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Abstract—We present an information-theoretic approach
for modelling coordination in human-human interaction and
measuring coordination flows in a remote collaborative tracking
task. Building on Shannon’s mutual information, coordination
flow measures, for stochastic collaborative systems, how much
influence, the environment has on the joint control of collabo-
rating parties. We demonstrate the application of the approach
on interactive human data recorded in a user study and reveal
the amount of effort required for creating rigorous models. Our
initial results suggest the potential coordination flow has as an
objective, task-independent measure for supporting designers
of human collaborative systems and for providing better
theoretical foundations for the science of Human-Computer
Interaction.
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I. INTRODUCTION

A fluid engaging collaboration between people connected
remotely via a computer has long been a goal of technology
mediated interaction. Modern hardware has the sensing, pro-
cessing and feedback potential for a more exciting range of
high-bandwidth, tightly-coupled human–human interaction
styles. However most current systems fall short of that, with
stilted, discrete exchanges of information the norm.

Cooperation in the real world emerges as a distinct combi-
nation of innate and learned behaviour according Tomasello
[1], of which a key element is the use of language, as the
joint action of speakers and listeners performed in ensemble,
that embodies both individual and social processes [2]. To
identify the underlying psychological processes supporting
human collaboration and understand how humans perceive,
intend, learn, control, and coordinate complex behaviours
we need a general framework connecting brain, mind and
behaviour, and extending the physical concepts of self-
organization [3]. Recent advances in the development of
cognition and action, unifying dynamic systems theory with
neuroscience, show how by processes of exploration and
selection, multimodal experiences form the bases for self-
organizing perception-action categories [4]. Human–human
interaction is a high bandwidth, multimodal and highly
complex process, but this is not characteristic for technology

mediated solutions developed by researchers interested in
the exploration of such systems. To design better interactive
systems, we argue that, we need to draw on sound principles
and formal models. However, as argued in [5], this has often
been lacking in the HCI community, in part due to the
perceived gap between the complexity of human behaviour
and our ability to capture and model it.

One interesting current challenge is the development of
a formal measure, quantifying the level of coordination
between participants of computer-mediated environments. In
this paper we adopt an information-theoretic approach, and
explore the potential of mutual information as an objective
measure, reflecting how much influence the environment
has on users’ joint control in the course of interaction. A
rigorous measure of coordination flow, could provide an
analytical tool, revealing the trends and the gradients in
interactive models, and could give direct insight into the
underlying properties and provide confidence regions for the
system’s parameters. It could help provide a firm foundation
for designers to treat and evaluate human–human interactive
systems in a general fashion.

II. BACKGROUND

Mediated environments utilise a range of digital devices,
connected in networks, which creates various sources of
disturbances affecting the quality of interaction. The key
contributor to uncertainty is delay in the feedback loop.
Lag is recognised as a major bottleneck for usability in
human–computer interaction [6]. In human–human mediated
interaction, however, the challenge is even more pronounced,
as we have to account also for the variable response time of
a human decision maker, which – unlike machines – varies
across individuals and depends on many internal and exter-
nal factors, making it highly unpredictable. Other sources
of disturbances are different types of noise – digital sensor
imprecision, human sensorimotor inaccuracy, transmission
noise, etc. The quality of control depends on feedback that
must reflect the uncertainty of system beliefs. Interfaces
should work with the uncertainty, not just filter it out [7],
as appropriate use of uncertain feedback could regularise



user behaviour and lead to smoother interaction [8], [9].
Uncertainty poses challenges for designers when evaluating
modern mobile interactive systems and raises the need for
theoretical frameworks for modelling and inference as vital
aspects of system analysis [10].

Information theory provides important quantities for the
characterization of systems in the physical world [11], [12].
The use of Shannon’s mutual information is ubiquitous in
this context. A particular interest lies in the identification of
the ”flow of information” in a given system, for which typi-
cally variants of mutual information measures of correlative
character are used, where the joint information stems from
a common past [13], [14]. Recent work shows the utility
of having a measure for a ”flow of information” [15], [16],
[17], [18]. Building on work of Pearl [19], Ay and Polani
[12] introduced a concept of information flow for discrete
worlds, formalised on causal Bayesian networks. Schreiber
introduced ”transfer entropy” to quantify information trans-
fer in Markov chains [14].

Sato and Ay [20] explored scenarios with a dynamic
component, in which players adapt their strategies over
time in order to achieve desired cooperative behaviour. Ay
and Polani [12] suggest that ”information flow”, with its
causal character, could measure a player’s contribution for
the emergence of a particular cooperative strategy. Recent
predictive Bayesian concepts of sensorimotor control and
low-level decision making increasingly gain momentum [8].

Galantucci explored the complexity of human behaviour
in the absence of pre-established human communication
systems in order to elucidate how these systems emerge and
develop in the context of joint human activities [21]. A study
on the interaction of motion and conversational behaviour,
show the emergence of spontaneous synchronisation in hu-
man walking patterns during mobile phone conversations,
and suggest the benefits of a gait alignment measure [22].

In recent studies we investigate embodied remote hu-
man collaboration, exploring the emergence of cooperative
strategies using limited modes of communication [23], [24].
Building on this work, here we propose a model and a
measure to quantify coordination in data collected earlier.

To characterise coordination we explore the notion of con-
ditional mutual information1, which is defined for random
variables XA and XB given XS as follows,

Ip(XA : XB |XS) =
∑
xS

p(xS)Ip(XA : XB |xS), (1)

where

Ip(XA : XB |xS) =

=
∑
xA

p(xA|xS)
∑
xB

p(xB |xA, xS) log
p(xB |xA, xS)

p(xB |xS)
.

1Populating the densities of the model with the right content is based on
the assumption of how we think people coordinate, and compensates for
various delays characteristic for human behaviour.

III. MODEL

A. Experiment

In our earlier study [23], participants performed a simple
collaborative target acquisition task in pairs via shared
mediated environment, while sitting in separate rooms. The
only available mode of communication was scrolling a finger
on a touch-sensitive digital device. Achieving a good per-
formance, in terms of number of targets acquired, depended
on participants cooperation, which in turn required a certain
level of coordination. The aim was to explore the strategies
executed by different pairs and to get an insight into the
level of coordination that was achieved using the imposed
minimalistic mode of communication.

The interaction concept consists of two subjects simulta-
neously exploring a virtual membrane from their respective
side, trying to find a hole and touch each other. The feedback
mechanism allows users to sense each other whenever their
fingers meet on the shared membrane and to sense the
holes in their side of the membrane. The membrane is
shown in a section as a vertical gray strip (Figure 1).
A bell-shaped marker represents the finger position and a
black square – a hole. Using the input device the user can
probe the membrane up and down and search for holes and
for the remote partner. Holes and the remote partner can
only be seen in their close proximity (Figure 1), otherwise
they are hidden. The user can obtain information only by
sensing for impact events, i.e. whenever their pointer collides
with objects in the shared environment. Each side of the
membrane has three holes, one of which is shared. The task
requires users’ active exploration of the membrane in order
to locate and acquire simultaneously the shared hole. Each
experimental session lasted five minutes and user input was
recorded.

Figure 1: Player A (in green on his display) has found a
hole, shown as black square, and his partner (in black) on
the other side of the membrane. Player B (in green on his
display) can only see his partner (in black), as there is no
hole in the vicinity on his side.
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Figure 2: Section of the Bayesian network representing
the perception-action loop of a dyad (A − B) interacting
through the environment (R) by applying actions (a and b)
in response to sensor stimuli (sa and sb).

B. Dyad Perception-Action Loop

To formalize our experimental model we use the causal
Bayesian network representation of the perception-action
loop – section of which is shown in Figure 2 – unrolled
over time. This network specifies the causal relationships
between both users sensor states (visual stimuli sa and sb)
which are influenced by their actions (finger movements a
and b) through the environment (virtual membrane R). Both
players observe their current position, keep an estimate of
the distance from their partner (which we call the error), and
make decisions of choosing among three distinct actions –
stay in the current position or move up/down.

C. Stochastic Model

To analyse the level of coordination in the collected
experimental data we use Equation 1. In order to apply that
measure, however, we had to discretise the continuous set
of actions. Furthermore, we had to ensure that the limited
amount of data will be sufficient for a good approximation
of the conditional probabilities. For that purpose we defined
low resolution action and state spaces of three elements
each, corresponding to the sign functions below, which could
potentially reveal the underlying trends. Higher resolution
spaces would require larger amounts of data to provide a
reliable empirical density, otherwise data sparsity could bias
the results. For simplicity, we assume that subjects actions
are influenced only by the error (distance between them),
denoted with the random variable XS , and the direction
of their motion, denoted with the random variables XA

and XB , respectively. We define the random variables,
corresponding to the action and the error states, with the
following sign functions.

XS =


−1, XA � XB

0, XA ≈ XB

1, XA � XB

XA =


−1, Xt

A � Xt+1
A

0, Xt
A ≈ Xt+1

A

1, Xt
A � Xt+1

A

XB =


−1, Xt

B � Xt+1
B

0, Xt
B ≈ Xt+1

B

1, Xt
B � Xt+1

B

The operators ≈, � and � reflect the close proximity
range, used in the experiment, within which the players can
see each other, and refer to relations with a distance thresh-
old of 20 pixels. Action velocity is computed from positions
at the end points of a sliding window of 2.5 seconds. Using
this simplified model our aim was to capture the relationship
between the three random variables. To estimate the joint
distribution of XA, XB and XS (p(xA, xB , xS)) we count
the occurrences of the joint events in the data set. From
p(xA, xB , xS) we derive the marginal densities densities
p(xA), p(xB) and p(xS), and after applying the chain rule
we obtain the conditional densities p(xA|xS), p(xB |xS) and
p(xB |xA, xS). That is all we need to apply Equation 1.
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(a) Time series of pair P1
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(b) Time series of pair P2
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(c) Time series of pair P3
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Figure 3: Time series of experimental sessions presenting
examples of three distinct strategies. (a) P1 – tight tracking;
(b) P2 – loose tracking and (c) P3 – random strategy.



IV. RESULTS

A. Empirical densities

Time series recorded in our earlier study (Figure 3)
suggest that the interaction consisted of a series of discrete
messages. This poses a challenge for our stochastic model
to infer from the raw data set. To cancel the effect of such
discrete patterns we applied a moving average filter using
a sliding window of 2 seconds to smooth the data (filtered
data set). In addition, we applied a simple dynamic time
warping algorithm, using a sliding window of 2.5 seconds,
compensating for reaction time delay (delayed data set). The
value of maximum delay, characteristic for close tracking
performance, was inferred over all data.

From the recorded experimental data, consisting of 5000
data points per trial session, and applying the above post-
processing methods, we computed three sets (raw, filtered
and delayed) of empirical probability density functions
(p(xA, xB , xS)), using the proposed stochastic model.

B. Coordination Flow

Following Equation 1, we calculated the conditional mu-
tual information on the three empirical densities Figure 4.
The ’raw’ set provided low values of mutual information,
as expected, due to various types of noise and delays,
diminishing the correlations visible in Figure 3. Smoothing
data provided increased levels of mutual information in
the ’filtered’ set. However, it turns out that the key factor
preventing our model from capturing the correlation in the
time series is the inherent delay associated with human
motor control and decision making. High sampling rates
used for data collection further magnify this effect. Delay
compensation resulted in a further increase in mutual infor-
mation in the ’delayed’ set.

The results show a clear correspondence of coordination
flow values (Figure 4) to the three characteristic types of
tracking behaviour shown in Figure 3. As can be seen, pair
P1 shows an example of performing a very tight tracking
throughout the trial session, which yields 0.98 bits of co-
ordination flow. Pair P2, on the other hand, demonstrates
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Figure 4: Levels of coordination flow, computed on P1, P2
and P3 (a) raw data; (b) moving average filtered data; and
(c) delay-compensated filtered data.

a different pattern, yielding coordination flow of 0.44 bits,
which is a considerable drop, due to the loose tracking
and somewhat erratic behaviour, with longer and irregular
delays. On the other extreme, Pair P3 achieved the lowest
value of coordination flow (0.24 bits), as it applied a random
strategy exhibiting very little tracking behaviour.

These initial results show the potential of the utilised
measure to capture the level of coordination in human
tracking data. They also raise important questions associated
with the application of the measure, related to the sensitivity
to data smoothing and modelling of delays.

C. Simulations

To explore the properties of the proposed measure and
investigate its behaviour at the extremes of our stochastic
model we performed series of simulations, using the three
empirical P1 – P3 (provided by the delayed set) and five
extreme densities P4 – P8, defined on the same set of
random variables (XA, XB , XS). P5 corresponds to tightly-
coupled controllers, P6 – P8 to different types of non-
coordinated behaviour, and P4 is a mixture of the above.
Using these 8 models, we define a basis in (x, y) and
generate 10000 alternating models in a two dimensional
grid of 100 × 100 resolution, with the following linear
interpolation. Given four joint densities q1, q2, q3 and q4
over (XA, XB , XS), we define a new density q(xA, xB , xS)

P3

P6

P4

P5

P1

P2

P8

P7

Figure 5: Coordination flow simulation using linear interpo-
lation on the three empirical (P1 − P3) and five extreme
(P4− P8) densities.



as follows

r1 = x ∗ q1 + (1− x) ∗ q2, x ∈ [0, 1]

r2 = x ∗ q3 + (1− x) ∗ q4, x ∈ [0, 1]

q = y ∗ r1 + (1− y) ∗ r2, y ∈ [0, 1]

with corresponding values of coordination flow in Figure 5.
In order to get further insights into the sensitivity of

coordination flow to changes in the underlying distributions
we computed the Jensen-Shannon divergences2 of the three
empirical (P1 − P3) vs. all densities across the grid. In
Figure 6 the red lines connect points of zero divergence on
(b), (c) and (d) respectively, to the corresponding empirical
densities P1, P2 and P3 in the coordination flow plot (a).
This perspective could provide additional help in visualising
the trends on the coordination flow curve.

V. DISCUSSION

Results show that levels of coordination flow are higher
for partners performing a closely engaged tracking, as pair
P1 (Figure 3a), and drop significantly for pairs who occa-
sionally or more frequently disengage from tracking each
other as P2 and P3 (Figure 3b and 3c). This suggests
that the proposed measure could capture salient stochastic
properties of the experimental data and could help infer the
potential level of coordination. Our results were consistent
throughout the data set of 13 pairs, who participated in
the experiment, however, for brevity we only present three
characteristic types of human behaviour, which help us
introduce the approach. Furthermore, we refrained from
presenting results related to standard performance metrics,
such as success rate (i.e. number of targets acquired) or
completion time (i.e. time to acquire a target), as they can
be found in [23], and since the focus of the current paper
is on the characterisation of tracking behaviour, which is
not necessarily directly associated with performance oriented
measures. For example, a pair like P1, delivering very
smooth and consistent tracking performance throughout the
session, might be too slow in locating and acquiring targets,
as the partners are extremely careful to not lose contact with
each other, and thus get a lower total score in the end. Others,
like P2, might have a strategy of systematic jumping from
one target to the next, without being afraid of losing contact
with their partner, resulting in a less consistent tracking
behaviour, but a faster target acquisition, leading to a higher
total score. Others, like P3, might have no strategy at all,
and jump randomly from one target to another, which is not
qualified as tracking behaviour in our analysis, but could
still achieve a relatively high total score. In the follow-up
questionnaire pair P1 admitted having a working strategy
of moving together from the top down, which confirms
that their tracking behaviour was intentional. In this paper

2JSD(P‖Q) = (D(P‖M) +D(Q‖M))/2, where M = (P +Q)/2

and D(P‖Q) =
∑

x P (x)log
P (x)
Q(x)

is the Kullback-Leibler divergence.

Figure 6: Jensen–Shannon divergence of the three empirical
(P1−P3) vs. all densities used in the simulation in Figure
5. (a) Coordination flow (as in Figure 5); (b), (c) and (d) J–
S divergence between P1, P2 and P3 respectively and the
corresponding densities in (a). The red lines connect P1, P2
and P3 from (a) with the corresponding points of minimum
(J–S=0 bit) divergence on (b), (c) and (d).

we investigated the coordination flow induced by the error
to the joint control of both participants. However, another
interesting topic for future research is to decouple the dyad
and measure the flow of influence between both players.
The time series of pair P2 (Figure 3b) reveal patterns of
leader–follower behaviour and those of P1 (Figure 3a) –
of turn-taking leadership, where the leader and the follower
roles were not clearly defined – the latter resembling more
to a smooth dance than the former command-and-control
behaviour, an interesting topic for future research.

The relation between empirical data and the corresponding



levels of coordination flow suggests monotonic and expected
trends. This work explored the proposed measure on a
particular set of data, however, further work is required to
expand and validate the approach in other domains. These
results, along with the theoretical coherence of coordination
flow, suggest its potential as part of a future toolset for
understanding interactive systems.

Applying the coordination flow measure, however, re-
quires prior theoretical modelling, which, depending on the
particular system, may become too costly. There is a trade-
off between the accuracy of the theoretical models and the
reliability of the coordination flow measure – the more
accurate the models, the more costly they are to create, but
the more reliable the measure they imply.

Furthermore, the quality of data may affect to a great
extent the modelling process, as suggested in this initial
work. Sampling rates, noise, delays, sensing and feedback
resolution all contribute to quality of data and in most
real-world cases advanced data smoothing, dynamic time
warping and other pre-processing methods might be required
prior to applying the coordination flow measure. In our
prototype system, for example, we used two Bluetooth
enabled devices, paired to two laptops, connected over WiFi,
and the resulting purely communication delay is added on
top of the sensorimotor, decision making, software overhead
and other sources of lags. This work focused on developing a
low-level perceptual model of tracking behaviour, however,
an interesting topic for future research is the design of
higher level mental models of coordination. Traces of the
latter appear in the time series (Figure 3a, 3b) – when
subjects reach the end of the membrane and jump to the
other end, interrupting the tracking patterns and resulting in
discontinuities. These traces are, however, ignored by our
model as artefacts in the filtering process.

VI. CONCLUSION

The present work was motivated by the need for a sys-
tematic quantification of coordination in computer-mediated
environments. We presented an evaluation of how people
collaborate, and proposed a model, applying standard mutual
information to quantify coordination, based on purely ob-
servational quantities. In developing this model, we desired
to capture essential properties of a Shannon-type quantity,
measurable in bits. We have shown that, the proposed model
and measure capture the correlation in the observed data,
which suggests the potential of the approach, in providing
an analytical tool to support system designers. The results
reveal the amount of effort, required for rigorous modelling
– the more accurate the models, the more costly they are to
create, but the more reliable the measure they imply. Future
experiments, using simulated agents and human users, would
give us more control of the activity levels and firmer ground
for observing the detailed interactions, that evolve, as people
engage and disengage from remote contact with each other.
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