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Abstract—We present a novel approach for quantifying the
impact of uncertainty in manual control, based on informa-
tion and control theories and utilizing the information-theoretic
capacity of empowerment, a task-independent universal utility
measure. Empowerment measures, for agent-environment systems
with stochastic transitions, how much influence, which can be
sensed by the agent sensors, an agent has on its environment.
It enables combining different types of disturbances, arising in
human-machine systems (i.e. noise, delays, errors, etc.), into one
single measure. We expand empowerment to manual control,
demonstrate its application in the field of HCI and evaluate it in a
user study. Results showed that empowerment is strictly monotonic
in relation to the means of standard performance metrics total
time off-target, perceived uncertainty, perceived performance and
frustration, which suggests its potential in making theoretical
predictions of other measures. Loss of empowerment implicated
interesting trends in activity levels, which open a new area for
future work. Results suggest the potential empowerment has in
providing better theoretical foundations for the science of HCI.

Index Terms—Empowerment, Uncertainty, Human-Computer
Interaction, Human Factors, Information theory, Manual control.

I. INTRODUCTION

A system’s usability depends on various sources of uncer-
tainty, which have an impact on the design process. Transmis-
sion delays and measurement noise create uncertainty about the
actual current state of a human–machine system. The longer
the delays and higher the noise, the higher the uncertainty.
This imposes decisions on designers when trying to optimize
system’s performance. Switching between different types of
networks and peaks in the traffic create variability in trans-
mission delays. Systems have processing bottlenecks creating
varying delays in different processes. These disturbances are
largely unpredictable from human perspective and create the
perception of slow and unresponsive devices or applications.
Uncertainty poses specific risks and requires detailed sensitiv-
ity analysis, for which we need proper tools and measures. The
quality of control depends on feedback that must reflect the
uncertainty of system beliefs. Interfaces should be honest and
work with the uncertainty, not just filter it out [10]. Appropriate
use of uncertain feedback can lead to smoother interaction,
with user behaviour regularised appropriately [7], [8].

Lag is recognized as a major bottleneck for usability [9]. To
compensate for varying delays in current networks designers
need to optimize systems for speed, reliability and overall user
experience. There is a trade-off between these factors, since if

we would only optimize for speed, the system would behave
erratically as delay varies or it would become sluggish if we
artificially increased the inherent delay for the sake of stability.
Analyzing this trade-off is not a trivial task and requires proper
tools. We have objective measures for human performance,
as success rate or completion time and subjective ones, as
user experience questionnaires (e.g. NASA-TLX [2], a multi-
dimensional workload assessment tool). These tools, however,
usually require extensive studies, which come at a price and
still pose certain risks regardless of the evaluated point density.

To evaluate system’s usability in various environmental
conditions we could take the approach of empowerment [5]
as an objective measure reflecting how much control the user
has in the course of interaction. Empowerment could provide
a good analytical tool for performance tuning by revealing
critical salient points in the system1 design while avoiding
brute-force testing. Analyzing the trends and the gradients
on the empowerment curve could give direct insight into
the underlying properties and provide confidence regions for
the system’s parameters. These insights will help designers
to make a better choice for systems to evaluate. Using the
empowerment measure as a first step in the system’s analysis
will improve quality of design, and at the same time reduce
risk and evaluation costs.

II. BACKGROUND

Our view on the fundamentals of interaction is that users’
behaviour is about them controlling their perceptions [11]. The
more control they have over their perceptions the more em-
powered they are by the human-machine interface to achieve
their goals. Conversely, they are less empowered if they cannot
perceive the effect of their decisions.

The term empowerment was introduced in its technical
sense by [6], as an information-theoretic ‘universal utility’,
representing the channel capacity between an agent’s actions
and its sensory observations in subsequent time steps. Em-
powerment is defined for stochastic dynamic systems, where
transitions arise as the result of making a decision, such
as an agent interacting with an environment. It is based on
the perception-action loop of the agent-environment coupling
unrolled over time and is fully specified by the dynamics (i.e.
transition probabilities). It captures the amount of information

1For systems where variability is reasonably well understood.



that can be injected by an agent into its environment and
then perceived by its sensors, and is defined as the channel
capacity from the sequence of actions At, At+1, ..., At+n−1 to
the perceptions St+n after an arbitrary number of time steps

C(At, ..., At+n−1 → St+n) = sup
p(~a)

I(At, ..., At+n−1;St+n)

with p(~a) being the probability distribution function of the
action sequences (~a = (at, ..., at+n−1)). For simplicity and
without loss of generality, we will consider single actions,
which however can consist of action sequences as well.

We assume discrete state (X ⊂ Z) and action (A =
{1, ..., NA}) spaces. The transition function is given in terms
of a density p(xt+1|xt, at), which denotes the probability of
going from state xt to xt+1 when making decision at. Let X ′
denote the random variable associated with x′ given x and let
the choice of a particular action a be modelled by random
variable A′. The empowerment E(x) in state x (given the
transition density p(x′|x, aν)) is then defined as the Shannon
channel capacity between A′, the choice of an action sequence,
and X ′, the resulting successor state (E : X → R≥0)

E(x) = max
p(a)

I(X ′;A′|x) = max
p(a)
{H(X ′|x)−H(X ′|A′, x)}.

The mutual information maximization is with respect to all
possible distributions p(a) over A. The entropies are given by

H(X ′|x) = −
∑
x′∈X

p(x′|x) log p(x′|x),

H(X ′|A′, x) = −
NA∑
ν=1

p(aν)H(X ′|A′ = aν , x)

= −
NA∑
ν=1

p(aν)
∑
x′∈X

p(x′|x, aν) log p(x′|x, aν). (1)

For a simple example2 in the context of HCI consider a pop-
up window with ’OK’ and ’Cancel’ buttons and the uniform
distribution of p(a) overA. In the deterministic case when both
actions have distinct outcomes p(x1|x, a1)=p(x2|x, a2)=1, us-
ing p(x′|x)=

∑NA

i=1 p(x
′|x, ai)p(ai), we get H(X ′|x)=log(2)

and H(X ′|A′, x)=0, hence I(X ′;A′|x)=log(2)≈0.69, which
is also the maximum (E(x)). If we add uncertainty to
the pdf, e.g. p(x1|x, a2)=0.1 and p(x2|x, a2)=0.9, we get
H(X ′|x)≈0.69, H(X ′|A′, x)≈0.16 and I(X ′;A′|x) decreases
to 0.53. If we increase uncertainty to the maximum
p(x1|x, a1)=p(x2|x, a2)=p(x1|x, a2)=p(x2|x, a1)=1/2 we get
H(X ′|x)=H(X ′|A′, x)=log(1/2) or I(X ′;A′|x)=0, again a
maximum meaning zero empowerment – here we still have
a binary option to make a decision, but we cannot perceive
the difference in the outcomes, since both choices lead to the
same states as the transition probabilities of the two actions
completely overlap. Intuitively, empowerment measures the
number of actions available to the user on a logarithmic scale,
the outcome of which can be perceived. Empowerment is zero
if, regardless of the action, the outcome will be the same and
is maximal if every action has a distinct outcome.

2A more elaborate numerical example can be found in [4].

III. MODEL

Initial work on empowerment focused on discrete grid-
worlds [5], and later extended to continuous control tasks well
known in the area of reinforcement learning [4]. This prior
work [4]–[6] aimed to provide a natural utility function with a
dense feedback for driving behaviour and investigated specific
survival-type scenarios. Our goal is to expand the principle
of empowerment to manual control3 and introduce it to HCI
research as a novel framework for supporting design.

A. Information theoretic

Since empowerment was originally defined as a function of
state, which in HCI is often uncertain, we need to replace the
exact state in the model by a prediction, the more disturbances
affecting the system the more uncertain the prediction.

We will consider a Bayesian network with introduced time
delay d between the actuation and the sensing channel, reflect-
ing that the effect of the action at will only be perceivable
at time t + d. We assume the system is fully defined in
terms of the 1-step transitions and will be interested in more
general d-step interactions where d ≥ 1 is a random variable
from a given distribution. We will consider the sequence
~at−1 = (at−d, at−d+1, ..., at−1) of d single-step actions and
the probability density p(x|xt,~at−1) of making the respective
d-step transition. Assuming that we know the complete action
history, let p(~at−1) denote the distribution of the delay d.

Given the latest (delayed) observation xt and the 1-step
(p(xt+1|xt, at)) and d-step (p(x|xt,~at−1)) transitions we de-
fine the 1-step transitions from the uncertain state x̃t as follows

p(xt+1|x̃t, at) =

∫
X

∑
~at−1

p(~at−1)p(x|xt,~at−1)p(xt+1|x, at)dx,

(2)
for every xt+1 ∈ X and at ∈ A. The integral in (2) sums up
the probability of going from state xt to x under ~at−1 and
then from x to xt+1 under at. Substituting (2) in (1) let

E(x̃t) = max
p(at)

NA∑
ν=1

p(at,ν)

∫
X

p(xt+1|x̃t, at,ν) ·

log

{
p(xt+1|x̃t, at,ν)∑NA

i=1 p(xt+1|x̃t, at,i)p(at,i)

}
dxt+1 (3)

define the (1-step) empowerment in the uncertain state x̃t.
The proposed model extends the empowerment formalism

to cases where the exact state is unknown and where the delay
varies in time according to a given probability distribution.

B. Control theoretic

We explore two types of disturbances in the feedback loop
of our control system: communication delays and Gaussian
state noise (Fig. 1). The actions are delayed in time, the system
state is corrupted by an additive Gaussian state noise, and the
observation is based on a predictive display. The goal is to keep
the error within a certain range. We define the human–machine
system dynamics following the notation on Fig. 1:

3To simplify issues we will assume mapping to a narrow state.
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Fig. 1: Control system view of the feedback loop [3].

xt = f(xt−1, h(ut)); yt = xt, (4)

where f(x, U) = x+U+N (0, σ); h(ut) = Ut; ym = g(yt−d).
The system’s transfer function f is a pure displacement

perturbed with a Gaussian state noise, the control transfer
function h is a mapping of the continuous control to a set of
discrete actions and g is the predictive feedback display, which
makes a prediction based on the last available observation yt−d
(d is the communication delay) and the full control history.

C. Simulations

To explore the properties of our empowerment model (3)
we performed series of Monte Carlo simulations to create
the transition pdf (Fig. 2 presents one sample), in which
various levels of constant delays and Gaussian state noise are
accounted for in the computation4 of empowerment through
our control model (4) with a set of three moving actions
{left, neutral, right}. As explained earlier, here empowerment
converges to log(3) = 1.0986 as uncertainty decreases.

D. Goals

• Explore how user behaviour adapts to uncertainty.
• Determine how users perform in noisy environments.
• Propose a novel theoretical measure for HCI research.

4We used the Blahut-Arimoto algorithm [1] for the channel capacity (3).
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Fig. 2: Empowerment as a function of disturbances in the con-
trol loop – constant delays and Gaussian state noise N (0, σ).

Our research questions were:
1) What is the relation of empowerment to standard perfor-

mance metrics?
2) Can empowerment bring more insight into human inter-

action with a given system in uncertain environments?
3) How representative is empowerment as a usability mea-

sure for a particular system?

IV. EXPERIMENTAL DESIGN

A. Prototype system

Our prototype implements a simple car simulator-like game
on Nokia N9 mobile phone, enabling users to steer a car on
a randomly moving road, using one-dimensional touch input.
The task is a 1-D tracking of a horizontally moving road with
added artificial disturbances to the feedback channel and to
the control input. The car is steered horizontally with a 3-
way joystick on the touch-screen (Fig. 3). The control area
is divided into three segments, corresponding to three discrete
actions – moving horizontally the car by -5, 0 or 5 pixels. The
goal is to maintain the car in the middle of the road and leaving
the road is considered as failure. When the car is outside the
road a beeping audio cue is played through headphones. The
control loop is run at 33Hz, allowing for real-time interaction.

By varying the noise and delay levels we insert different
types of disturbances into the system (Table I). To create an
uncertain visual display we replaced the car with a single
random point, hidden in a cloud, which has different properties
in different levels of empowerment. The movement of the point
cloud is affected by artificial Gaussian state noise, whereas its
size is affected by communication delay. In the delayed case
we used a predictive display, propagating the data points in
respect to control inputs, which increases the cloud’s size.

We designed three different types of feedback loop, rep-
resenting High, Medium and Low levels of empowerment
(Table I) – each type corresponding to one of the conditions
tested in this study. The difference between the visual displays
in the High and Medium empowerment conditions (Fig. 3,
no delay) and the Low empowerment condition (Fig. 5, with
delay) is in the spread of the cloud which is wider in the
delayed predictive display. The movement of the point cloud
is smoother and more predictable in the High empowerment
condition (no state noise) and more erratic and unpredictable
in the Medium empowerment condition (with state noise).

B. Measures

We defined the following performance measures:
• Average duration on-target –

∑
|et|≤ε ∆t

• Total time off-target –
∑
|et|>ε ∆t

TABLE I: Controlled variables and empowerment levels

Condition Delay Gaussian state noise N (0, σ) Empowerment
(empowerment) (steps) (σ) (nats)

High 0 0 1.0986
Medium 0 5 0.3391

Low 10 5 0.0445



Fig. 3: Visual display (upper half) in High and Medium
empowerment (car location is a single point in a narrow point
cloud); touch-sensitive control area (gray sphere/lower half).

• Expended finger movement effort – ∆ut = |ut−ut−1|
∆t

• Resulting change in control input – ∆Ut = |Ut−Ut−1|
∆t

• Total number of errors –
∑
|et|>ε,|et−1|≤ε 1

C. Task

In each condition users performed a target-tracking task
consisting of steering a car on a randomly moving road by
using 1-DOF joystick. In the events of failure, i.e. when the car
is outside the road, a sound is played back, which augments the
visual with an audio feedback. Each session lasted 2 minutes.
Performance data was logged on every frame.

D. Methodology

Twelve participants (9 male, 3 female, aged 18 to 48) took
part in the study; all but one reported right dominant hand. We
used a within-subjects design and conditions were randomized
and tested in a sitting lab environment. The experiment con-
sisted of a short introduction followed by a training session
and the three conditions. The training session, devoted to
familiarize users with the controls, lasted until a certain level
of performance was achieved and usually took less than 10
minutes to complete. It was divided into four parts: in the first

5

10

15

20

25

30

High Medium Low
Empowerment

Total time off−target

P
e
rc

e
n
t

(a) Total time off-target

1

2

3

4

5

6

7

High Medium Low
Empowerment

Uncertainty

S
c
o
re

(b) Perceived uncertainty

Fig. 4: (a) Time spent outside the road. High empowerment
is significantly lower than Medium (p=0.024 with Bonferroni
correction) and Low (p < 0.005); (b) Subjective uncertainty
about the exact location of the car at any given moment,
measured on a 7-point Likert scale. Low empowerment is
significantly higher than the other two (p < 0.005).

Fig. 5: Visual display (upper half) in Low empowerment (car
location is a single point in a wider point cloud); touch-
sensitive control area (gray sphere/lower half).

part users experienced the joystick controls and then practiced
all three versions of the game. All conditions represented
identical random sequences of a horizontally moving road
which subjects had to track for 2 minutes. At the end of each
condition they were asked to complete a NASA-TLX [2] and a
free-form questionnaire, rating perceived workload and level of
engagement respectively. Once all conditions were completed
a questionnaire assessing user experience and preferences was
also filled in. The experiment took about half an hour in total
and participants were allowed to rest between conditions.

V. RESULTS

A. Performance
A non-parametric Friedman test showed a significant ef-

fect on level of empowerment per condition for the total
number of errors (χ2=18.77, df=2, p<0.0001), the total time
off-target (χ2=11.17, df=2, p<0.005), the average duration
on-target (χ2=18, df=2, p<0.0001), the perceived uncer-
tainty (χ2=19.02, df=2, p<0.0001), the perceived performance
(χ2=10.36, df=2, p<0.01) and the frustration (χ2=13.74, df=2,
p<0.001). Pair-wise Wilcoxon signed ranks tests showed that
subjects performed significantly better in the High empower-
ment condition than in the Medium and Low empowerment
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Fig. 6: Subjective measures on a 20-point NASA-TLX scale:
(a) within-subjects Perceived Performance – High is signifi-
cantly better than Low (p=0.014 with Bonferroni correction);
(b) between-groups Perceived Physical Effort – Group 2 is sig-
nificantly lower than Groups 1 and 3 combined (all conditions
combined) (p < 0.00001).
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Fig. 7: Change in finger movement effort (upper plot) and
resulting change in control input (lower plot) – users are sorted
according to performance in Medium vs. High empowerment
on the upper plot and matched on the lower one. Medium and
Low empowerment conditions are normalized against High.

conditions – i.e. had lower total number of errors (p<0.001),
higher average duration on-target (p<0.001), lower total time
off-target (p=0.024 with Bonferroni correction) and (p<0.005)
for Medium and Low empowerment condition respectively
(Fig. 4a). Perceived uncertainty in the Low empowerment con-
dition was significantly higher than in the High and Medium
empowerment conditions (p<0.005) (Fig. 4b) and perceived
performance in the High empowerment condition was signifi-
cantly better than in the Low empowerment condition (p=0.014
with Bonferroni correction) (Fig. 6a), consistent with the
measured performance. Our study did not provide significant
evidence regarding the rest of the metrics, thus the respective
data will not be presented here in detail.

B. Behaviour

Different users had different ways of coping with noise,
reflected by changes in their activity levels driven by varying
levels of disturbances, visible (Fig. 7) in the rate of change
in finger movement effort and the resulting change in con-
trol input. Grouping users into Group 1 (1,2,3,4), Group 2
(5,6,7,8,9) and Group 3 (10,11,12), we see that Group 1 reacted
to increased disturbances by decreasing the expended physical
effort and actual control by nearly 20%, i.e. by adopting a more
relaxed behavior, while Group 3 reacted by increasing them by
20% and more, i.e. by putting more effort into dealing with

TABLE II: Subjective user preferences

Condition (empowerment) High Medium Low
Most preferred 9 3 0
Least preferred 1 4 7
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Fig. 8: Time series of a High empowerment session – an
example for a low expended effort (Total time off-target=24%,
Perceived performance=20). The lag patterns of relaxed target-
following behaviour are clearly visible around the peaks.

disturbances. This shows that Group 1 expended more effort
the more empowered they were to control the environment.
Group 2 expended lower levels of effort on average and had
nearly constant levels in all conditions, however it showed an
interesting trend as well, as the changes in finger movement
effort and in resulting control input are not reciprocal. Inter-
estingly, higher levels of finger movement effort resulted in
lower levels of control input. This discrepancy can be attributed
to the loss of empowerment induced by the higher level
of disturbances. More precisely – subjects did not perceive
accurately the effect of their actions in the Medium and
Low empowerment conditions. Furthermore, in the subjective
preferences (Table II) only users from Group 2 (all but one)
disliked mostly the Medium empowerment condition, which
had more erratic and stressful visual feedback. Group 2 had
also lower scores in Perceived Physical Effort in all conditions
and the difference between Group 2 and Groups 1 and 3
combined (all conditions combined) is significant (Fig. 6b),
shown by pair-wise Wilcoxon rank sum test (p < 0.00001).
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Fig. 9: Time series of a High empowerment session-an example
for a high expended effort (Total time off-target=2%,Perceived
performance=4). The lead patterns of eager target-anticipating
behaviour are clearly visible at the turning points.



C. Examples

Most subjects developed a strategy of anticipating where the
road was going to move next and applied that in all conditions.
However the response time varied significantly across subjects
– some were faster and others slower to react. Time series of
two users show different patterns of lead and lag behaviour, the
first one being more relaxed (Fig. 8) and the second one – more
active (Fig. 9); their performance figures appear on the two
extremes in Fig. 4a and 6a. Eager anticipation of more active
users led to cases of oscillation at repeated turning points,
while more relaxed ones showed smoother tracking behaviour.

VI. DISCUSSION

Results show that performance in the Low and Medium
empowerment conditions dropped significantly compared to
the High empowerment condition, which was expected, how-
ever this was not linked to a consistent trend in control effort,
since some users increased and others decreased their effort
depending on their attitude. This shows the different ways
users adapt their behaviour in the face of uncertainty. The
analysis also revealed a particular group of subjects, who
had kept their control effort quasi steady across conditions
and who interestingly disliked the Medium empowerment
condition most (and not the Low empowerment one), and
furthermore had significantly lower perceived physical effort
than the rest. Low and Medium empowerment conditions
were significantly different in perceived uncertainty which
is a reflection of the system design, however this did not
translate proportionally into performance difference, as they
were close both in measured and perceived performance.
Higher uncertainty also increased frustration. This shows that
in a very uncertain environment humans are able to adapt
appropriately (i.e. increasingly rely on prior knowledge as
suggested in [7]) and succeed in delivering a relatively good
performance despite increased frustration. The lack of signifi-
cant differences in performance between the Low and Medium
empowerment conditions can also be attributed to the smaller
gap in empowerment level than the one between the High and
Medium empowerment conditions.

The relations of the means of total time off-target, per-
ceived uncertainty, perceived performance and frustration vs.
empowerment are strictly monotonic with expected trends,
which demonstrate the overlap of empowerment with standard
measures. However, the large variability in the data shows
that further work is required to establish the exact regression
curves. Loss of empowerment implicated interesting trends
in activity levels, indicating another exciting area for future
work. These results, along with the theoretical coherence of
empowerment suggest its potential as part of a future toolset
for understanding interactive systems.

Applying the empowerment measure, however, requires
prior theoretical modelling, which, depending on the particular
system, may become too costly. There is a trade-off between
the accuracy of the theoretical models and the reliability of
the empowerment measure – the more accurate the models,

the more costly they are to create, but the more reliable the
measure they imply.

Technology and design related usability issues affected our
prototype system. Most participants lacked the tactile feedback
from the control area covered by their finger, which increased
the difficulty in controlling the discrete transitions at this
specific resolution level. Few participants used most of the
time the two extremes – left and right – and less so the middle,
perhaps due to the narrow range. All subjects found it easy to
learn how to use the system and found the audio cue beneficial.

VII. CONCLUSION

In this paper we presented an evaluation of how people
perform in noisy environments and proposed a way of adapting
the empowerment measure to quantify uncertainty in manual
control tasks. We have shown that the relation of the new
measure to the means of a collection of standard performance
metrics is strictly monotonic, which suggests its potential in
making predictions and giving theoretical bounds on empirical
performance measures, based solely on properties of the en-
vironment. It is conceptually a new quantity, which integrates
different types of noise in a single theoretical measure reflect-
ing uncertainty from the agent’s point of view. A benefit of
the approach is in providing an analytical tool for performance
tuning, before resorting to costly empirical studies. A drawback
is that it requires prior theoretical modelling – the more
accurate the models, the more costly they are to create, but
the more reliable the measure they imply. Further work is
required to investigate the properties of the proposed measure
and to validate the approach in other areas of HCI. The results
presented here are important to raise the awareness of the
community about the potential empowerment has in providing
better theoretical foundations for the science of HCI.
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