erent areas. The mixture model with a
known number of components has been studied for several decades; see a comprehensive
discussion by Titterington, Smith and Makov (1985), McLachlan and Basford (1988) and
McLachlan and Peel (2000). However, a challenging problem has remained { how to
select the number of components? A general approach is to test for di�erent values of K,
e.g. K = 2 against K = 3 by methods such as Bayes factors, likelihood ratio tests and
penalized likelihood methods; see for example Kass and Raftery (1995), Spiegelhalter et
al. (2002) and references therein. Those methods are generally quite complicated and
it is diÆcult to use them in practice. An alternative recent approach has been to treat
K as an unknown parameter, and to model K and the mixture component parameters
jointly. Phillips and Smith (1996) proposed an approach based on an iterative jump-
di�usion sampling algorithm. However, this approach requires the calculation of the jump

intensity, and this involves integrals for which analytical forms do not exist in general.
Using Green's (1995) reversible jump samplers, Richardson and Green (1997) proposed
a reversible jump MCMC (RJMCMC) method. They used a split-combine move as well
as a birth-death move to change the number of components of the mixtures. This has
become a familiar approach in the literature, although it is still a great challenge to extend
the approach to multivariate cases. Based on continuous time birth-death processes, a
birth-death MCMC (BDMCMC) algorithm has been proposed by Stephens (2000). This
method is easily implemented and can be used to deal with multivariate cases. Capp�e,
Robert and Ryd�en (2001) proved that RJMCMC converges to BDMCMC under certain
conditions.

However, BDMCMC as proposed in Stephens (2000) does not make use of the latent
indicators z, so it is not easily applied to problems with missing data where calculation
of the likelihood requires knowledge of the unobservable latent variable z. For example,
in the mixture models for spatially correlated data discussed in Green and Richardson
(2000), an allocation model is used to model the allocation variables z. The conditional
likelihood for the observation is easily calculated when the value of z is given. However,
it is very diÆcult to calculate the marginal likelihood, since it is an integral in terms of z.
Hidden Markov (chain) models (HMMs) provide another example in which the conditional
likelihood has a very simple form given z, but it is diÆcult to calculate the marginal
likelihood of the observations, and recursive methods have to be used; see Robert, Ryd�en
and Titterington (1999) and Hurn, Justel and Robert (2001). In this paper, a modi�ed
birth-death MCMC method is proposed such that the latent indicators z are used as
well as the mixture parameters. In our approach, a transformation of latent indicators is
de�ned; then a birth-death process is constructed such that the stationary distribution
is the posterior joint distribution of the latent indicators and the other parameters of
interest. The modi�ed BDMCMC can therefore be applied to a very wide class of models
and problems. We apply the approach speci�cally to HMMs in this paper.

The paper is organized as follows: a brief review of the BDMCMC method is given
in Section 2.1, and a modi�ed BDMCMC method is proposed in Section 2.2. Section
3 describes HMMs, and applies the approach to this model. Section 4 examines the
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performance of the method on several numerical examples. Some discussion is given in
Section 5. The detailed balance conditions are established and the limit theorem is proved
in the appendices.

2 Birth-death MCMC method

2.1 A Birth-death process

A basic mixture model for observations Y = (y1; � � � ; yn)
0 can be de�ned via a vector of

latent indicator variables Z = (z1; � � � ; zn)
0 as follows:

yijzi = k � fk(�j�k): (1)

The zi are unobservable, and are supposed independently drawn from the distribution

P (zi = k) = �k; i = 1; � � � ; K; (2)

in ordinary mixture models, or are distributed as a Markov chain in HMMs; see the details
in the next section. In a Bayesian framework, inference is based on the posterior distri-
bution of the unknown parameters (K;V ) and the latent vector Z, i.e., p(K;V ;ZjY ),
where V = (V1; � � � ; VK) and Vk = (�k; �k).

Stephens (2000) viewed each component of the mixture as a point in the parameter space,
and constructed a birth-death process as follows:

Birth-Death Process. Suppose we use a �xed birth rate �, and that the current state
is V = (V1; � � � ; VK) = f(�1; �1); � � � ; (�K ; �K)g,

1. Calculate the death rate k for the kth component, and the total death rate  =
1 + � � �+ K.

2. Simulate the time to the next jump from an exponential distribution with mean
1=(� + ).

3. Simulate the type of jump as a birth or a death with the birth rate Pb = �=(� + )
and death rate 1� Pb, and adjust V as follows:

i. If a birth occurs, then simulate V = (�; �) from the density b(V ; �; �). The
new state is V [ V = (V �

1 ; � � � ; V
�
K; V ), where V

�
k = (�k(1� �); �k).

ii. Otherwise, if a death occurs, the kth component is selected to die with prob-
ability k=. The new state is V nVk = (V �

1 ; � � � ; V
�
k�1; V

�
k+1; � � � ; V

�
K), where

V �
j = (�j=(1� �k); �j) for any j 6= k.

In the above procedure, b(V ; �; �) is the density function for simulating a new sample
(�; �) based on the current state V . The death rate is given by

k = �
b(V nVk;Vk)

K(1� �k)K�2

p(K � 1;V nVk)

p(K;V )

L(V nVk)

L(V )
; (3)
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where p(K;V ) is the prior density function of (K;V ). In general, we use the form

p(K;V ) = p(K)p(V jK) = p(K) p(�1; � � � ; �K) p(�1) � � �p(�K): (4)

We can take p(K) to be the density of a Poisson distribution with mean �0 or a discrete
uniform on fk = 1; � � � ; Kmaxg, for example with Kmax = 30. The prior density of � and �
can be chosen in the usual way, as in Richardson and Green (1997) and Stephens (2000).
L(V ) is the likelihood

L(V ) = p(Y jV ) =
nY
i=1

[�1f1(yij�1) + � � �+ �KfK(yij�K)]: (5)

It is obvious that the prior density and likelihood functions are invariant under permuta-
tion of the component labelling of components. By the proof in the appendix of Stephens
(2000), the stationary density function of the above birth-death process is the posterior
density p(K;V jY ) = p(K;�;�jY ), where � = (�1; � � � ; �K) and � = (�1; � � � ; �K).

If we take b(V ; �; �) = K(1 � �)K�1p(�), so that (�; �) are simulated from their prior
distributions and � has a uniform prior distribution, then the death rate (3) simpli�es to

k = �
p(K � 1)

Kp(K)

L(V nVk)

L(V )
: (6)

2.2 A modi�ed birth-death process

The birth-death process discussed in the last subsection does not use the latent indicators
Z. When the indicators Z are given, the likelihood for (V ;Z) has the form

L(V ;Z) = p(Y jV ;Z) =
nY
i=1

�zip(yij�zi); (7)

which is easily calculated for a very wide class of models and problems. The marginal
density p(Y jV ) in (5) involves integrals with respect to Z. It is very diÆcult to calculate
this integral for some problems, such as the mixture models for spatially correlated data
in Green and Richardson (2000), since Z itself is modelled by an allocation model. For
some problems, the likelihood (5) can be calculated but only by an indirect method,
as in the case of HMMs, for which a recursive method is used (see Robert, Ryd�en and
Titterington, 1999), that leads to a heavy computational burden. Thus, we will construct
a birth-death process that makes use of the latent indicators Z. The idea is to treat
(K;V ;Z) as unknown parameters, and construct a modi�ed birth-death process with the
posterior p(K;V ;ZjY ) as its stationary distribution.

The key point of the birth-death process discussed in the last section is to view the
posterior distribution of the unknown parameters as a marked point process. Let 
k

denote the parameter space of the mixture model with k components, ignoring the la-
belling of the components, and let 
 = [k�1
k. If 
k represents the parameter space of
V = fV1; � � � ; Vkg, then V is a set of k points in 
, and births and deaths in 
 are de�ned
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in Section 2.1. However, since the dimension of Z is n, we cannot extend the above
birth-death process directly to deal with parameters (V ;Z). Fortunately, this problem
can be solved by de�ning a new parameter variable. Let D be a K � n matrix whose
elements dki are de�ned as follows:

dki =
�
1 if zi = k
0 otherwise: (8)

Thus, the ith column ofD corresponds to zi. The value of zi dictates which element in the
column has value 1, the others all being equal to 0. Therefore, the parameter space of D
is dki 2 f0; 1g with restriction

P
k dki = 1 for each i. For the kth row, Dk = (dk1; � � � ; dkn),

the number of elements with value 1 is equal to the number of cases which zi is equal to
k. Thus, if the zi's are independent, we have

p((z1; � � � ; zn)j�) =
KY
k=1

�ckk =
KY
k=1

�dk1+���+dknk =
KY
k=1

p(Dkj�k): (9)

Let W = (W1; � � � ;WK) = ((�1; �1; D1); � � � ; (�K; �K; DK)) = ((V1; D1); � � � ; (VK; DK));
thenW is equivalent to (V ;Z). If 
K represents the parameter space ofW = fW1; � � � ;WKg,
then W is a set of K points in 
 = [k�1
k. A birth-death process can be constructed
for generating (K;W ) from the posterior distribution P (K;W jY ).

Modi�ed Birth-Death Process. Assume that the current state isW = (W1; � � � ;WK).
The basic procedure is the same as the birth-death process discussed in the last subsection,
but Step 3 is modi�ed as follows: 3. Simulate the type of jump as a birth or a death with
birth rate Pb = �=(� + ) and death rate 1� Pb, and adjustW as follows,

i. If a birth occurs, then simulate W = (�; �; D) from the density b(W ;W ). The new
state is de�ned by W [ W = (W �

1 ; � � � ;W
�
K;W ), with W �

i = (�i(1 � �); �i; D
�
i ),

where d�ij = 0, if dj = 1, and d�ij = dij, if dj = 0. Here d�ij and dj are the elements
of D�

i and D respectively.

ii. If a death occurs, the kth component is selected to die with probability k=.
The new state is WnWk = fW �

1 ; � � � ;W
�
k�1;W

�
k+1; � � � ;W

�
Kg with W �

i = (�i=(1 �
�k); �i; D

�
i ) for all i 6= k, where d�ij = dij, if dkj = 0, and d�ij = 1 with probability

�i=(1� �k), if dkj = 1.

The death rate is di�erent from (3). If the prior density takes the form

p(K;W ) = p(K)p(W jK) = p(K)p(�1) � � �p(�K)p(�jK)p(Dj�; K); (10)

the death rate is

k = (W nWk;Wk) = �
b(W nWk;Wk)

K(1� �k)K�2

p(K � 1;V nVk)

p(K;V )

L(W nWk)

L(W )

p(DnDkjV nVk)

p(DjV )
;

(11)
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where the likelihood L(W ) is given by (7), and p(K;V ) is the prior density given by
(4). If � takes the uniform prior distribution, b(W ;W ) takes the prior density of W , i.e.
p(W ) = p(DjV )p(V ) and p(V ) = K(1� �)K�1p(�), the death rate simpli�es to

k = �
p(K � 1)

Kp(K)

L(W nWk)

L(W )

p(DkjVk)p(DnDkjV nVk)

p(DjV )
: (12)

Theorem 1. The stationary distribution of the birth-death process de�ned above is the
distribution with posterior density p(K;W jY ) = p(K;�;�;ZjY ) in 
.

The proof is given in Appendix 1.

A possible problem for the birth-death process above is that the death rate may be
very high. To speed up the mixing of the sequence, the birth-death process can be run
hybridized with a Gibbs sampler. The basic algorithm is described as follows.

Birth-Death MCMC Algorithm. The current state is denoted by superscript (t) at
the tth iteration. Then the (t+ 1)th iteration is as follows:

(a) run a birth-death process for a �xed time t0 from the starting state (K(t);�(t);�(t))
to the �nal state (K(t0);�(t0);�(t0)) (t0 = t+ t0), and set K(t+1) = K(t0);

(b) sample (z1; � � � ; zn) from p(zjK;�;�;Y );

(c) sample (�1; � � � ; �K) from p(�jK; z;�;Y );

(d) sample (�1; � � � ; �K) from p(�jK; z;�;Y ).

Convergence of this hybrid birth-death MCMC method should be faster than that of the
method based on the birth-death process alone.

3 Application to hidden Markov models

3.1 Hidden Markov models and priors

A general hidden Markov model can be represented by a mixture structure (zi; yi) with
zi 2 f1; � � � ; Kg, and yijzi = k � fk(yi), as de�ned in (1), where the yi are conditionally
independent for i = 1; � � � ; n given the zi. Here fk(yi) is a density function with unknown
parameter �k. For example, it may be the density function of a normal distribution,

yijzi = k � N(0; �2k); (13)

as will be used in this section. Note that the unknown parameter in the kth component
density is �k = f�kg for this model. In HMMs, zi is not observed and is distributed as a
�nite-state Markov chain with a K �K transition matrix A = (akj), such that

akj = P (zi+1 = jjzi = k):
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In this HMM, if K is given, the unknown parameters are A and � = (�1; � � � ; �k)
0.

If we assume the number of states K is unknown, the joint density of all variables men-
tioned so far takes the form

p(K;A; �;Z;Y ) = p(Y jK;A; �;Z)p(K;A; �;Z) = p(Y jK; �;Z)p(K;A; �;Z):

The prior density takes the form

p(K;A; �;Z) = p(K)p(AjK)p(ZjA; K)p(�jK): (14)

From the discussion in Robert, Ryden and Titterington (2000), we take the following
speci�c priors. K has a prior uniform on f1; 2; � � � ; Kmaxg for a speci�ed Kmax. Given K,
we assume the rows ofA are independent, each with a Dirichlet distributionDK(Æ; � � � ; Æ);
we take Æ = 1. The �k are independent, each with the uniform distribution on (0; �).
For robustness, we assume that � has a negative exponential distribution with mean
30max jyij.

3.2 A birth-death process

First, we de�ne a K � n matrix D as in (8). Therefore, the unknown quantities in the
HMM are (K;W ) = (K; �;A;D) = (K;W1; � � � ;WK), where

Wk = (a1;k; � � � ; ak�1;k;ak; �k; Dk);

with ak = (ak;1; � � � ; ak;k) and Dk = (dk;1; � � � ; dk;n). The parameter space of �k is Rq,
where q is the dimension of �k. The matrix A is a transition matrix with parameter
space [0; 1]K�K with the restrictions

P
j akj = 1 for each k. Let 
k be the parameter

space ofW given k. A birth-death process is then constructed in 
 = [k�1
k such that
the stationary density function is the posterior density p(K;W jY ).

From (14), the prior density has the form

p(K; �;A;D) = p(K)p(�1) � � � p(�K)p(AjK)p(DjA; K): (15)

We assume that the prior distribution is invariant under permutation of the component
labels. The likelihood ofW is

L(W ) = p(Y jW ) =
nY
i=1

fzi(yij�zi): (16)

It is obvious that L(W ) is invariant under permutation of the component labels.

If the current state is W 2 
K , the process is constructed such that it jumps to 
K+1

with a �xed birth rate �, or jumps to 
K�1 with death rate . When the process jumps
from 
K to 
K+1, we should generate

W = (a1;K+1; � � � ; aK;K+1;aK+1; �K+1; DK+1); (17)
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where aK+1 = (aK+1;1; � � � ; aK+1;K+1) and DK+1 = (dK+1;1; � � � ; dK+1;n). When W is
generated, we de�ne

W [W = (�1; � � � ; �K ; �K+1;A [ A;D [DK+1);

where A = (a1;K+1; � � � ; aK;K+1;aK+1),

A [ A =

0
B@

� � � a1;K+1
a�kj
� � � aK;K+1

aK+1;1 aK+1;K aK+1;K+1

1
CA

with a�kj = (1� ak;K+1)akj; D [D is a (K +1)� n matrix with DK+1 as its last row, and
the other elements d�kj are de�ned as d�kj = 0, if dK+1;j = 1, and d�kj = dkj, if dK+1;j = 0.

If the kth component is selected to die, we de�ne

W nWk = (�1; � � � ; �k�1; �k+1; � � � ; �K;AnAk;DnDk);

where AnAk is a (K � 1)� (K � 1) matrix with elements ak0j=(1� akj) for all k
0 6= k and

j 6= k. DnDk is a (K� 1)�n matrix with elements d�k0j, where, for all k
0 6= k, d�k0j = dk0j,

if dkj = 0, and d�k0j = 1 with probability �k0=(1� �k), if dkj = 1.

Along the lines of the modi�ed birth-death process discussed in Section 2.2, a birth-death
process for HMMs can be de�ned as follows:

Birth-Death Process. Suppose we use a �xed birth rate � and that the current state
isW = (�1; � � � ; �K ;A;D).

Steps 1 and 2 are the same as the �rst two steps discussed in Section 2.1.

3. Simulate the type of jump as a birth or a death with birth rate Pb = �=(� + ) and
death rate 1� Pb, and adjust W as follows:

i. if a birth occurs, then simulate W from the density b(W ;W ), so that the new
state is W [W , which belongs to 
K+1;

ii. otherwise, if a death occurs, the kth component is selected to die with proba-
bility k=, so that the new state isW nWk which belongs to 
K�1.

Theorem 2. If, in the birth-death process de�ned above, the death rate takes the form

k = �
b(W nWk : Wk)

K
Q
j 6=k(1� aj;k)K�2

L(W nWk)

L(W )

p(K � 1;V nVk)

p(K;V )

p(DnDkjV nVk)

p(DjV )
; (18)

then the stationary distribution of the birth-death process is the distribution with poste-
rior density function p(K;W jY ).

The proof is given in Appendix 2.

The W in (17) is generated from the density function b(W ;W ). One example is

b(W ;W ) = p(a1;K+1) � � �p(aK;K+1)p(aK+1)p(�K+1)p(DK+1jA [ A):
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Wemay generate dK+1;i independently from its stationary probability �K+1, which satis�es

� = �A:

The density p(ai;K+1) may be chosen to be the density function of a Beta(1; K) distribu-
tion, and p(aK+1) may be taken to be the density function of the Dirichlet distribution
DK+1(Æ; � � � ; Æ).

3.3 Birth-death MCMC algorithm

To speed up the mixing of the algorithm, we combine the birth-death process with the
Gibbs sampler. The details of one sweep of the birth-death MCMC algorithm is therefore
as follows:

Hybrid BD-MCMC Algorithm. Suppose the current state is denoted by superscript
(t) at the tth iteration. Then a sweep of the next iteration is as follows:

(a) run the birth-death process for a �xed time t0 starting from the state (K(t);A(t); �(t);D(t)),
to give the �nal state (K(t0);A(t0); �(t

0);D(t0)), where t0 = t + t0, and update K to
K(t0);

(b) update the transition probability matrix A;

(c) update the parameter � = (�1; � � � ; �K);

(d) update the allocations Z;

(e) update the hyperparameter �.

In steps (b) to (e), the number of components is �xed at the value updated in step (a),
and the related variables are updated from the distribution conditioned on the current
values of all other variables. Thus, steps (b) to (e) are exactly the same as steps (a) to
(d) of the MCMC procedure proposed in Robert, Ryden and Titterington (2000). We
omit the details here; the related results can be found in there and in Robert, Celeux and
Diebolt (1993).

4 Examples

4.1 An example of HMM: Standard and Poors 500 data

The dataset used here consists of 1700 observations of the Standard and Poors 500 stock
index during the 1950s. These data were previously analysed in Robert, Ryden and
Titterington (2000). The data are presented in Figure 1. We used HMMs to model this
dataset, and the Bayesian estimate of its marginal density is presented in Figure 2. For
comparison, a kernel estimate is also presented in this Figure. They are quite similar to
each other.
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Figure 1: Standard and Poors 500 data.
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Figure 2: Standard and Poors 500 data: Bayesian estimate (|) and kernel estimate (- -
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4.2 An example of multivariate case: Old Faithful Data

We now consider, as a multivariate example, Old Faithful data, which has been discussed
by Ripley (1977), Stephens (2000) and others. There are data on 272 eruptions of the
Old Faithful geyser in the Yellowstone National Park, as plotted in two dimensions in
Figure 3. One is the duration in minutes of the eruption, and the other is the waiting
time in minutes before the next eruption. There are two clear groups, and each seems
have a little bit deviation from normality. A mixture model with three or four normal
components should �t the data.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
40

50

60

70

80

90

100

duration

w
ai

tin
g

Figure 3: Old Faithful Data: scatter plot.

We use a mixture model with unknown number of components as discussed in Section 2.
Each component has normal distribution with mean �k and covariance matrix �k. We
take the same prior distributions as the settings for variable-� priors in Stephens (2000),
and then the conditional distribution in steps (b) to (d) at the end of Subsection 2.2
can be found in Stephens' paper. The di�erence of the procedure here is that we use the
modi�ed Birth-Death process, i.e., we consider indicators z in Birth-Death process as well
as the other unknown components. In practice, we �nd that it will speed up the mixture
of the processes if we generate a new D from p(DjV;Y ).

To study the sensitivity to the choice of priors, we take di�erent priors for the number of
mixture components K. In this paper, we present the results with three di�erent priors.
One is the uniform distribution ranged from 1 to 30, and the other two are the Poisson
distributions with parameter � = 1 and � = 3. The sampled values of K are presented in
Figure 4, and the probability distributions of K are given by Figure 5. We can see that
the posterior distributions of K are quite similar for all three di�erent priors. The values
3 and 4 are most often sampled, which matches our previous informal analysis from the
original data in Figure 3.

Figure 6 presents contour plots of the bivariate predictive density. Apparently, all of them
�t the two groups of data in Figure 3 quite well. The di�erences between the predictive
densities from the three di�erent priors are very minor.
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Figure 4: Old Faithful Data: sampled values of K. Left: uniform prior for K; Middle:
Poisson prior for K with � = 1; Right: Poisson prior for K with � = 3.
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Figure 5: Old Faithful Data: probability distribution for K. Left: uniform prior for K;
Middle: Poisson prior for K with � = 1; Right: Poisson prior for K with � = 3.
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Figure 6: Old Faithful Data: contour plots of predictive density. Left: uniform prior for
K; Middle: Poisson prior for K with � = 1; Right: Poisson prior for K with � = 3.
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5 Discussion

The modi�ed BDMCMC proposed in this paper can be viewed as an extension of the
original BDMCMC proposed in Stephens (2000). It can be applied to complex problems
including problems involving multivariate cases where it is diÆcult to calculate the likeli-
hood of the observations without making use of the missing latent variable z, as in case of
the HMMs discussed in this paper. Moreover, for the mixture model with the allocation
model, such as the model discussed in Green and Richardson (2000), it is essential to use
the modi�ed BDMCMC since the marginal likelihood involves an integral.

If the marginal likelihood can be calculated easily without knowledge of z, we agree
with the point of view indicated in Capp�e, Robert and Ryd�en (2001) that the original
BDMCMC approach without using z may be more e�ective. As a result of the smaller di-
mensionality of the parameter space after marginalising over z, the mixing of the iterative
processes in BDMCMC is faster than by the modi�ed BDMCMC or by RJMCMC.

We applied the approach to HMMs with a normal distribution (13) used for the 'noise'
model. The discussion in Section 3 shows that it is easy to extend the approach to the
case of normal distributions with nonzero means, i.e., N(�k; �

2
k) in (13). It can also be

applied to HMMs with other types of density function, such as the model discussed in
Boys, Henderson and Wilkinson (2000). The only di�erence is that equation (1) in their
paper is used to calculate the conditional likelihood in (16).
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Appendix 1. The proof of Theorem 1

The parameters are (K;W ) = (K;V ;D) = (K;�;�;D). The parameter space of � is
RQ. The parameter space of � is [0; 1]K with the restriction �1 + � � �+ �K = 1. Each dki
belongs to f0; 1g, subject to

P
k dki = 1. Let 
K be the parameter space of the mixture

model with K components. Since the likelihood L(�) in (7) and the prior distribution p(�)
in (10) are invariant under permutation of the component labels, we ignore the labelling of
the components for 
k. Moreover, we write 
K = 
V

K 

D
K , where 


V
K and 
D

K represent
the parameter spaces of V and D respectively. Let 
 = [k�1
k.

A birth-death process is de�ned in Section 2.2. When the current state is W 2 
K , the
process jumps to 
K+1 with birth rate �(W ), and jumps to 
K�1 with death rate Æ(W ).

When a birth occurs, the birth kernel T
(K)
B (W ;G) is the probability that the process

jumps to the particular set G 2 
k+1. It satis�es

T
(K)
B (W ;G) =

Z
(�;�)2GV

X
D2GD

b(W ; (�; �; D))d��(d�);

where �(d�) is the probability measure induced by p(�), and GV and GD are the parts
of the set f(�; �; D) : W [ (�; �; D) 2 Gg corresponding to (�; �) and D respectively.

Similarly, when a death occurs, the death kernel T
(K)
D (W ;F ) is the probability that the

process jumps to the particular set F 2 
K�1, which satis�es

T
(K)
D (W ;F ) =

X
(�;�;D):W n(�;�;D)2F

(W n(�; �; D); (�; �; D))

(W )
;

where (W ) is the total death rate.

It is well known that the stationary distribution of the birth-death process is p(K;W jY )
if the following detailed balance conditions are satis�ed (Preston, 1976; Stephens, 2000):Z

F
�(W )d�K(W ) =

Z

K+1

(U)T
(K+1)
D (U ;F )d�K+1(U); (19)

for K � 0 and F � 
K, andZ
G
(U)d�K+1(U) =

Z

K

�(W )T
(K)
B (W ;G)d�K(W ); (20)

for K � 0 and G � 
K+1, where �K is the probability measure induced on 
K by the
posterior distribution p(K;W jY ). Here U has the same meaning as W . We use the
di�erent notation to distinguish elements in the space 
K from those in 
K+1.

The left-hand side of the detailed balance condition (19) can be written asZ
F
�(W )d�K(W ) =

Z
F
�(W )dp(K;W jY )

= c
Z
F
�(W )L(W )dp(K;W ) = c

Z
FV

X
D2FD

�(W )L(W )p(DjV )dp(K;V )

= c
Z
FV

Z
R

Z 1

0

X
dk2f0;1g

b(W ;W )
X
D2FD

�(W )L(W )p(DjV )dp(K;V )d�d�; (21)
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where c is the normalising constant of the posterior density. The last equation comes
from the fact that the integral of b(W ;W ) is equal to one. The right-hand side of (19)
can be written as

R =
Z

K+1

(U)T
(K+1)
D (U ;F )d�K+1(U)

=
Z

K+1

X
W :UnW2F

(UnW :W )dp(K + 1;U jY )

= c�
Z

K+1

K+1X
i=1

I(UnWi 2 F )(UnWi :Wi)L(U)dp(K + 1;U):

Since the integrand is invariant under permutation of the component labels, and if we
writeW = UnW , we have

R� = R=(c�(K + 1)) =
Z

K+1

I(W 2 F )(W : W )L(W [W )dp(K + 1;W [W )

=
Z

V
K+1

X
D[D2
D

K+1

I(V 2 F V ;D 2 FD)(W :W )L(W [W )

�p(D [DjV [ V )dp(K + 1;V [ V )

=
Z

V
K+1

X
dk2f0;1g

X
D2FD

I(V 2 F V )(W : W )L(W [W )p(D [DjV [ V )dp(K + 1;V [ V ):

Note that, since (V [V ) = [((1��)�1; �1); � � � ; ((1��)�K; �K); (�; �)] and �1+� � �+�K =
1, we have

dp(K + 1;V [ V ) = p(K + 1;V [ V )(1� �)K�1d�d�d�d� = Jdp(K;V )d�d�;

where

J =
p(K + 1;V [ V )

p(K;V )
(1� �)K�1:

By the above equation, R� can be expressed as

R� =
Z
R

Z 1

0

Z
FV

X
dk2f0;1g

X
D2FD

(W : W )L(W [W )p(D[DjV [V )Jdp(K;V )d�d�: (22)

If we compare (21) and (22), the detailed balance condition (19) is satis�ed when the
following equation holds:

c�(K+1)(W : W )L(W [W )p(D[DjV [V )J = cb(W ;W )�(W )L(W )p(DjV ): (23)

This leads to (11). Note that c and c� are the normalising constants for the related
posterior distributions. As a result of the invariance under permutation of the component
labels, c and c� can be ignored when we calculate the death probability (11). The proof
that condition (23) implies the detailed balance condition (20) is similar.
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Appendix 2: The proof of Theorem 2

Let V = (A; �). Then the parameters are (K;W ) = (K;V ;D) = (K;A; �;D). As de-
�ned in Section 3.2, 
K is the parameter space of the mixture model with K components,
and 
 = [k�1
k. Since the likelihood L(�) in (16) and the prior distribution p(�) in (15)
are invariant under permutation of the component labels, we ignore the labelling of the
components for 
K . Moreover, we write 
K = 
V

K

D
K , where 


V
K and 
D

K represent the
parameter spaces of V and D respectively. By a discussion similar to that in Appendix
1, the stationary density function of the birth-death process de�ned in Section 3.2 is the
posterior density p(k;W jY ) if the following detailed balance conditions are satis�ed (see
also equations (8.8) and (8.9) in Preston, 1976):

Z
F
�(W )d�K(W ) =

Z

K+1

X
k 2 f1; � � � ;K + 1g

UnWk 2 F

(UnWk;Wk)d�K+1(U); (24)

for K � 0 and F � 
K, and

Z
G

K+1X
k=1

(UnWk;Wk)d�K+1(U) =
Z
W [W2G

�(W )b(W ;W )d�K(W ); (25)

for K � 0 and G � 
K+1, where �K is the probability measure induced on 
K by the
posterior distribution p(K;W jY ). This can be expressed by Bayes Theorem as

p(K;W jY ) = cL(W )p(K;W );

where c is the normalising constant. It is obvious that p(K;W jY ) is invariant under
permutation of the component labels.

We now study the detailed balance conditions. The left-hand side of (24) can be expressed
as

Z
F
�(W )d�K(W ) =

Z
F
�(W )dp(K;W jY )

= c
Z
F
�(W )L(W )dp(K;W ) = c

Z
FV

X
D2FD

�(W )L(W )p(DjV )dp(K;V ): (26)

Since the posterior density p(K+1;U jY ) is invariant under permutation of the component
labels, the right-hand side of (24) can be derived as

R =
Z

K+1

X
k 2 f1; � � � ;K + 1g

UnWi 2 F

(UnWk;Wk)dp(K + 1;U jY )

= c�(K + 1)
Z
UnWK+12F

(UnWK+1;WK+1)dp(K + 1;U jY ):
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Let W = UnWK+1. We then have

R� = R=(c�(K + 1)) =
Z

K+1

I(W 2 F )(W : W )L(W [W )dp(K + 1;W [W )

=
Z

V
K+1

X
D[D2
D

K+1

I(V 2 F V ;D 2 FD)(W :W )L(W [W )

�p(D [DjV [ V )dp(K + 1;V [ V )

=
Z

V
K+1

X
D2RD

X
D2FD

I(V 2 F V )(W : W )L(W [W )p(D [DjV [ V )dp(K + 1;V [ V );

where RD is the parameter space ofD, corresponding to which each component ofD takes
a value from f0; 1g. Note that, since (V [V ) = [�1; � � � ; �k; �;A

�; A] and ak1+� � �+akK = 1,
we have

dp(K + 1;V [ V ) = p(K + 1;V [ V )[
KY
k=1

(1� ak;K+1)
K�1]d�dAd�dA

= Jdp(K;V )d�dA;

where

J =
p(K + 1;V [ V )

p(K;V )
[
KY
k=1

(1� ak;K+1)
K�1]:

By the above equation, R� can be expressed as

R� =
Z
R�

Z
RA

Z
FV

X
D2RD

X
D2FD

(W : W )L(W[W )p(D[DjV [V )Jdp(K;V )d�dA; (27)

where R� is the parameter space of �, RA is the parameter space of A and each component
of A takes a value from [0; 1] with some restrictions. Note that the integral of b(W ;W )
is equal to one over the space R� � RA � RD. Similarly to the derivation in equation
(21), we introduce this fact into (26) and compare it with (27), showing that the detailed
balance condition (24) is satis�ed when the following equation holds:

c�(K+1)(W : W )L(W [W )p(D[DjV [V )J = cb(W ;W )�(W )L(W )p(DjV ): (28)

The death rate is therefore expressed by (18).

By a similar proof, (18) implies the other balance condition (25).
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