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ABSTRACT

This work describes a novel perspective on the theoretical foundation of human-computer
interfaces, framing the problem as a continuous control process. In this view, the system
continuously infers a distribution over potential user goals, and provides continuous
feedback about its beliefs as it does so. The proper representation and manipulation of
uncertainties in interaction – via probability theory – and the explicit inclusion of tem-
poral characteristics – in the form of dynamic systems – are inherent to this framework.

The framework is used to derive a novel approach to interaction design, particularly in
situations where rich or unusual sensing and display modalities are present. A num-
ber of key tools for describing and implementing systems which are consistent with this
perspective are presented. The role of system dynamics as a mediating element between
sensed state and decision making is described. The work sets out a paradigm for inter-
action which brings probabilistic models – and thus many of the techniques of modern
machine learning – into the interface in a clean and principled manner.

The three major techniques for supporting the paradigm outlined in the thesis are: the
display of changing probabilistic beliefs; dynamically adjusting system handling qual-
ities according to an inference model; and a general probabilistic selection technique
based on the detection of control.

Methods are presented for displaying the state of a system with appropriate representa-
tion of uncertainty, via Monte Carlo sampling techniques. Specifically, the use of gran-
ular synthesis for auditory display of the distributions involved in a period of interac-
tion is described, and it is shown how predictive elements can be introduced into goal
directed displays, mitigating delays present in the interaction loop. The use of these
techniques in displaying particle filtering processes is illustrated.

The process by which the results of goal inference can be fed back into the dynamics
that the user directly controlled is presented in general form, and applied specifically to
the problem of text entry. It is shown that this inference feedback mechanism unifies a
range of conventional techniques, including semantic pointing and bubble pointing. A
novel text entry system for mobile devices augmented with inertial sensors is developed
to illuminate the inference feedback technique.

By viewing human behaviour as a control process, a general, dynamic selection for
many possible sensors is developed. This is fully probabilistic and widely applicable in
many domains. It provides a sound method for designing the dynamics of an interactive
selection system. This is extended to general exploration in high-dimensional spaces via
controlled Markov Chain Monte Carlo processes.
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CHAPTER I

INTRODUCTION

Motivation, themes and structure.

I.1
SUMMARY

THIS introductory chapter briefly discusses some of the problems with conven-
tional interaction design, paying particular attention to the gesture recognition
problem; argues the need for more robust theoretical models of interaction;
summarises the major themes that will run through this thesis, highlighting

the overarching issues of uncertainty and temporal structure; and finally presents an
outline of the thesis.

I.2
THE FLAWS OF EXISTING INTERFACE DESIGNS

This thesis sets out to develop new theoretical frameworks for human-computer inter-
action.

The next sections describe the limitations of interfaces in current use, and motivates the
principles which will form the core arguments of this work.

I.2.1 CONVENTIONAL GRAPHICAL USER INTERFACES
Human-computer interaction has passed through a number of major stages in its evolu-
tion. From the earliest punch card machines, through keyboard-based command lines,
to the now-dominant graphical user interface (Figure I.1), each step in this progression
more tightly-coupled the interaction to the user, reducing the delays between action
and response. Modern graphical user interfaces have been tuned and refined over a
long period of time, and are consequently well adapted for use. However, they are ad
hoc solutions, often piling fixes upon basic design elements to improve interaction qual-
ity. These adaptions have led to systems well suited to the desktop interaction scenario
(where interaction has traditionally taken place), with standardised sensing and display
technologies, but given changes in the context of use and the availability of new inter-
action modalities, it is hard to adapt such interfaces to account for the consequently
changed communication channel properties.

1



Chapter I. Introduction 2

FIGURE I.1: The evolution of the human-computer interface. From the rigid, time de-
layed interactions of the punch card interface, to the conventional GUI, and
beyond to tightly-coupled extensions of the mind.

The modern GUI is primarily spatial in nature, using targeting as the means of commu-
nication.1 This simplifies the problem of providing feedback (simple position displays
will do), but loses much of the potential richness of communication. Gesture recog-
nition attempts to retain this richness, but pattern-based recognition approaches have
largely been frustrating and unsuccessful, as the next section discusses.

Conventional interfaces generally do not mesh well with views of the world which in-
volve degrees of belief. Normal practice is to treat all signals as known and all actions
as definite. For the situations that they are designed for – an able user, sitting at a desk-
top with robust keyboard and mouse inputs and high-bandwidth displays – this is not
unreasonable. Interface design, however, implicitly models the uncertainty of signals;
scrollbar sizes, for example, indicate the designer’s belief about the uncertainty of a
targeting motion. Explicitly treating sensed signals as evidence for intention, and ap-
propriately accounting for the accumulation of such evidence, would make adaptation
to new situations a more rigorous process than simply tweaking interface elements.

Many conventional interfaces are also excessively sequentialised (partly as a conse-
quence of ignoring uncertainty). Interaction is forced into a series of discrete steps
which must occur in a precise and potentially inconvenient order. This may not be
the most natural order from the perspective of a user. More importantly, such sequen-
tialisation prohibits the flow of evidence from future observations to past ones. Events
in the future may change the distribution of estimates for events observed previously;
many interfaces cannot support such changes of belief, and so sub-optimally use the
information the user generates.

I.2.2 FAILURE OF GESTURE RECOGNITION SYSTEMS
Much of the original motivation of this work is derived from observing how poorly
“gesture recognition” systems fared as interaction techniques, despite their apparent
promise from a theoretical point of view.2 The information content of a gesture extend-
ing through time would seem to be far richer than that of a purely spatial interaction
technique, such as the pointing metaphor which dominates desktop computing. Ges-
tural approaches also hold promise in contexts where the well-evolved conventional
techniques cannot be applied, such as with mobile computing devices lacking displays

1This involves both virtual pointing with a mouse, and physical pointing to keys on a keyboard.
2Wexelblat [1998], for example, presents some criticisms of the state of gesture recognition research.
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practical for targeting, or with users whose disabilities preclude the use of such tech-
niques.

The pattern recognition approach to gesture modelling has not, however, produced par-
ticularly usable interfaces. Notable exceptions include the gesture functionality on some
web browsers, but these implement only the very simplest two-dimensional gestures
(flicking and circling), and do not exploit the full potential of gestural interaction. One
of the key problems with gesture recognition is lack of reference. Systems based around
recognition of classes of patterns often fail to communicate the distinguishing features
of those classes in a form that users can clearly recognise. Letter shaped gestures are
common, for example, but many aspects of the formation of a letter are flexible in the
mind of a user. Parameters ranging from the relative scale of elements, to the speed of
progression, to the curvature of the gesture, all affect the recogniser in some manner,
but users are often aware neither of their own performance attributes nor of those that
would communicate the desired intention. Trying to remember which attributes lead
to successful performance is taxing, and often results in frustrating interfaces which are
apparently erratic.

A common approach is to build ever more sophisticated recognisers, and hope that with
enough training examples, the classes assigned to particular goals will eventually con-
verge to those of the user interacting with the system. This approach is costly – it is dif-
ficult to develop and test such algorithms – and unlikely to help users model how their
own behaviour affects the system. In fact, because the recognition process increases in
complexity, users may struggle further to understand exactly how the system interprets
their behaviour.

The pattern based approach is often also cursed with segmentation problems: deter-
mining where one gesture ends and another begins. One popular approach is to “boot-
strap”, using a simple hardware device like a button to delineate the ends of the gesture,
or using long quiescent periods between gestures. This is hardly optimal: the flow of
interaction is interrupted. The extra hardware required is also costly and bulky and
quiescent times are inefficient. This is a failure of feedback as much as a failure of recog-
nition algorithms – a button’s only advantage over another motion sensor is in its robust
haptic feedback.

Displaying relevant, timely feedback, and putting the user in direct control of the system
is an alternative to the pattern-based approach. Simply “tacking on” feedback to exist-
ing pattern recognition systems is rarely a fruitful approach. Feedback is only useful if
it provides opportunities for control – if the recognition process is not oriented towards
feedback-control from the outset, it is hard to benefit from additional feedback. At best,
the feedback in such cases will indicate how motions should be adapted in future inter-
actions, rather than those at hand.

Rather than relying on block patterns for interaction, the gesture forms can instead be
designed as outcomes of some controllable process. An interactor3 can rely on the feed-
back about this process to guide them through the generation process (though sub-
elements of the process may become learned behaviours). This is, in effect, what physi-
cal devices like buttons do; they are directly controllable dynamic systems which trans-
form a particular motion into a signal communicating intention, and provide reliable
feedback as they do so. Physical hardware, however, lacks the flexibility of software
gesture recognition. This work describes how the power of spatio-temporal gesture

3The term “interactor” is used throughout this thesis to indicate a human interacting with a system; it is
effectively synonymous with user, but emphasises the interaction with the system rather than the simple use
of the system.
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recognition can be brought into a software system, while leaving the user in control of
the interaction.

I.3
THE NEED FOR THEORETICAL MODELS

Although many successful computer interfaces have been constructed over the past
half-century, there is a noticeable lack of well-founded theoretical principles in their
design. Sixteen years ago, Thimbleby (Thimbleby [1990], p.170) noted:

We can do as many ‘experiments’ as we like on complex systems, evaluating
systems with vast numbers of people, doing sophisticated statistical tests,
and so on, all to no avail unless we know what we are doing, and how the
results of the experiment bear on future work. [...] I search the literature for
theories that I can apply in my case [...]; instead I find reports of experiments
– sometimes related to my particular problem – but without some underly-
ing theories, how can I know how safely I can generalise those results to
apply in my design, with my users, in my language? [emphasis in original]

There are still few solid theoretical frameworks for interaction. Psychology provides
many insights into the behaviour of humans in different conditions, and psychological
theories are of value in designing interactive systems. Similarly, there are extensive
physiological models of the motion and responses of the human body. Both of these,
however, detail only the human side of the interaction.

Probability theory gives theoretical models for the combination and classification of
evidence. Machine learning techniques provide sophisticated algorithms for inference.
Formal methods give rigorous theoretical foundations to the internal behaviour of a
system. But these only model the internal behaviour of the computer, not the interaction.

The interface itself lacks a solid foundation, especially in the realm of short-term, con-
tinuous interaction. Much early work in this field was developed as part of manual
control theory, developing and testing models of human interaction with dynamic sys-
tems. Little of this theory made it into the subsequent development of computer in-
terfaces. Early systems, with long delays and limited power, were largely constrained
to discrete, sparse interactions, where, rather than the user being in control of the sys-
tem, the user and the system passed “messages” back and forth. The remnants of this
philosophy are still widespread in existing user interfaces.

With the prevalence of high-power computing systems with rich sensing and display
technologies, the design of the low-level interactions – mediating between the inten-
tions of the user and the actions of the system – is of key importance. This thesis sets
out a firm theoretical framework for the design and analysis of such interactions. It
presents explicit techniques for designing interactions based upon these ideas, and ex-
ample implementations to illustrate their utility. The implementations are intended to
illuminate the principles; the usability of the specific systems developed will be consid-
ered only incidentally.
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I.4
CENTRAL THEMES

The aim of this work is to describe a perspective on interface design which provides
novel methods for the design and analysis of interfaces, and concrete techniques for
working with these ideas. There is a number of themes which underlie the development
of this view: these are enumerated below.

I.4.1 SPLITTING THE LOAD
The interaction problem is considered as a negotiated control process where the user
works with the system to communicate intention. This involves feedback as a fundamen-
tal concept in the development of an interface. Correctly timed informative feedback
splits the problem of communicating intention between the user and the system. This
feedback extends from the long-term information necessary to learn the behaviour of
the system to tightly-coupled feedback for direct control.

Many conventional interfaces rely on offline recognition of patterns to communicate.
When a suitable pattern is observed, a particular event is generated. This is obvious,
for example, in existing gesture recognition systems, but most interfaces operate in this
manner to some extent, whether explicitly or implicitly (buttons, for example, recognise
trajectories which terminate in the appropriate location with the appropriate velocity
and force). In these systems, a model of the signals expected for each intention must be
created, either by hand tuning or by training a system on many example cases. While
this can be effective, it puts all of the task of inferring goals onto the system (and indi-
rectly onto the designer), despite the fact that the user is quite capable of aiding in the
inference process as it is occurring.

Feedback can dramatically cut down the space over which inference must be performed.
A communicating system which provides feedback knows precisely what it has com-
municated to the user previously (although not how it was interpreted). Any inference
performed can be conditioned on the feedback provided to the user, reducing the recog-
nition problem significantly. The faster the rate of communication the more effective
this reduction can become. Feedback also eases the task of modelling the system from
the user’s point of view. Providing a window onto the decision processes which lead
to actions gives users the opportunity to shape their behaviours to best fit the system
under control.

The negotiation approach aims to produce intelligent interfaces which leave the inter-
actor in control of the system. By maintaining a tight control loop, and bringing in in-
ference algorithms into this loop, the sense of control over the interface can be retained.

I.4.2 LOOP SUBSUMPTION
This level of control affords opportunities for including models of behaviour to improve
the communication quality in the interaction loop. The basic idea is that bringing parts
of the control loop into software is both flexible and cheap. Carefully tuned complex
mechanical devices can offer high quality interaction (Figure I.2), but they lack the flex-
ibility to incorporate significant intelligence.
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FIGURE I.2: A Morse key; an example of a highly refined physical interaction device.
This device has evolved over a period of a century, and is extremely effec-
tive at transforming intentions into sequences of Morse code; the weight-
ing, bearings, spring tensions and shape of the device have all been care-
fully adapted to provide the optimal dynamics to maximise the transfer of
information. Building interfaces which have this quality of interaction, but
also the flexibility of software control, is a major challenge.

Using general sensors and moving the dynamics of interaction from real world phys-
ical interactions into software, the joint human-computer system can be dynamically
manipulated so as to maximise the potential flow of information. Some control behav-
iour remains in the internal proprioception loops within the user which are inaccessible
(the targeting motions of the hand cannot itself, for example, be directly manipulated,
although they can be modified through learning behaviour). However, much of the rest
of the interaction can be brought into the simulated world inside the system.

As an extreme case, in direct brain-computer interfacing there are no external dynamics –
everything must be simulated from ground up to create a usable system. Interactors are
experienced in controlling motions in the world, not controlling the patterns of motor
control signals. When the effect of limb dynamics is removed, a replacement must be
provided to maintain control. Simulating motions in software allows great flexibility in
designing and manipulating these dynamics.

Systems with software-controlled dynamics can bring the functionality of the system
into the immediate interaction and make the system a direct extension of the interactor,
rather than an entirely separate entity based on events without explicit temporal rep-
resentation – a tool rather than a conversational partner. Interaction can be viewed as
hierarchical control. As Kelley [1968] notes:
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Control refers in its most important sense to choice behaviour; it is through
choice behaviour that man controls his environment. An important ingre-
dient of such control is the operation, often automatic, of inner loops which
regulate processes required in order that choices made in outer loops may
be realised. Both outer-loop choice behaviour and the inner-loop automatic
behaviour are aspects of control.

I.4.3 TIME AND PREDICTION
It is important, if interaction is to be efficient, that the delays inherent in the closed-loop
are minimised and that the delays are stable; the temporal structure of the interaction
is of vital importance. All human-machine interactions involve delays; they are inher-
ent in every interface. Section II.8.4 enumerates common sources of delay: cognitive
processing delays, response dynamics of limbs, and buffering times are some common
examples. Because of these delays, control is not simply a matter of comparing ob-
served states with desired states. Control depends on a model of the future responses of
the system under control. If the system dynamics are smooth and the delays are short, a
simple comparator controller will operate reasonably; an agent behaving like this is im-
plicitly modelling the system as constant over the delay time. For longer delays or more
complex behaviour, more sophisticated predictive models are required if control is to
be maintained. Aircraft pilots, for example, must learn the effect of their control actions
upon the vehicle they control, whose dynamics often introduce long delays between
actuation and response.

When the information capacity of the delay in a system exceeds the modelling capabil-
ity of the operator, control degrades from continuous control to bursts of control where
short control signals are applied, followed by a wait period as the signal propagates
through the loop. The “bang-bang” mode of control (see Section VI.4.1.1) is one com-
mon strategy when dealing with unfamiliar systems with long delays.

Interactive systems can improve interaction by displaying predictive information which
helps the user form both immediate and long-term (learned) models of the system be-
haviour. Predictive feedback can help reduce the modelling load on the user (as Chapter
IV discusses). Figure I.3 illustrates the effect of delays.
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FIGURE I.3: The effect of delays on control. (a) Very short delay: simple comparison of
current state and desired state is sufficient. (b) Medium delay: a model of
the system dynamics must be introduced to compensate. (c) Long delay:
capacity of the delay exceeds the complexity of the predictive model and
control becomes bursty. All real world systems have some delay in both
directions, but the lengths of the delays may be significantly different.

Systems and users must also deal with information arriving at different rates and delays
(e.g. via different modalities). Explicitly accounting for the delay and rate properties of
channels involved in an interaction is an important issue in interface design, and one
that forms part of the motivation for the framework described here.

I.4.4 UNCERTAINTY AND PROBABILITY
Every interaction involves uncertainty in some form. A basic tenet of this work is that
the interface should be honest – it must represent and work with the uncertainty present
and not filter it out blindly. Such filtering of “noise” limits the information the system
can use for inference, limits the information a user can work with to control the system,
as well as forcing the inference to be sequentialised in a way that can be suboptimal. 4

Jaynes (Jaynes [1998] p.xxvii) notes:

When a data set is mutilated (or, to use the common euphemism, ‘filtered’)
by processing according to false assumptions, important information in it

4Some sequentialisation is always necessary, both for computational reasons and because systems interact
with the external world.
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may be destroyed irreversibly. [...] However, old data sets, if preserved
unmutilated by old assumptions, may have a new lease on life when our
prior information advances.

Many such ad hoc filtering processes are present in conventional interfaces. These were
often convenient when computational power was limited, but computational power is
now quite sufficient that raw data can be captured and manipulated according to the
rules of probabilistic inference. Control of a system depends on reliable information
about the state of the system under control – the quality of control is directly affected
by the quality of the feedback about the state of the system. Feedback should reflect the
uncertainty of a system’s beliefs.

I.4.4.1 PROBABILISTIC MODELS By representing the uncertainties in the system as
probability densities, existing probabilistic tools

for manipulating and dealing with the uncertainties can be brought to bear. Such tech-
niques offer a principled approach to dealing with uncertainty. The densities involved
in an interaction can be propagated right through an interaction from sensor readings,
through the inferential models, through the feedback (i.e. a model of what the user will
perceive) and back around the control loop. Techniques such as Monte Carlo sampling
(which will play a large part in this work) make it possible to work with probabilistic
models in a clean and easily implementable manner. The probabilistic modelling ap-
proach also makes it easy to use information theoretic techniques to quantify the flow
of information around the control loop. The transfer of information is simply the reduc-
tion in entropy a signal provides.

I.4.4.2 EVIDENCE FLOW In summary, a computer observes evidence for the inten-
tions of the user, which is further based upon accessible

evidence about the state of the world. There is a constant flow of evidence into the sys-
tem reflecting changes in the the world. External states cannot be known with absolute
accuracy; uncertainty always persists. Evidence for change of state is always delayed
and can arrive at different times and at different rates on different channels. Equiva-
lently, the user observes only evidence for the states of the system, which is subject to
delay. The interaction problem is to effect changes in a way that reliably corresponds
with the intentions of an interactor. Decisions must be made, based on the evidence
acquired, which affect the world in irreversible ways.

I.4.4.3 CONTROL IN AN
UNCERTAIN INTERFACE

Almost all existing computer interfaces have feedback mech-
anisms which do not reflect the uncertainty of the mod-
els which describe their state. This simplifies the design

of such systems, but restricts the information the user has to model and control the be-
haviour of the system. In such situations, users cannot observe whether their actions
are effective in reducing system uncertainty or not, usually until some (irreversible) ac-
tion occurs, and thus cannot adjust their behaviour to reduce the system entropy as
effectively as possible. Proper representation of uncertainty can help improve control
performance.

I.4.5 MULTIMODAL INTERFACES: THE POTENTIAL OF NOVEL DISPLAYS AND
SENSORS

There are now a wide variety of sensing and display technologies that can be used to
construct the physical aspects of a human-computer interface. Rich sensors, from ac-
celerometers, to smart clothing, to GPS units, to pressure sensors and innumerable oth-
ers, create the potential for whole new ways of interacting with computational devices
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in a range of contexts. Each of these has different information capacities, noise proper-
ties, delays, frequency responses, and other modality-specific characteristics. Building
interfaces that make use of these characteristics to create usable communication media
is a challenge. This work sets out a number of techniques which are not tied to specific
sensing or display devices, but generalise to wider classes of devices.

I.5
AGENDA AND OUTLINE

I.5.1 THE PRIMARY AIM OF THIS WORK
The primary aim of this thesis is to present a new perspective on interface design, which
makes clear a number of relatively unexplored areas of interaction design while unify-
ing a number of existing techniques. These techniques are intended to be suitable for
use with a wide variety of sensing and display technologies, incorporating everything
from slow “context”5 sensing devices to fast, rich real-time interaction devices. The
work here is concentrated on “low-level” interaction – the layer immediately on top of
the physical hardware. The challenge of designing a usable word processor, for exam-
ple, will not fall within the scope of this thesis; but the problem of entering text will be
tackled.

I.5.2 A GLOBAL STRUCTURE FOR INTERACTION
Figure I.4 illustrates the global structure of the thesis. It shows the disarticulation of the
interface loop into component parts: user, interface dynamics and inference. The fun-
damental thesis is that the interface can be described as continuous control of a point in
an intention or goal space, and that the system dynamics form a series of shorter con-
trol loops which mediate the communication of information between the sensing and
the (extremely high-dimensional) goal space by extending the inference over time. This
potentiates a vast range of novel, intelligent interfaces by drawing the dynamics inside
the software of the system; performing inference in a software environment, with all of its
associated freedoms, rather than in fixed hardware systems with necessarily limited complexity.

5Context, as Dourish notes (Dourish [2004]), is a slippery notion. Here, context can be considered to be
sensed information which affects the state of the interaction, but which the user is not directly controlling to
communicate their intention.
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FIGURE I.4: An overview of the structure of the thesis. Chapters III and IV discuss
feedback from the goals; Chapter V explores feedback from the inference
process to the interface dynamics; and Chapter VI describes general tech-
niques for building selection systems.

This thesis will focus on three aspects of this diagram: displaying goal states and predic-
tions thereof (feedback from the inference model to the user); automatically tuning the
parameters of a dynamic system according to an inference model to increase interaction
power (feedback from the inference model to system dynamics); and building general
probabilistic selection methods (designing the dynamics unit).
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I.5.3 THESIS OUTLINE

II THEORY AND DEFINITIONS Explains the theoretical background to
the work, expanding on the themes
noted above. Introduces a decompo-
sition of the interface into component
parts, and the notion of goal space trajec-
tories. Describes conventional interfaces
under this model.

III PROBABILISTIC FEEDBACK Introduces granular synthesis for display
of probability densities, and gives gen-
eral algorithms for asynchronous granu-
lar synthesis. Demonstrates how Monte
Carlo sampling can be a powerful tech-
nique in interaction design.

IV PREDICTIVE UNCERTAIN FEEDBACK Extends displays via prediction with ap-
propriate uncertainty. These displays are
applied in helicopter control and GPS
navigation problems. The use of proba-
bilistic predictive feedback with particle
filters is discussed.

V AUGMENTED DYNAMICS Describes linking the handling qualities
of the dynamic system the user interacts
with to longer term probabilistic infer-
ence. Existing methods, such as semantic
pointing, are shown to be special cases
of this model. The technique is demon-
strated in a text entry system suitable for
mobile platforms augmented with iner-
tial sensors.

VI ACTIVE SELECTION Describes a general framework for se-
lection mechanisms. Methods are given
for selection which are fully probabilis-
tic and feature continuous changes in
intention estimates. Illustrative imple-
mentations are described. Extensions
to general exploration techniques in
high-dimensional spaces via controlled
Markov Chain Monte Carlo processes are
outlined.

VII CONCLUSIONS Conclusions drawn from the thesis, and
discussion of the many future avenues of
investigation.

APPENDIX A Describes the granular synthesis library
used for implementing examples in
Chapters III and IV.

APPENDIX B Summarises the thesis in terms of general
guidelines for designers of interfaces.

APPENDIX C Guide to the online materials which ac-
company this thesis, including video and
audio footage.



CHAPTER II

THEORY AND DEFINITIONS

Defining closed-loop control, interface models, and the structure of a dynamic interaction.

Do I dare
Disturb the universe?
In a minute there is time
For decisions and revisions which a minute will reverse.

– T. S. Eliot

II.1
SUMMARY

THEORETICAL foundations for the remainder of this thesis are presented in this
chapter. The meaning of “human-computer interaction” is analysed from first
principles. The role of uncertainty and delays in interaction are discussed.
The control theory perspective on interaction is introduced, along with the

concept of the goal space. Interaction is defined as control of a “goal cursor” in this
space. Existing interfaces are reviewed from this perspective.

II.2
FUNDAMENTAL ASSUMPTIONS

II.2.1 INTRODUCTION
This thesis describes novel interaction design strategies, all of which are based on a
particular perspective on the interaction problem. By stating explicitly the assumptions
that this perspective entails, the derivation and analysis of the new techniques can be
made more rigorous.

II.2.1.1 WHY COMPUTERS? Computers are providers of utility. The only utility a
computer, in the abstract sense, can provide is infor-

mation;1 computers are useful because they provide useful data that otherwise would
take greater effort to acquire. This can be a straightforward transformation of infor-
mation, as in a calculator, or the computer can mediate between external mechanical

1The utility of a computer is simply the utility of the information it can provide. It is not the utility of the
processing the system does – from the point of view of an interactor, computers would be just as useful if they
were oracles rather than information processors.

14
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devices or other humans, or to allow a user to explore their own intentions. In all of
these cases, the computer is a provider of information. Olsen et al. [1997] puts it thus:

The ultimate purpose of computation is to leverage the human intellect across
the barriers of time, space and force. Computing achieves this leverage by
providing control, communication and information that is far beyond what
a given individual can do in a given amount of time. Computation provides
the connectivity among human intellect, information acquisition and effect-
ing actions in the physical world.

II.2.1.2 WHY INTERACTION? An entirely passive system2 has limited value – the
output of the system at any time is unlikely to be

the most salient information from the perspective of the user. Interaction is a way of
increasing the value of a computational system. It is also a cost to the user, who must
exert effort to communicate. An efficient system has an interaction cost much less than
the value of the gain in useful information as a result of interaction. An interactive
system functions as an information amplifier; a continuously interactive system might be
better described as an information resonator. The quality of interaction determines the
“ratio of amplification”.

II.2.1.3 THE MEANING OF
INTERACTION

An interface, in the most general sense, communicates
the state of hidden variables between the user and the
system across the interaction modalities available. In

the interactions that will be discussed in this work, the communication takes the form
of a mutual negotiation of these variables. From this point of view, the system interface
can be considered to be a continuous control system, with sensory inputs, a display
and an inference mechanism which continuously interprets the sensor outputs to infer
the intentions of the user and feeds the result back to the user. The user and system
attempt to negotiate a satisfactory interpretation of the user’s intention. The quality of
the interface can be valued as the cost to the user in navigating the system towards the
intended goals.

These fundamental assumptions are expanded in the following sections:

II.2.2 THE AIM OF AN INTERFACE
The ultimate function of an interface is to optimally ascertain the intention of a user with the
minimum effort expended by the user. One interface can be considered better than an-
other if the interactor can correctly specify their intention while expending less energy.
More specifically, a cost can be associated with communicating one bit of information
to a given interface. An interface is “good” if, among a set of potential variations, the
cost per bit is minimised. In this thesis, the role of interfaces will largely be restricted to
those in which specific actions of external utility are to be performed by a system.3 The
interaction process will be considered only as a means to an end.

2Passive from the perspective of any user, that is that no action a user takes has an effect on the subsequent
evolution of the states of the system. Obviously, at some point in the past someone must have been in control
of the system – it had to be designed and built. But from the perspective of the imaginary user, the system is
not controllable.

3Some systems, such as games, exist simply to provide interaction without external utility. In these cases
the process is more important than the results; communication is of less interest than the qualitative “feel”
of the interaction. In such cases, an interactor uses the system to control otherwise inaccessible mental states
– humans cannot, for example, stimulate their own pleasure centres, but they can utilise games to do so
indirectly.
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The bit-rate is a measurement of interaction quality which uses time taken to commu-
nicate as a proxy for bit-cost. This cost can be generalised to include factors such as
discomfort, cognitive load, and frustration, but it is often reasonable to assume that
such factors will have an indirect effect on rate over a longer period of time. Frustrated,
uncomfortable or distracted users are usually less effective at communicating than hap-
pier interactors and consequently have lower communication rates.

From this assumption, bit rate can be seen as an effective measure of interaction quality.
Important questions, however, remain as to when this measure of interaction quality is
taken. Some interfaces may have extremely high terminal rates, but have very poor in-
teraction before the user has learned the interface behaviour (e.g. chording keyboards),
while other interfaces may permit effective communication from the very first interac-
tion, but have no great increase in skill with further learning (Figure II.1). In these terms,
an intuitive interface can be considered one that efficiently exploits the existing knowl-
edge of the user and has a consequently rapid increase in interaction rate at the onset of
use.4

FIGURE II.1: Bit-rate curves for different interfaces. Many interface design decisions
involve trading off ease-of-learning against ultimate interaction rates.

4This poses a practical experimental problem, as long-term studies of interaction are often infeasible – this
strongly biases interaction experiments towards interfaces that are quickly mastered.
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II.2.3 SIGNAL PROPERTIES
II.2.3.1 UNCERTAINTY Any knowledge of the world is uncertain to some degree.

Every indication of state from any perspective is inher-
ently inexact. All sensors in a system will have a level

of noise; the true state of inputs can never be precisely known. More general uncertain-
ties arise from mismatches between models of the latent variables to be communicated.
The time series from any set of sensors may give evidence as to the intention of a user,
but while more accurate sensing or longer term measurements can produce more evi-
dence, they can never eliminate all uncertainty. It is vital that an interface take account
of the certainty of any inputs available to it, the certainty of any models it uses, and
the certainty of interpretation of any outputs it may produce. The recursive reflection
of uncertainty between multiple interacting parties – the uncertainty of your model of
my model of your model of my model and so forth – forces the diffusion of uncertainty
among them. A “good” system uses the control loop to reduce uncertainty; a “bad”
system amplifies the uncertainty. It is important to consider the uncertainty of an entire
interacting system and not just the uncertainty in each of its components.

II.2.3.2 CONTINUOUS TIME All interaction occurs in continuous time. For optimal
communication, time must be explicitly accounted for.5

In this work, interaction is considered as a continuous control process at multiple timescales.

This does not require a continuous time computation (as in an true analogue com-
puter), but does require that interactions are recognised to be happening as a continuous
process – something often ignored in designing conventional interfaces, where simple
static state machines are used to model interaction. Button presses, for example, are of-
ten modelled as discrete events which induce transitions between states in some model;
but it must be borne in mind that these are not isolated, instantaneous events but have
a particular temporal context and evolution (see Section II.11.3).

The interactions described throughout this work are assumed to be implemented on
digital computers. Thus, the sensor inputs are assumed to be sampled (regularly or
otherwise) and quantized, and display is assumed to be quantized similarly.

II.2.3.3 DELAYS Every interactive loop has some level of delay present, from the
fundamental physical limitations of the world (speed of light,

speed of sound) through mechanical limitations (acceleration profiles of limbs, responses
of surfaces) through cognitive delays (e.g. the processing delays in the visual cortex)
to computational delays in processing sensory input and producing feedback. These
properties both restrict the bandwidth of the interaction – in the case of lags,6 where the
frequency content is restricted – and in the case of simple delays which do not restrict
the (one-way) physical bandwidth but influence the quality of interaction in a closed
loop. The presence of such delays requires that interacting parties have models of the
interaction loop which can predict the effect of actions upon it. The higher the quality of
this model, the less reliant such a system is on feedback from the world and the longer
delays can be tolerated. Improving both the predictive power of the system (predicting
how the user will respond to feedback) and the predictive power of the user (providing

5Consider a single discrete binary switch. This would seem to communicate one bit – but if the timing is
measured the total information communicated is bounded only by the accuracy in actuating and measuring
the switch transition.

6Lag is used in manual control sense, i.e. as a filter response, not as a synonym for delay.
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feedback to help model the system) should be key aims of interfaces. This is especially
true in interaction contexts where very long physical delays exist (such as in remote
robots in space applications), where very long processing delays exist (such as in EEG
brain interfaces) or where attention must be divided between multiple tasks, introduc-
ing intermittent delays into the loop (such as occur when operating a device while on
the move). The issues of the timing of events and prediction are further described in
Section II.8.

II.2.3.4 CONTINUOUS INPUTS This thesis focuses on the problem of interaction
with sensors producing continuously varying mea-

surements. All sensing devices at some level measure analogue values, and it is only
with significant post-processing that they can be treated as digital values – this process-
ing is an implicit inference process, and often one which has been refined over many
years, to the extent that it is often forgotten that the underlying physical process in con-
tinuous. By avoiding discrete state changes as long as possible, the need for after-the-
fact correction systems such as undo can minimised.7 Digital computers must quantize
evidence; however this quantization should be as fine as possible, and the uncertainty
created by the quantization should be modelled and retained. Maintaining the evidence
in continuous form allows evidence to be accumulated in a way consistent with a prob-
abilistic view of the world.

II.2.4 PROCESS VIEW
In summary, the inputs from the user are considered to be a continuous function

x = f (t), (II.1)

where the dimensionality of x is the input DoF. The actual observed inputs, from the
perspective of the system, are considered to be noisy observations of true states, i.e.

f (t) = g(t)+ ε(t), (II.2)

where g(t) is the true state of some physical variables, and ε(t) is a (time-varying)
random variable. These measurements are evidence for the state of latent variables
l = l0 . . . ln; so therefore

f (t) = h(l, t)+ ε(t), (II.3)

with some function h representing the time-dependent transformation of latent vari-
ables. All non-communicative information can be subsumed into the error term ε(t).

II.2.4.1 A BAYESIAN VIEWPOINT This work adopts an explicitly Bayesian view (see
Jaynes [1998] for a detailed examination of what

this entails; Cox [1961] demonstrates the consistency of this view, and its consistency
with classical logic). In particular, probability distributions will be freely assigned to
beliefs in a system. These distributions are the representations of uncertainty in the sys-
tem, and the axioms of probabilistic inference give the rules by which these uncertain-
ties may be manipulated. Beliefs can be updated by combining priors with evidence to

7Consider a pressure sensor which operates like a switch, taking action after some threshold is reached. If
the signal is quantized early in the process, a near-press will be recorded identically to a non-press. Even if
subsequent evidence is observed which suggests an increase in the probability of there being a press at the
original point, there will be no way to combine this new evidence with the original (partial) evidence for a
press.
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form posterior probabilities. The interaction process is considered as an inference prob-
lem: to infer the probability distribution over all potential actions a system provides.
The interaction is a closed-loop control process and the ultimate control variable is the
distribution over actionable goals. The purpose of the system is to perform recursive
evidence updates to infer the new goal distribution, forming a trajectory through the
space of distributions. The space in which this trajectory lies is the goal space; this is
further described in II.7.

II.2.5 GOALS
From Assumption II.2.2, the function of the system is to estimate intention. This work
shall specifically cover the case where there are assumed to be a finite number of goals
gi, that a user may be trying to achieve. This, for example, covers conventional interface
components; buttons, menus, keyboard interactions and so on. Each goal corresponds
to a potential change of world state, and at any time a goal gi has a probability of inten-
tion p(gi|e0→t), given the evidence e observed so far. To effect actual changes of state,
goal probabilities must be thresholded in some manner; probabilities must be trans-
formed to decisions via some consistent decision theory. The action-transfer problem is
discussed further in II.8.1.

These assumptions encompass a large and rich area of human-computer interaction,
and conventional interfaces can be examined under these assumptions (see Section
II.11). By explicitly stating these premises it is possible to derive a number of novel in-
teraction techniques – the subsequent chapters illustrate some of the important aspects
of an interactive system under these assumptions, and show explicit, implemented sys-
tems which attack the interaction problem in a way consistent with the assumptions
here described.

II.2.6 SUMMARY
The viewpoint adopted in this thesis can be summarised as follows: the interface is a
mechanism for controlling the flow of information from a system, which can either flow
directly back to the user, or out into the wider world. The quality of interaction is the
ratio of effort expended to utility of the information obtained, both of which are un-
quantifiable, but can be approximated (e.g. with constant bit costs). The function of an
interactive system is therefore to ascertain the intention of the user with the minimal ef-
fort on the part of the user. The interaction is formulated as a continuous control process,
where the system is constantly engaged in recursively updating a distribution over the
potential intentions of a user while feeding the results back at various timescales.

II.3
RESTRICTIONS OF THIS WORK

The class of possible interactions following from the above postulates is in fact so large
that certain areas will be explicitly excluded from consideration in this work. These are
practical, not fundamental, restrictions and the ideas presented here could potentially
be extended to cover these topics. In particular, this work will be concerned with com-
munication between one single person and one single computer. The cases where there
exist multiple human parties or multiple computers will not be discussed.



Chapter II. Theory and Definitions 20

II.4
CONTROL THEORY: BRIEF INTRODUCTION

One fruitful method of dealing with complex, time varying interactions is by treating
the problem as a control task. An enormous literature exists on the topic of control the-
ory for engineering systems, a broad field which has undergone development since the
1930’s. Control theory is concerned with the analysis of closed-loop systems, where feed-
back is a critical component. A “controller” is a device which takes action to hold some
value to a particular reference value based upon feedback it receives about the cur-
rent measured state of the system. Controllers are normally negative feedback systems,
where the error (some measure of distance between the reference and current value of a
system) is applied to the current output so as to drive the error towards zero (see Figure
II.2).

FIGURE II.2: A basic negative feedback control loop. The error signal is fed back to
maintain control.

Control theory is concerned with the design and analysis of such control systems. Con-
trol systems need to optimise certain criteria; they must hold the error within tolerable
limits and, crucially, they must maintain stability over their operational range. This
applies both to controllers (where, for example, processing delays can introduce un-
controllable oscillations) and to systems which are to be controlled (e.g. the design of
aircraft to avoid pilot-induced oscillation).

II.4.1 MANUAL CONTROL THEORY
Although much of control theory has traditionally been concerned with automatic reg-
ulation of external systems, the subfield of manual control theory is especially relevant for
HCI. This deals with the human control of dynamic systems. Jagacinski and Flach [2003]
give a modern and concise overview of manual control theory, while Kelley [1968],
Sheridan and Ferrell [1974] and Poulton [1974] are excellent treatments of classical work
in the field. This work largely grew out of military problems – especially flight control
– where complex dynamic systems had to be manipulated quickly and accurately by a
human interactor. Much of this work is concerned with modelling the behaviour of op-
erators in control of different systems; creating generative models of human behaviour.
By describing user interaction as a control task, many of the techniques and results of
control theory can be applied. Doherty and Massink [1999] and Doherty et al. [2001]
contain a basic discussion of the use of control theory for analysis and design of inter-
faces, and review elementary manual control theory from an HCI perspective.
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II.4.1.1 INTENTION AND CONTROL It has been stated previously in this work that
the purpose of an interface is to ascertain the

intention of a user. For this to make sense, the definition of what an intention is – and
how it can be detected – must be clarified. The control perspective gives a rational way
of ascribing intentionality to arbitrary systems (see Chapter 2 of Dennett [1984] for a
thorough discussion of this concept). In this world view, the intention of a system (be
it mechanical, electrical, biological or otherwise) is the reference value to which it at-
tempts to hold some other system. This view implies that any device which engages in
control can have an “intention”. Thermostats, for example, can be imagined as intend-
ing to maintain a particular room temperature. Under this view, a usable system must
bring the actions which the user desires under control of the user. This normally must
be achieved by splitting control of the true intention into a number of smaller, more
manageable control problems.

II.4.1.2 FEEDBACK It is feedback that transforms a simple one-directional com-
munication into a control process. Feedback has two primary

benefits: it simplifies the model users must create of the system, for they can directly
observe the effect of the their actions; and it simplifies the model the system must make
of the user, since the system can consider only those actions meaningful in the context
of the feedback provided (this is the key point of Chapter VI).

II.4.2 PERCEPTUAL CONTROL THEORY
In the wake of the cybernetics movement (Wiener [1948], Ashby [1956]), which viewed
processes in living things in terms of control and information theory, William Powers
proposed the “perceptual control theory” view of organism behaviour (Powers [1973b],
Powers [1973a], Powers [1989], Powers [1992]). This approach analyses behaviour –
from the simplest physiological regulation to social interactions – in terms of control
theory. The basic hypothesis of the work is that behaviour is the control of perception. In
Powers’ own words (Powers [1973a]):

The purpose of any given behaviour is to prevent controlled perceptions
from changing away from the reference condition.

It is important to note that the state of the world is not what is being controlled, but
the perceptions which reveal the state of the world. Powers described a wide variety
of behaviours and activities in terms of hierarchical perceptual control loops, from con-
trol of single muscles to control of postures and transitions between them. Numerous
experiments were conducted by Powers, and later by Richard Marken (Marken [1995],
Marken [2002]) which provide significant evidence that at least some human and other
organism behaviour operates as a closed-loop control system; in particular, severing the
feedback link destroys the behaviour. Although some behaviour is better described as
an open-loop process – the saccades of the eye are one well-known example – and some
activity clearly involves pre-programmed actions, the control view can often elegantly
explain a number of otherwise apparently complex behaviours.

One consequence of this view is that many activities can be seen as disturbance rejection,
where a perceived variable is being held at some reference value by a controller. Ac-
tions are performed to counteract any observed changes in this variable. These are not
just low-level, physically sensed measurements such as “intensity of light falling on the
retina”. They can be quite complex mental constructs – for example, “the position of my
hand relative to yours”. This view provided Powers and his colleagues with a powerful
experimental technique for testing the theories they laid out.
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Thus, it is possible to test for intention by looking for behaviour compatible with the
control of some variable. This idea of testing for control behaviour is critical in the
development of the active selection interfaces described in Chapter VI.

II.4.3 EXTENSION OF THE CONTROL LOOP
One of the aims of this work is to demonstrate how systems can be brought into a closed
loop interaction, extending the control of the user much as a physical tool does, rather
than the system as an external “Chinese-Room”-style entity. By bringing the tightly-
coupled interaction into software, the interface can have the same power as a physical
extension of the body but with the flexibility of software control.

Chapter V describes, for example, how by making the interface into a physically-inspired
model and then modulating the parameters of that model, “intelligence” can be brought
directly into the control loop.

II.5
CONTROL PROCESS

Given the assumptions in Section II.2, the interface can be viewed as a control process
where the user is attempting to steer an “intention cursor” (the current probability dis-
tribution over the goals) towards a desired goal as smoothly and quickly as possible.
The closed-loop structure is illustrated in Figure II.3. This control process is broken
down into sub-loops so as to remain cognitively manageable and physically realisable.
The user and the system are linked by some physical interface.

An effective control loop seeks to extend the function of a user in such a way by main-
taining information over a period of time, but only those parts related to the goals of the
user. Flexible, software controlled interaction loops recursively filter the state of the
entire user/system loop to maintain a current state which usefully represents an inter-
action.

Intention State

Effectors

Perception

Sensors

Feedback

Interface

Imaginary Direct Line

Human Computer

FIGURE II.3: The human-computer interaction as a closed-loop control process. The
“imaginary path” between the intention of the user and the actions of the
system is shown as a dashed line. Real communication must take place
through the interface, via the control loop. The circles indicate comparator
units.
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II.5.0.1 BACKGROUND
INTERACTION

The notion of incidental or background interaction is dis-
cussed in Dix [2002], Hinckley et al. [2005] and Buxton
[1995]. Background interaction involves ascertaining the

intention of an interactor without the interactor engaging in control activity to achieve
that state. The change of state is instead inferred from evidence about a secondary con-
trol task (which may or may not directly involve the system which carries out actions);
the dependencies between tasks in the world are used to minimise redundancy in the
acquisition of evidence. For example, the act of picking up a device is a control process
to bring the position and orientation of the device within some bounds; it also provides
strong evidence that the interactor wishes to interact with the device in its new spatial
configuration, and that the orientation of the screen should adapt to suit. Such concepts
fit within the framework laid out here, but it should be borne in mind that in general
actions which an interactor has no control over are undesirable. Background interaction
must have strong dependencies between the known intentions and the inferred inten-
tions which they act as proxy for, or must invoke secondary processes by which the
background interactions can be directly manipulated.

II.5.1 NEGOTIATION
This control-oriented view leads to a notion of negotiated interaction, where the user con-
tinuously negotiates with the system to communicate beliefs. This is in contrast to many
existing techniques, where the interaction takes the form of discrete action–accept/reject
cycles. In such interfaces interactions of the form “select, confirm, perform” are com-
mon. The confirmation step indicates that the original decision was taken without suffi-
cient evidence (for otherwise it would be redundant), but because the original selection
was forced into a single discrete action, further evidence cannot be accumulated with-
out additional interaction. This practice of sending a message “packet” to the system
and waiting for a similarly packaged response is convenient from the point of view of
design and implementation of interfaces (it can be easily modelled with state machines),
but it does not necessarily make the best use of the capabilities of the user. Obviously,
discrete, event-based interactions can be described under the framework set out above,
but the space of possible interactions possible under this view is very much broader;
it permits interfaces where the system can be considered a highly flexible tool, tightly
coupled to the user, rather than a distant conversational partner.

The key idea of negotiated interaction is that information can be allowed to flow be-
tween the participants in an interaction without rigidly structuring the temporal aspects
of the interaction. Decisions can be made whenever appropriate evidence is observed, and
the accumulation of evidence can be spread over time in a flexible manner. The subse-
quent chapter of this thesis describe how elements of negotiated interaction interfaces
can be designed and implemented.

II.6
DECOMPOSITION OF THE INTERFACE

A general architecture for the user interface is given in Figure II.4. This decomposes
the interface into three components: the goal space, the state machine and the evidence
space. The evidence space represents the current state of the user input as measured by
sensors over some time window (in machine learning contexts this is referred to as the
feature space – see e.g. Bishop [2006]). The goal space represents the space of potential
distributions over goals, and the system’s beliefs about user intention are represented as
a point in this space. The state machine represents the current state of the machine, not
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including those elements currently being interacted with; it undergoes discrete changes
in state when a goal is considered sufficiently probable that an action should be taken.

FIGURE II.4: The interface divided into the evidence space, the goal space and the state
machine. Only the input side of the interface is illustrated, the feedback
paths being omitted.

II.6.1 RELATION TO MODEL-VIEW-CONTROLLER ARCHITECTURE
This decomposition is somewhat reminiscent of the Model-View-Controller (MVC) ap-
proach in software design (Gamma et al. [1995] or Buschmann et al. [1996]). In the MVC
paradigm, the system is separated into a display, a control or input unit, and an un-
derlying model which communicates with the display and input units through a well
defined interface. Here, the goal space is the underlying “true” model which describes
the state of the interface with respect to useful actions. The state of this is displayed by
some feedback mechanism (such as the ones described in Chapter III). The state of the
model is updated via evidence from the sensors (the controller module).

The primary advantage of the MVC architecture is that changes to any of the modules
can be made without disrupting the others, and so it is here; although the model never
changes – it is always a probability distribution – the display and the evidence update
modules are free to be modified. Any new display mechanism can be slotted into the
framework for new contexts and any new technique for the updating of belief given the
evidence flowing in can be substituted. It should be noted that the evidence unit is not
a simple feedforward unit; it incorporates feedback and is (or can be) an independent
control loop. The user controls some variables in this unit from which the evidence for
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intention is obtained.

II.7
THE GOAL SPACE

The “goal space” is a way of analysing the changing state of the systems beliefs. Given
an input xt (a point in the evidence space), and the current state of the inference process,
the system infers a new probability distribution over goals p0 . . . pn. This is a point on
an n-dimensional simplex.8 This can be considered the “goal space cursor”. Each goal
is located at a corner of this simplex. The changing result of the inference can be rep-
resented as a trajectory in this space. Figure II.6 shows a trajectory in a 3-goal space,
where the probabilities are given by the position of a cursor in a two-dimensional space
with several possible densities defined on that space. Figure II.5 illustrates how entropy
varies across the simplex for a 3-goal case.

A system which is operating rationally performs actions when sufficient evidence for an
intention has been accumulated. The thresholds for these actions can be drawn in the
goal space (these are shown, for example as dark red regions in Figure II.4). Crossing
into these regions indicates that an action will be executed and the goal estimate will
return to some other part of the space. The return position is the new prior over goals,
given by the previous action history. 9

FIGURE II.5: The changing entropy H(x)
across regions of the goal space, shown
here for a three goal system. Entropy is
shown as the dotted surface above the
simplex – distance from the surface in-
dicates entropy at that point. It reaches
its maximum of 1.584 bits at < 1

3 , 1
3 , 1

3 >,
and drops to zero at the vertices.

II.7.1 TRAJECTORIES IN GOAL SPACE
The interaction problem can now be formulated as a control problem in goal space –
the user tries to steer the inferential process towards the goal intended. This is most
effective when timely feedback of the goal state of the system is presented to the user
while interacting (the subject of Chapter III). A particularly interesting issue is then how
to determine the optimal trajectories in the goal space for an arbitrary system.

8Consider the space of possible probabilities. All lie in in the positive orthant and touch the axes at (1,0,0..),
(0,1,0,..) etc. The probabilities are normalised such that ∑n pi = 1. This requires that the surface is normal to
the vector (1,1,1,...), i.e a simplex touching each axis in the positive orthant.

9The issue of “returning” is a result of considering the goal space to be a space of probabilities of what
might be termed single or atomic actions. A “pure” goal space would include every possible sequence of
actions – in this space action performance has no effect on goal estimates. This is, however, entirely impractical
as an analytical tool, as the goal space in that case is unbounded, and so the “reset to new prior” operation
suffices as an approximation.
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(a) Gaussian (b) Cauchy

(c) Laplace (d) Raised Cosine

(a) (b)

(c) (d)

FIGURE II.6: The plots at the top show four example densities on a two dimensional
space. The contours show the total probability at each point (i.e. sum of all three goal
probabilities). The red line is the path of a test trajectory, beginning at the lower right.
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The lower plots show the goal space trajectories corresponding to the example path
on the 2-simplex for each of the p.d.f’s. These densities transform spatial (i.e. sensed)
measurements into positions in the goal space (distributions over goals).
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II.7.2 INFORMATION AND SMOOTHNESS CONSTRAINTS
If a point x in the goal space is considered, H(x) = −∑n pi log2 pi is the entropy at that
point. The communication rate of the system is given by dH(x)

dt . There is assumed to
be a maximum potential communication bit-rate bmax – the information capacity of the
interacting muscle group is one such upper bound, for example; the sampling rate of a
sensor is another. If the process is to be controlled by the interactor, however, the band-
width of the feedback must also lie within the user’s ability, as otherwise the interaction
will be unpredictably unstable.10

So bmax = min(bmaxin ,bmaxout ). bmax enforces a smoothness constraint on the goal space
trajectories; since dH(x)

dt ≤ bmax.

II.7.2.1 MAXIMUM INFORMATION
LIMIT: PROHIBITING EXCESSIVE BAND-
WIDTH

The above implies that every well-designed sys-
tem should have smooth movements in the goal
space – large jumps indicate either that evidence
has been too slowly sampled (e.g. in a keyboard

system, where only the terminal result is available as a discrete decision, although this
will still obey the bit-rate law on average), and that correspondingly little feedback can
have been provided, or that excessive weight is placed on evidence and so decisions are
made without basis.

II.7.3 DECISION MAKING AND GOALS
An effective interface performs actions which are of value to the user. These actions are
a reflection of the interpretation of the user’s intention. As the user’s intention is not
directly observable, the system must rely on accumulating evidence and performing
actions when sufficient evidence has been acquired. This poses two problems: what is
“sufficient” evidence, and when does it arrive?

Firstly, the question of sufficiency. The evidence required for a decision depends on the
risk the user is willing to take in making an incorrect decision. There must be a compro-
mise between the quantity of evidence required (measured in bits) and the robustness
of the interface. It is easy to construct an interface with arbitrarily high robustness –
just confirm every action n times, for suitably high n. This is of course inefficient –
the information required should depend on the utility or value of the outcome to the
user. Given that communicating bits takes effort on the part of the user, the cost of com-
munication must be balanced against the value of the outcomes. Low-risk, high-value
decisions should require less evidence (and thus user effort) than high-risk decisions.
The expense of bit generation can be tested systematically (e.g. the measurements of
information capacity of a limb, such as those in Langolf et al. [1976]), but the value of
actions is generally subjective, and it is up to the designer to provide reasonable benefit
analyses of the potential system outcomes.

The decision boundaries for executing a particular action lie on isoprobability contours
in the goal space. As these boundaries shrink towards the vertices, more information is
required to enter the decision region. The design of these boundaries should imply that
high-risk actions occupy less area in this space than low-risk actions. Actually setting
the boundaries is a task which must be tuned for each interface – but the boundaries
should always respect the utility of the action they are related to.

10The estimation of the maximum input rate of the user is complicated in practice, since the predictability
of the system depends on the user’s (potentially very long term) memory of previous behaviour – it is not just
the current output of the system which is used to predict the system response.
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II.8
TIME AND PREDICTION

The temporal structure of evidence is also an issue. Evidence accumulates over some
period of time; some of this is far in the past, as when a designer elicits requirements and
codes them as prior probabilities in an interface (either explicitly or as implicit decisions
such as the sizing of targets). Other evidence is acquired during the interaction, but
may be widely distributed within it. For example, a text entry system may use the
previous letters, words, and sentences, in combination with a language model, to set
new priors for the next letter to be entered. To be efficient, a system must be capable
of integrating evidence arriving at varying times into a single estimate of intention;
one that relies on only near-term inputs is ignoring a great deal of potentially salient
information. Unfortunately it is also possible for evidence for an action to arrive after
a decision has been made. The reversibility of actions is important in the cost of making
decisions – an irreversible decision is much more costly to a user than a reversible one.
Some existing systems (a well-known example is Tegic’s T9 text entry system) postpone
decisions and use “future” actions to infer previous states – the actual ordering of events
is obviously always causal, but the apparent order is not so.

II.8.1 THE BARRIER OF ACTION
At some point however, irreversible decisions must be made (“the barrier of action”),
as otherwise the space of potential states of the system explodes exponentially, and also
because the external world must be affected at some point. The number of decisions
that can be kept reversible has a significant effect on the usability of the interface. The
most obvious reversibility in existing systems is explicit undo functionality where the
user provides evidence for a new decision – reverse the last one. This has been shown to
improve usability of complex systems, although undo typically does not exactly reverse
the state of the system; instead some particular elements are restored to a previous state.
Undo, and its various implementations are covered in detail in Thimbleby [1990].

Undo is necessary for three reasons: an interactor was unable to predict the response of
the system and so performed the wrong action; an interactor attempted to, but was un-
able to perform the appropriate action (for example because of physical slippage); or the
interactor changed intentions (e.g. the user was exploring the capabilities of the system,
and decided that the action performed was not the appropriate one in retrospect). The
first problem can be improved with predictive displays; the second is question of appro-
priate evidence acquisition; the third is not generally a system problem, but predictive
interfaces which show the potential consequences and alternatives to a particular action
can mitigate it.

It is also possible to split decisions into multiple reversible sub-decisions, and allow dis-
play of the current decision state while still allowing evidence to flow in to affect pre-
vious sub-decisions. The potential outcomes and their likelihoods can be maintained
for some time, continually updating the previous n states as well as the current one.
This is a more efficient use of the information provided by the user, but requires sig-
nificant additional computational resources. In a text entry example, strong evidence
for following letters may affect the probability of a previous letter: observing strong
evidence for “at” makes it much more likely that the previous character was “c” or “h”
than “z”. The final word can then be estimated via a suitable decoding technique, for
example Viterbi decoding. This is similar in concept to the distinction between “eager”
and “lazy” interaction (Thimbleby [1990]) where the strict temporal ordering of inter-
action is relaxed; users can fill in information according to their own needs, rather than
those of the designer.
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The designer of an interface must carefully trade-off the reversibility of decisions with
the computational effort required, and also with user expectations of the system. Cer-
tain decisions may have to be forced to be irreversible to avoid confusion on the part
of the user; the notion of closure (Dix et al. [1993]) is considered to be of importance in
HCI. Leaving options hanging in flux for too long can prove stressful for the interactor.
A good display can, however, mitigate these issues by making the state of the system
clear during an interaction.

II.8.2 UTILITY AND TIME
When considering a utility model for an interaction, the timing of evidence is often
crucial. In interacting with external systems via a computer interface, strict constraints
are often placed upon the periods in which actions are useful – it is not much use to
command an aircraft to ascend if it has already hit the mountain. The relation between
the arrival of evidence and the utility of the actions for which evidence is obtained
requires a more complex decision process than a simple static system. Horvitz and
Rutledge [1991] discuss some of the issues in making decisions in uncertain conditions
with time-varying utility. Figure II.7 shows possible curves for evidence for, and utility
of, particular events. Balancing the evidence and the utility for different systems will
depend on both these curves and on the delays inherent in a system – even if the average
rate of evidence acquisition is high, delays can disrupt the interaction. Accepting quick
but potentially inaccurate decisions may be optimal in such cases.
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FIGURE II.7: Time-dependent utility of information and the arrival of evidence. Each
curve shows the utility of information as a function of time (solid green,
fixed for all three cases) and the arrival of evidence for that piece of infor-
mation (dotted blue). In (a) evidence arrives at nearly the same time as the
maximal utility of the information; effective control is possible in this case.
(b) shows a situation where the system under control is very predictable;
evidence for the state of the system is accumulated well in advance. In (c),
information is not reliable until long after the event has occurred, and is
no longer useful at that point. Such a system cannot reliably be controlled.
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II.8.3 DELAYS AND LAGS
Delays in the control loop can reduce the quality of interaction, even where the appar-
ent physical bandwidth remains high. From the perspective of a control process, delays
can introduce instability (e.g. pilot induced oscillation, see Robbins [1999]) because of
the misalignment of feedback and responses. Humans are quite sensitive to delays in
interaction loops; Mackenize in MacKenzie and Ware [1993]11 found that delays above
75ms induced significant reduction in performance in visual targeting tasks, with error
rates increasing by 200% by the time lag reached 225ms. Ellis et al. [1999] tested user
response to changing latencies between motor movements and visual response with a
virtual reality display. Delays of less than 33ms were noticeable; the authors speculate
that delays down to around 16ms may be perceptible. Cunningham et al. [2001] and
Miall and Jackson [2006] examine the adaptation to delays between motor control and
visual display; delays of around 300ms initially have a strong negative effect on track-
ing performance but can be compensated to some extent over time. Maki-Patola and
Hamalainen [2004] examined the effect of latency in musical expression tasks (i.e. the
effect of delay in audio feedback systems); latencies as small as 20ms were found to
be noticeable. Bryson [1993] suggests that there is an approximately linear relationship
between visual delays and RMS error in tracking tasks with “virtual reality”-style 3 di-
mensional displays. An extensive bibliography on the effect of delays in manual control
is given in Ricard [1994].

One key function of an interface is to create a shared sense of time between the interactor
and the system, so that actions and responses can be synchronised with each other. A
system with slow, irregular sampling, for example, is very difficult to control because
the system and the user “perceive” the flow of time differently. Implementing the inter-
face as a dynamic system, whose evolution implicitly represents the flow of time, is a
way of achieving this shared temporal context.12

II.8.4 COMMON SOURCES OF DELAYS AND LAGS
Some sources of delay in interactions (and some rough estimates of the actual induced
delay) are shown in Figure II.8. It is apparent that there are a large number of potential
sources of delay. Where possible, the best solution is to remove or reduce the delay (e.g.
with faster processors), but in many cases this is impossible – the cognitive processing
time for visual stimuli is permanently fixed,13 for example. In these cases the only effec-
tive solution is to build better models of the interaction so that control can be performed
on more accurate predictions of future states. This is the major theme of Chapter IV.

11The term lag is used as a synonym for delay in Mackenzie’s paper, as opposed to its sense in manual
control.

12Interactions with oscillatory components are an interesting field of research (see Lantz and Murray-Smith
[2004], or the resonant displays of Chapter VI). Such rhythmic interaction, where phase synchronisation locks
the interacting parties in step, can mitigate the effect of interaction delays, and fits naturally with typical
motion patterns generated by humans.

13Although careful display design can still minimise this – certain visual patterns will be responded to more
quickly than others, for example. The effect of brightness is, for instance, described in Rains [1963], and the
effect of flicker is discussed in Roufs [1974].
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FIGURE II.8: Some roughly estimated delays in an interaction, for an audio display. The
upper bound time is 2145ms, the lower is 57ms. For a visual display, the
transmission time would drop to almost zero and the visual processing
delay in the brain would increase by ∼20ms.

II.9
THE EVIDENCE SPACE

The sensor space is simply the space that the sensory inputs to a system represent. A
point in this space represents the complete state of sensory measurements at a single
instant. The inference mechanism transforms trajectories in this space into trajectories
in the goal space.

The evidence space is an augmentation of the sensor space which represents the current
state of the system in terms of values inferred from sensors over some time window. It
is derived directly from the sensor inputs. The space encodes all of the information nec-
essary to make a decision – but points in the evidence space do not represent particular
goals. In particular, it represents at least part of the recent trajectory though the sensor
space rather than the state at one observation instant. This could be a simple concatena-
tion of sensor values (with some window) but generally representing the recent trajec-
tory in a more compact form is necessary. This can range from simple properties of the
signal (frequency content, derivatives, filterbank outputs, spline fits) to more complex
inferred properties (factoring the space into sub-goals with a Bayes net). The distinction
between the evidence space and the goal space is that the goal space represents only the
probabilities of actionable goals; the evidence space represents all of the properties of
the signal required to derive those probabilities. This can include arbitrarily complex
inference to represent sub-states of the interaction.

This is the space in which dynamic systems can be introduced to create lower-level
elements for the interaction loop, and thus mediates between the sensory inputs and
the actual decision process. The temporal aspects of the sensory inputs can be coded
in a manner which the user can directly control – there is a straightforward way of
manipulating these states of the system. Feedback at this level can be combined with
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higher level feedback from the goal states to create a system which is both controllable
and transparent to the user.

II.9.0.1 THE NECESSARY SIZE OF
THE EVIDENCE SPACE

The dimension of the evidence space determines
the quantity of information required for the in-
ference to be performed adequately. Short time

windows may be suitable for high-DoF inputs, or when relatively few options are avail-
able. Longer term behaviour is required when noise levels are high, where the input
channels have restricted bandwidth, or where a large number of possible alternative
goals are possible. One way in which the space can be restricted is by conditioning on
the feedback. Since the system knows what output it produced, under the assumption
that the user is controlling the system based upon the feedback they are receiving, the
possible responses can be restricted to those that relate meaningfully to the feedback
produced recently.

II.9.0.2 ERROR MODELS – THE
INVERSE PROBLEM

For any given system a particular trajectory through
the evidence space results in a trajectory through
the goal space. Equivalently, some (but not neces-

sarily all) trajectories in the goal space relate to a particular class of trajectories in the
evidence space. The relationship between the goal space trajectories and the evidence
space trajectories gives the tolerance of the system; where a large set of evidence space
trajectories result in similar goal space trajectories the system tolerates significant devi-
ation, but is rejecting much of the input information.

In some cases it can be useful to draw samples from the distribution p(X |g), that is,
the probability of a given trajectory through the evidence (or sensor) space given a par-
ticular goal. In particle filter systems, this is how inference is performed; samples are
drawn from this distribution and compared with actual sensor measurements. Selec-
tion is based upon the measure of similarity between the postulated and actual mea-
surements.

If a system supports such sampling, and a reasonable operator model is available, an
objective measure of likely interaction quality can be obtained by computing the cost of
trajectory generation for each sample drawn, and summing over the whole ensemble to
estimate the cost of achieving a single goal. The text entry system described in Chapter
V, for example, uses this approach to optimise the layout of characters.

II.10
INTERFACE AS HIERARCHICAL CONTROL MODEL

The interface can be viewed as a hierarchy of control problems, from the longest term
intentions of the user to the most tightly-coupled physical interaction. The outermost
loop in a system represents long term learning processes (or meta-control processes),
which may be driven by the user (system adaption processes) or by the system (shap-
ing processes). Inner level loops relate to the control of immediate intentions (the ne-
gotiation process) which lead to system actions. Inside this lie the control loops which
mediate the flow of intention; control of the dynamic systems upon which inference
is based. This is the level at which feedback can have most effect in changing the at-
tributes of the control. Yet further inside lies the physical control of the user; controlling
the physical state of objects in the physical world. At this point the problem leaves the
software domain and any further changes to the control loop are hardware engineering
issues. Beyond this lie the internal proprioceptive loops which maintain the motion of
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the limbs. These are inaccessible physically, but can be shaped by the processes in the
outermost loops: learning and shaping.14 All loops, save for any behaviour shaping
loops are controlled by the user – the system is passive in the sense it can be considered
to have no intention with respect to the user’s states.15

Section V.4.11.1 examines the Hex text entry system in light of this structure, and illus-
trates how the components of the diagram in Figure II.9 relate to components of the
design.

14Powers [1973a] presents a breakdown of even these innermost processes into ever tighter control loops,
down to the last neuron. Some of these internal loops are speculative, although some are backed by significant
physiological evidence; but these issues lie outside the scope of this work.

15Chapter VI discusses how introducing “intentions” to a system – the intention to determine the interac-
tor’s intention – can be used to design adaptive selection interfaces.
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FIGURE II.9: The interface as a series of nested control loops. Layers move outward
from physiological loops to complex learning behaviours.
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II.10.1 SOURCES OF UNCERTAINTY
It is a contention of this work that uncertainty is a key factor in user interfaces. This
uncertainty representation is necessary because the system cannot directly observe the
hidden states of the user – only evidence for those states. The system attempts to extract
the intention state of the user given the evidence it observes. The ultimate hidden vari-
ables for the system are user intentions; but even access to the physical measurements
in the world is corrupted by noise. Probability theory provides an effective set of tools
for dealing with these uncertainties in a principled and rational manner.

Smith [1997], for example, presents strong arguments for the importance of representing
and propagating uncertainty in both measurements and models of dynamic systems.
He notes:

All theorems are true. All models are wrong. And all data are inaccurate.
What are we to do? We must be sure to remain uncertain.

Propagation and representation of uncertainty is essential if inference and display are
to be accurate, especially when predictive elements are introduced into a system.

Thermal Noise

Quantization Noise

Slippage

Flexing

Vehicle Disturbance
Walking

User Modelling Inaccuracy

Timing Errors

Motor Noise

Inaccurate System Model

Intoxication/Exhaustion/Illness

Systematic Muscular Tremor

Inertial Frame Confusion

Approximation/Sampling Error
Calibration Error

Sensor Saturation

Nyquist Error
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Occlusion and Masking Effects

Variable Identity

Temperature Effects

Limb Dynamics
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FIGURE II.10: Some potential sources of uncertainty in the control process.

Uncertainty in interaction arises from many sources. Some of these are physical, hard-
ware limitations like electrical (thermal) noise, sensor mis-calibration, quantization noise
and timing jitter. Others arise as modelling and computational issues, for example noise
arising from Monte Carlo sampling from a distribution with insufficient samples, or
from mismatches between an idealised model and the actual behaviour of a system.
Figure II.10 illustrates some of these noise sources around the control loop.
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II.10.2 ISOMORPHISM ERRORS
Some “noise” occurs as non-communicative user action – states which are sensed by the
system measurement devices but which are not associated with any intention. Simple
examples in motion sensing systems include slippage of poses or disturbances to mo-
tion as a result of walking or travelling in a vehicle.16 All of these will be sensed, but
communicate little or nothing about the intention of the user. Many of these issues oc-
cur because of mismatches between the sensing hardware and the user’s expectations of
the sensing hardware. The user implicitly assigns one set of signals to a particular belief
class, but the system assigns a different set of systems to the same belief class. For exam-
ple, users rarely account for the interaction of orientation and linear acceleration when
manipulating devices with inertial sensing features. The converse situation also occurs,
where the user believes that a change in state communicates intention, but the change is
either not sensed or not incorporated into the inference model. A simple example is an
interface which quantizes its inputs, and thus small motions made by the user will only
have an effect near quantization boundaries, which the user cannot directly observe.

This mismatch between user expectation and system expectation of the meaning of a
signal is an isomorphism error – the system and the user differ in their belief over which
classes of signals are equivalent. This error will always occur in any given system since
belief classes cannot be communicated perfectly. It can be mitigated in four basic ways:
more sophisticated sensing; better match between system inference and user belief; user
training; and feedback of state. Adaptive systems update the inferential mechanisms
during interaction to try and minimise this error, but this can lead to degradation of
performance when they undermine user learned models of the interaction.

II.10.3 THE LATENT VARIABLES
At the onset of an interaction, humans possess a large number of indirectly observable
values; identity, emotional state, exhaustion level, level of intoxication, and so on, which
may not be directly associated with their intentions with respect to the interface but af-
fect what actions they will produce to communicate such intention. Although evidence
for some of these states may be acquired during an extended interaction, the system
must assume a distribution over these potential states.

All of these issues mean that the system’s observations are significantly detached from
the actual intentions of the user. It is this indirection that motivates the incorporation of
uncertainty into the user interface. It is also the motivation for a control-based approach;
a system in which the interactor is engaged in feedback-control of the “intention state”
of the interface splits the inferential problem between the user and the system. Mis-
matches between interface interpretation and user expectation can be countered by the
user interactively.

II.11
CONVENTIONAL INTERACTIONS INTERPRETED UNDER THIS MODEL

This section reviews conventional interaction in terms of the theory laid out above.
WIMP-style mouse interactions, button and keyboard interfaces, and gesture recogni-
tion systems are covered. More detailed analysis of the properties of various conven-
tional interaction techniques is discussed in MacKenzie [1995]. Buxton [2002] presents a

16Obviously, these features can communicate information about context or state of the user, but the im-
portant issue is whether they communicate information with respect to the possible goals the system can
provide.
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comprehensive review of conventional interaction techniques; Hinckley [2002] is a more
recent review of input devices and the laws governing their behaviour.

II.11.1 “STATIC RECOGNITION”, THE SEGMENTATION PROBLEM, AND BUTTON
PUSHING

In most existing interaction devices, there is a movement or positioning phase, which
may or may not be sensed, and a terminal event which causes a discrete jump in the goal
distributions. Mice have buttons for this purpose; keys only have this phase of inter-
action (the movement phase is not even sensed); joysticks have buttons; styli have con-
tact/release sensing and in the case of touch screens, position cannot even be detected
the movement phase (see Figure II.11). This feature is also present in many gestural
interfaces, which use buttons to indicate the start and end of the gesture.

These jumps in goal space violate the information smoothness constraint given in Sec-
tion II.7.2; they make an instantaneous reduction in entropy. The evidence, however,
has accumulated over a period of time before the terminal event but is ignored or not
even sensed up until that point. Great quantities of potentially salient information are
ignored or delayed by such setups, primarily because the detection of intention is con-
strained to physical systems, where flexibility of response is limited. In such systems
the user does not continuously control the beliefs of system; the user controls only mo-
tion in the physical world. Positions or sequences of positions are transformed to beliefs
instantaneously; the action transfer problem is solved simply by handing it over to the
user.

FIGURE II.11: Terminal events in conventional interaction devices. In each case, a sin-
gle button style motion is used to trigger the action. Evidence accumu-
lates throughout the interaction, but is not used until this action occurs,
and when it does occur, it is treated as if it were absolutely certain.

II.11.2 MOUSE CLICK INTERACTIONS

The mouse is now ubiquitous in desktop interfaces.17 It translates two dimensional
motions of the hand into corresponding motions on screen, as well as providing one
or more physical buttons to perform specific actions. The windows-icon-mouse-pointer
(WIMP) design paradigm is purely spatial. It almost completely eliminates temporal
dependencies;18 actions are atomic and isolated in time. The mouse buttons are used
to define the points at which the position will be sampled. This makes it easy to learn
– any control strategy which results in the appropriate final position will work – but
severely limits the theoretical total bandwidth of the system. Section II.12 discusses

17This section deals specifically with mice. However, the ideas generalise to other continuous motion sen-
sors which may be substituted, such as trackballs, joysticks, touchpads, etc.

18There are some notable exceptions, such as double-clicking.
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how Fitts’ law bounds the communication bandwidth in such cases. In terms of a goal
space, intentions are mapped onto spatial densities with binary values (p = 1 inside the
target, and 0 outside). The only way to code probabilistic models in such interfaces is
to either make targets larger or bring them closer. Rescaling targets is straightforward,
but there is only so much screen space available. Making them closer is possible with
devices such as popup menus, which dynamically create spatial targets close to the
current mouse position, but this is only possible to a limited extent.

The mapping from physical space to screen space is not a simple physical relation. The
design of mouse interactions implicitly models the behaviour of operators, and is care-
fully optimised to increase the flow of information. The mouse motion (sensed by op-
tical tracking or a rolling ball with rotary encoders) is relative – physical positions do
not correspond to onscreen positions. This relative motion is transformed by carefully
constructed transfer curves to improve the performance of the system – one of the clear-
est examples of dynamical system design in existing interfaces. Figure II.12 shows the
curves used in the Microsoft Windows mouse drivers; Barrett et al. [1995] describes
the design of transfer functions for miniature joysticks, as used in some laptops. The
physical design of the mouse itself has an effect on the quality of the interaction (see
e.g. Isokoski and Raisamo [2004]). Gamers are well known to have strong preferences
for specific mice, even going to length of obtaining mouse pads constructed of special
materials to improve the response. Techniques such as semantic pointing (Blanch et al.
[2004]) alter the relation between the visual and sensed relations to improve perfor-
mance, in recognition of the limitations of the standard dynamics of a mouse interac-
tion.

FIGURE II.12: The transfer functions used for mouse control in Windows XP. Taken
from the Microsoft website (http://www.microsoft.com/whdc/device/
input/pointer-bal.mspx, retrieved 10th of June 2006). The mouse con-
trol panel has four “speed” settings which select one of these transfer
functions. This function is applied after any on-mouse filtering.

http://www.microsoft.com/whdc/device/input/pointer-bal.mspx
http://www.microsoft.com/whdc/device/input/pointer-bal.mspx


Chapter II. Theory and Definitions 41

Mice are simple ways of transforming motion into intention. The GUI metaphor pro-
vides a world with which the user can interact. However, this world is primarily spatial
and feedback is very simple (the position of a cursor with respect to targets). Actions
are taken based on single, (near)-instantaneous physical measurements (button presses)
rather than being taken when appropriate levels of evidence have accumulated. The
flow of time is basically ignored. Users may proceed at any speed they wish – at the
cost of very limited bandwidth. The dynamics of pointer motion are important to the
operation of the mouse interface, but they are often ignored. Performance depends on
the quality of the dynamics of the system with which the user interacts.

II.11.3 INTERPRETATION OF BUTTON ACTIONS
Physical button (or key) based interfaces are widespread in computing. They are in-
tuitive to use; they afford pressing, and the feedback they present reliably indicates the
state of the interaction. However, they can be clumsy, are expensive to manufacture,
take up significant space, wear out, and have very limited communication power. The
treatment of button presses in interfaces limits the communicative power of the inter-
face even further.

Button presses are often considered to be discrete isolated binary events. An interface
based around such events is (at least potentially) both easy to learn and easy to imple-
ment; for many years, keyboard-based interfaces were the only way to interact with a
computer system. The entire interaction can be represented as a finite state automaton.
Button pushes are assumed to be so reliable that the change of state can be assumed to
be perfect evidence for an intention (or sub-intention19). In a button pushing interface,
the state of a goal space cursor jumps from centre to vertex with no intermediate stage.

There is of course still a dynamic process by which intention is transformed to a com-
municable form. However, in button-based interfaces, the communication problem
is pushed almost entirely into the physical world. The layout, tensioning, weight-
ing, shape and labelling of the buttons are hardware issues rather than software ones.
Feedback from buttons is mainly physical: tactile, auditory and visual feedback are all
present.20 Buttons are carefully designed systems designed to have dynamic properties
that make communication easy. Unfortunately, these properties are unalterable after a
hardware implementation is built. This significantly limits the power of such systems;
the only modelling that can be brought into the process is a priori models of the likeli-
hood and cost of actions.

However, button presses are not quite discrete binary events, as Figure II.13 illustrates.
Significant effort is required to filter the oscillations of a button push (“debouncing”) to
make it fit with a state-machine model (either fully depressed or fully released). This,
however, discards the characteristics of the push – different pushing motions lead to
different contact patterns. All of this evidence is discarded by hard-wired filtering in
conventional systems.

In hardware which simulates physical switches (e.g. with pressure sensing), this is even
more pronounced. The entire force trajectory is available, but is quantized into a single
event. Glimpse (Forlines et al. [2005]) is a rare counterexample, which uses variable

19That is, the intention to achieve a goal as part of communicating a higher-level intention, e.g. intending
to enter a character as part of a word as part of a sentence as part of a document.

20Although sometimes additional software generated “key-click” audio feedback is used where tactile feed-
back is very weak, as was the case with the membrane keyboards of some early home computers.
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pressure levels (a reasonable estimate of the probability of intention) to preview actions
without committing them.

FIGURE II.13: Oscilloscope traces for two different buttons being pushed. Note that
the behaviour is quite complex, with noise and ringing around the tran-
sient. Debouncing algorithms are needed to clean up these signals for
button controls. The top trace in both cases is the raw signal values; the
bottom indicates the corresponding logic states. These two images are
taken from Jack Ganssle’s debouncing guide (http://www.ganssle.com/
debouncing.pdf, retrieved 15th April 2006).

II.11.4 GESTURES, SPEECH AND OTHER INTERFACES
One significant class of interfaces not falling into the categories laid out above are
pattern-matching or recognition interfaces. This structure is common to gesture recog-
nisers, speech recognition systems, and handwriting input systems. Generally, such
systems observe measurements for a period of time and then estimate the best match
between the measurements and models of possible inputs. These can be obtained from
training data in learning systems, or they can be hand created by a designer. This is
normally a static, segmented process, with blocks transformed instantly to belief and
then to action.

This makes sense for speech, which provides almost no opportunities for external feed-

http://www.ganssle.com/debouncing.pdf
http://www.ganssle.com/debouncing.pdf
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back control; the only important control loops for speech production occur inside the
body. 21

Gestural interfaces, however, could theoretically provide a great deal of feedback about
the motions performed and their effect upon the system’s beliefs, but rarely do so. In-
stead the user must repeatedly attempt to perform a motion which conforms to the
pattern classes of the recogniser (without any effective method of obtaining awareness
of the class boundaries). Many gestural systems also use button based segmentation
to make it easier to identify the onset of meaningful behaviour – these buttons actually
communicate a significant amount of information about the gesture. Systems will nor-
mally reject input trajectories which differ too far from any known class; this is better
than the absolute certainty with which graphical user interfaces treat interactions. How-
ever, there is rarely provision for control as evidence accumulates, and lack of feedback
about the process of performance makes it difficult to ascertain in what ways the motion
performed differed from the motion which would achieve the action the user intends.
Learning is thus impaired.

Static recognition interfaces have potentially much higher utilisation of the available
bandwidth for control signals than spatially-based interfaces. However, difficulty in
learning (partially because of poor feedback) tends to make them suitable only for niche
applications.

II.11.5 SUMMARY: CONVENTIONAL INTERFACES
Conventional interaction mechanisms implicitly model the likelihood of actions. How-
ever, it is difficult to bring new models of behaviour into an interface without entirely
redesigning it; and it is often impossible to use belief models that dynamically update.
Evidence for intention is often ignored, filtered out in hardware as “noise”, and when it
is accumulated it is (unreasonably) treated as certain. The onus is on the user to perform
accurately, rather than on the system to interpret action well.

Conventional interfaces, like all interfaces must, communicate information via a medi-
ating dynamic system. But such interfaces often have static, rigid systems which are
well adapted but cannot be modulated according to changing contexts. Mouse interac-
tions brought some of the interaction out of hardware and into the software world, but
the process can go much further, as the work in this thesis illustrates.

II.12
FITTS’ LAW ANALYSES

This section briefly reviews Fitts’ Law, a well-tested model on the information band-
width of spatial interfaces based on pointing motions (and subsequently extended to
certain trajectory tasks).

II.12.1 THE ROLE OF FITTS’ LAW IN HCI
Fitts’ Law (Fitts [1954]) is one of the most widely used quantitative theoretical models
in human computer interaction.22 In its most general form, it states that there is a log-
arithmic relationship between the time taken to hit a target, and the ratio of the size of

21Delayed auditory feedback (DAF) anti-stuttering devices are one minor exception. These disrupt stutter-
ing behaviour by artificially delaying the audio feedback route, desynchronising it with bone conduction and
proprioceptive feedback.

22MacKenzie, for example, lists three hundred and ten publications on Fitts’ law as of 2002 (http://www.
yorku.ca/mack/RN-Fitts_bib.htm, retrieved 9th of June 2006).

http://www.yorku.ca/mack/RN-Fitts_bib.htm
http://www.yorku.ca/mack/RN-Fitts_bib.htm
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movement required to the target size. It is often stated as:

MT = a+b log2

(
2A
W

)
, (II.4)

with a,b constants, MT the movement time, A the amplitude of movement and W the
width of the target. log2(

2A
W ) is often referred to as the index of difficulty or ID, measured

in bits. There is a noticeable (and intentional) similarity to the information capacity of a
(Gaussian) noisy channel:

C = b log2

(
1+

S
N

)
, (II.5)

where C is capacity, b is the bandwidth and S and N are the signal and noise power
levels, respectively.

Fitts’ original study examined one-dimensional rhythmic tapping tasks with stylus,
where the subject had to alternately tap a pair of conductive bands on a strip. The above
equation was found to fit the data very closely. Subsequent studies demonstrated that
the equation holds across wide age ranges and over a variety of effectors (fingers, feet,
arms, etc.) and under a number of other conditions (large scale and small scale move-
ments, and even in imaginary movements (Decety and Jeannerod [1996]). Schmidt and
Lee [2005] summarises these studies.

In the context of HCI research, the law has been found to hold with many input devices.
Card et al. [1978] found evidence for Fitts’ law behaviour with joysticks and mice, and
a huge number of following publications, such as Jagacinski and Monk [1985] (head
pointing devices), Marentakis and Brewster [2005] (pointing in 3D audio space), Hoff-
mann et al. [1995] (keyboards), found similar evidence. Plamondon and Alimi [1997]
reviews a number of other studies. The law has also been found to apply in various in-
terfaces with dynamic zooming, or with variable control-display ratios; see for example
Guiard and Beaudouin-Lafon [2004b] or Blanch et al. [2004]. Guiard and Beaudouin-
Lafon [2004a] contains a number of papers on recent Fitts’ law work, and is a good
review of the current state of the field.

II.12.1.1 ASSUMPTIONS IN FITTS’
LAW ANALYSIS

The massive evidence for the applicability of Fitts’
law under many conditions suggests that it is an
important relation in the behaviour of humans

in targeting tasks, which are the basis for the design of a great deal of existing com-
puter interactions. For spatial interactions, Fitts’ law provides a good model of expected
performance, once the constants for a particular system have been experimentally con-
firmed. However, there are several important questions which arise when considering
the applicability of Fitts’ law to new interaction techniques.

Fitts law does not generally hold in situations where limb dynamics are not significantly
involved (as in isometric joysticks) (Mackenzie [1991]). Given this, it is unlikely that
signals from inputs like EEG interfaces will behave in a Fitts manner. It also clearly
does not hold in situations where the distance to traverse is long and the velocity of
motion saturates; in such cases time to reach distant targets will be dominated by the
linear element.

Fitts’ law assumes that targets are binary; pointers are either on or off the target. Ex-
tending to systems which assign continuous probabilities to the space may be possible,
but in this case the contour of the target is given by the posterior probability required to
pass an action threshold. Dynamic probability updates which continuously infer goals
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based on motion make it difficult to apply Fitts style analyses. A system in which evi-
dence is gradually accumulated as the cursor moves over space is not directly amenable
to Fitts’ law analysis.

II.12.1.2 DIMENSIONALITY Fitts’ original study focused on one-dimensional tap-
ping tasks. There have been attempts to extend the

paradigm to include higher dimensional pointing tasks. MacKenzie and Buxton [1992]
is one example; this examined several possible ad hoc modifications of Fitts’ law to fit
two dimensional problems. Considering the distance to and width of targets along a
vector from a starting position to target centre was found to be a reasonable fit.

Accot and Zhai developed a model of trajectory following based upon Fitts’ law (Accot
and Zhai [1997]). For trajectories which are constrained within a tunnel having some
(possibly varying) width W , the problem of traversing that tunnel can be broken down
into a series of target acquisition manoeuvres. Making these target manoeuvres infini-
tesimal, the following law can be derived:

T = a+b
Z

C

ds
W (s)

, (II.6)

for some trajectory C, having width W (s) at point s. This law has been found to be
experimentally valid for a number of tunnel-constrained path following tasks, including
narrowing linear tunnels, and variable width smooth spiral formations. In Accot and
Zhai [2002], line crossing tasks were shown to approximately in accordance with Fitts’
like models, both for tasks where targets are collinear with the vector between them, and
where the vector between the targets and the current position is normal to the vector
between the targets.

Grossman and Balakrishnan [2005b] describe a probabilistic model for two-dimensional
target acquisition, consistent with Fitts’ law, approximating the distribution of terminal
points near a target with a bivariate Gaussian. The model is shown to be consistent with
experimental results, and also demonstrate that both dimensions of a two dimensional
target (i.e. both the direction normal and parallel with the direction of movement from
the starting position) have an impact on the movement time.

II.12.2 INFERRING A CLASS OF OPERATOR MODELS
Fitts’ law is intended for quantifying pointing task behaviour. It is a model for analysis,
not a generative model: it does not answer the question of what time series would be ex-
pected given an attempt to acquire a particular target. The law, is however, compatible
with simple operator models.

Jagacinski and Flach [2003] show that Fitts’ law is compatible with a second order re-
sponse. Beamish et al. [2006] suggest that Fitts’ law can be explained as a function
of neuro-muscular delays. Card et al. [1983] give a (rather biologically-implausible)
derivation based on iterative discrete approximations. Phillips and Repperger [1997]
suggests that Fitts’-like responses are the result of transitions between proprioception-
loop and visual-loop control:23

In many cases, movements in single step tracking which must be both large
and accurate will follow this two-phase process. The first phase of the move-
ment is a rapid, open-loop ballistic movement, (as though a successive ap-
proximation strategy is predominant). However, the second final phase of

23The control referred to here as “open-loop” is still closed-loop, but the loop is proprioceptive rather than
visual.
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the operator response, is characterised by a slower visually monitored posi-
tioning movement (characteristic of the closed-loop strategy).

Schmidt and Lee [2005] discuss a number of other possible theories of motor control
which explain Fitts’-like behaviour in targeting motions.

Identifying generative models of human tracking behaviour is more valuable than quan-
tifying their effect. It permits the design of interfaces to match the possible responses of
the user, rather than trying to optimise existing structures to satisfy a criterion. Chapter
VI illustrates how this can be used to design entirely new interaction techniques.

II.12.3 THE APPLICABILITY OF THE LAW IN GENERAL INTERFACES
Fitts’ law is a useful bound on the limits of spatial interfaces based on fixed activation
regions. Distance to target or target size must be traded off to optimise the layout of
interface. However, in more general interfaces, what is required is a generative model of
the behaviour likely to be generated given an intention. Some simple operator models
have been examined in the manual control theory literature (Section VI.4.1.1 reviews
several of them). Such models make it possible to simulate behaviour in an interaction
to quantify potential system performance.

II.13
CONCLUSIONS

The preceding sections have outlined the basic purpose of human-computer interaction
– to communicate intention in a way that increases the utility of a system. To do this,
a system must estimate the hidden intention states of the user. The problem can be
viewed as a continuous control process where the interactor attempts to steer the sys-
tem’s beliefs about intention, forming a trajectory in goal space. Control in the goal space
is not direct – the dimensionality is far too high – and instead the process is extended
over time via mediating dynamics which an interactor can directly control. The inter-
action process can be viewed as a very general hierarchical control problem, with loops
operating at a range of timescales. Feedback is an essential part of interfaces. It reduces
the need for complex inference models in the system, and simplifies the models users
must make of the system.

Conventional, spatially-oriented interactions can be interpreted sensibly under this model.
However, it is apparent that such interfaces do not make the best possible use of band-
width. In particular, the temporal aspects of interaction are largely ignored. They also
fail to accumulate evidence rationally; although evidence for intention is often observed,
specific terminal events are used to induce state changes whatever the state of the evi-
dence.24 The system itself may better be able to estimate the probability of intention as
it varies over time. Part of the reason for the necessity of features such as undo is lack
of control during evidence acquisition.

The signals that flow through the control loop are uncertain and are delayed by varying
amounts. Systems must deal with uncertainty and delay; these can be reduced but
not removed by better design. The following chapter will discuss how feedback can
accurately represent uncertainty; the subsequent discusses how predictive displays can
mitigate delay issues.

24Obviously such an event is evidence itself, but it increases the certainty of the system only by some level
– it does not guarantee absolute certainty.



CHAPTER III

DYNAMIC PROBABILISTIC FEEDBACK

Clouds of sound to reveal the inferential mechanics.

But we don’t really perceive sound as little bubbles coming into our ears, do we? Let’s answer
an easier question: Are there particles of sound production? Of course!

– Cook [2002]

III.1
SUMMARY

THIS chapter explores the issue of uncertainty in the display of results. The im-
portance of real-time, relevant feedback is discussed, and, in particular, the
role that appropriately uncertain display has. Granular synthesis is introduced
as a suitable way of implementing uncertain displays in audio user interfaces.

Structures for using these displays with existing inference mechanisms are described,
and a number of implementation examples are discussed to illustrate the operation of
the techniques.

III.2
FEEDBACK; A REFLECTIVE INTERFACE

It is almost always necessary to display the result of interactions, for otherwise little
benefit can be gained from the interaction. But while this “display of results” is clearly
vital, it is also arguable that process feedback is essential to a usable interface. Such feed-
back relates the changing state of the system purely for the purpose of improving the
interaction; it provides no external utility. It is this continuous display which makes a
control-based interaction model possible, binding the user into a negotiation loop with
the system, and consequently splitting and sharing the inference problem between the
system and the user. The benefit is twofold: the system can operate with less sophisti-
cated inference (because the interactor has control before decisions are made); and the
user can rely less on memorised sequences of behaviour to effect actions (as they can
directly observe the result of their input in time to correct or adjust it).

Much research has been concerned with the development of transparent interfaces (Tan-
imoto [2004], Bardram and Bertelsen [1995]). The basic principle of this approach is to
ensure that interaction is so direct that the result of actions is obvious, and a user intu-
itively understands the responses of the interface. In Tanimoto [2004], it is noted that:

47
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A transparent interface reveals some of the inner workings of a system.
Transparency is important in computer systems that must engender trust,
that teach, or that must rely on users to correct their mistakes.

III.2.1 EXPOSING THE INTERFACE MECHANICS
One of the most significant difficulties with introducing “intelligence” into an interface
is the loss of user intuition. As discussed in Section II.11, a button has a very simple
physical manifestation, and directly mapping elements of the physical state to the in-
tentional state of the system is obvious. It is, however, a suboptimal use of the possible
communication bandwidth, and does not provide real-time control over the system.

FIGURE III.1: Exposed mechan-
ics. Good feedback should reveal
the workings of a system in a way
users can model.

In this thesis, it is suggested that making interfaces reflective – continuously displaying
the system’s beliefs about the user – can be of value in increasing usability. This chap-
ter focuses on the process feedback in interactions, updating the user on the changing
state of the interface inference engine. It specifically addresses the problem of uncertain
display. Where inference produces an uncertain result – which it always should in an
interaction task, for sensors never perfectly reliably indicate intention – the problem is
how to display the range of possibilities and these change during an interaction.

III.2.2 AVAILABLE MODALITIES AND THEIR PROPERTIES
There is a number of modalities available for the presentation of feedback to help the
user control the system. In practice, only the visual, auditory, vibrotactile and force-
feedback (kinaesthetic) channels are currently feasible for computer displays.1

Visual displays are the most widespread of all displays, and are often the only or the
dominant way of receiving feedback from a system. They potentially have a very high
bandwidth, and can easily display complex data. It is often natural to rely on visual
display as the primary output medium, and there is a cornucopia of techniques for
displaying data visually. However, in some contexts it can be a poor choice for feedback,
such as where the eyes are otherwise occupied, or where a spatially oriented display is
unnatural.

This is especially true in mobile situations where visual attention must be focused on the
environment, rather than the interaction at hand. Such contexts comprise many of the
scenarios in which novel devices are likely to be used; mobile phones or personal digital
assistants, for example. It is also an unsuitable modality where low-latency is required,
as visual responses take significant time to process (Rousselet et al. [2002] suggests a
150ms response), introducing long delays in the control loop.

1Although olfactory displays may be viable for display in the near future: see e.g. Washburn and Jones
[2004] or Yanagida et al. [2003] for some examples.
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Audio is a natural choice for display when visual display is unavailable, or for aug-
menting existing visual displays. It has a high potential bandwidth for communication,
relatively low cognitive processing latency, and technology for audio reproduction is
well developed. Audio is particularly suited to temporally-oriented displays where
much finer grained temporal resolution is available than with a visual display (sub-
millisecond resolution as opposed to ∼50 millisecond for visual display). An exten-
sive literature is dedicated to the general sonification of data sets, displaying salient
attributes via audio. Kramer and Walker [1999] reviews the field. Brewster [2003] is a
more general review of auditory output for HCI. Sonification can have significant ben-
efits even where visual displays are available, as Hermann and Hunt [2005] note:

Regarding the latter point, auditory displays offer an interesting comple-
ment to visual displays. For example, an acoustic event (the audio counter-
part of the graphical symbol) can show variation in a multitude of attributes
such as pitch, modu- lations, amplitude envelope over time, spatial location,
timbre, and brightness simultaneously. Human perception, though, is tuned
to process a combined audiovisual (and often also tactile and olfactory) ex-
perience that changes instantaneously as we perform actions. Thus we can
increase the dimensionality further by using different modalities for data
representation.

The advantages of auditory display in user interfaces have been investigated in some
detail; e.g. with earcons (Brewster et al. [1993], Brewster [1997]) or auditory icons (Gaver
[1986], Mynatt [1997]). Brewster [1997], for instance, demonstrates the efficacy of au-
ditory interfaces in mobile contexts, augmenting a conventional visual interaction by
providing summative feedback on button press events.

There is somewhat less research on auditory interfaces in continuous control contexts
(outside of musical applications).2 Some classical examples are reviewed in Poulton
[1974]; these are generally based around pitch modulation (e.g. Milnes-Walker [1971])
or interruption rate (for example, for error display as in Ellis et al. [1953]). An early com-
plete integrated audio feedback system for aircraft control is described in Forbes [1946],
which was sufficient to allow inexperienced pilots follow straight paths in a mechanical
flight simulator. Vinje [1972] (cited in Sheridan and Ferrell [1974] p.263) developed an
audio feedback system for V/STOL hover to augment conventional instruments. The
heading, height and position of the aircraft were sonified; this is reported to have re-
duced the pilots subjective workload. The limitations of the technology at the time of
these studies limited the sophistication of the resulting systems. With the introduction
of affordable digital signal processing, much richer synthesis is practical. In more recent
work, physically-modelled synthesis for continuous control of a rolling ball on a beam
is described in Rath and Rocchesso [2005]; Rath [2004] has detailed analysis of the per-
formance of the rolling ball system and the effects of the feedback on control behaviour.
van den Doel et al. [2001] describe a real-time system for the generation of realistic slip-
ping and sliding sounds, while Essl and O’Modhrain [2005] describe a friction based
sonification for the perception of motion. Perry Cook’s STK sonification toolkit (Cook
[2002]) includes a number of models suitable for synthesis of continuous processes. All
of these can be applied to display the state of continuously varying dynamical systems.

2Johannsen [2004], for example, contains a number of works on continuous control in a musical context.
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III.3
UNCERTAINTY IN FEEDBACK

Section II.10.1 discussed the key role of uncertainty in user interfaces, and some com-
mon sources of noise in the interaction process. An interface should maintain and prop-
agate uncertainty; it should also display uncertainty to the user to provide enough in-
formation for reliable control.

III.3.1 OPTIMAL CONTROL WITH UNCERTAIN DISPLAY
There is evidence that displays which represent uncertainty lead to appropriately reg-
ularised behaviour. Kording and Wolpert [2004], for example, showed that in a target
tracking task, where a disturbance was artificially added to the user’s control input,
uncertain display (Gaussian point clouds) lead to behaviour that was consistent with
Bayesian integration of the uncertain sensory inputs and prior beliefs about the system.
Operator models, such as those proposed in Jagacinski and Flach [2003], which incorpo-
rate Kalman filters imply that uncertainty is modelled in user control behaviour. Section
IV.4 demonstrates experimentally the regularising effect of uncertain display in orienta-
tion acquisition tasks.

Failure to incorporate uncertainty can certainly lead to poor decision making. The
grounding of the Royal Majesty on the 9th of June 1995 was a direct result of the crew
relying on a GPS navigation system which showed apparently accurate information
(visual display as the ships position as a definite point, numerical display to six signifi-
cant figures) despite not having accurate measurements (National Transportation Safety
Board [1995], Degani [2004]). Unbeknownst to the crew, the GPS system was operating
in dead-reckoning mode, and accumulated error rapidly as the ship travelled. How-
ever, the GPS continued to display the position with absolute accuracy. As a result, the
ship ran aground on rocks which were clearly visible on the display – which the crew
believed were a safe distance away. Don Norman (Norman [2006]) has argued that the
fate of Southwest Airlines Flight 1248 (which ran off the runway due to misestimation
of the available length) was due to similarly poor displays, giving apparently rock solid
results despite known underlying uncertainty.

III.3.2 EXISTING TREATMENT OF UNCERTAINTY
Few interfaces provide any form of uncertain display. One of the few treatments of the
subject in HCI is the studies of ambiguity in user interfaces given in Mankoff [2001]
and Mankoff et al. [2000]. This focused around building interface toolkits for support-
ing correction and disambiguation of input from recognition systems. It does not deal
with probabilistic interpretations of input, and is not aimed at continuous interaction
interfaces; the interactions are focused around recognition/correction steps.

Rosenstein et al. [2005] and Rosenstein et al. [2004] discuss intention feedback as well
as objective feedback in robotic displays, although they do not deal with uncertainty in
intention estimates. Displays which show how the visible space corresponds to the goal
space are examined; these consist of overlaid “funnel” images indicating regions of the
space which the system will associate with a goal.

Displays of uncertainty have also been used for visualisation of static data. In static
information visualisation contexts, vibration has been used as a cue for the display of
uncertainty (Brown [2004]). There have been several attempts to introduce uncertain
displays in GIS systems with attributes such as colouring, brightness or symbols rep-
resenting uncertainty, and also with Monte Carlo sampling approaches (Hope [2005],
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MacEachren et al. [2005], Leitner and Buttenfield [1997], Goodchild et al. [1994]). Grig-
oryan [2004], for example, discusses the visualisation of uncertain three-dimensional
surfaces, using point clouds to represent areas of uncertainty. Griethe and Schumann
[2006] and Johnson and Sanderson [2003] review a number of existing techniques for
uncertain display in information visualisation.

III.3.3 MOTIVATION OF PARTICULATE REPRESENTATIONS
The true densities involved in interactions are often analytically intractable, except for
the very simplest cases, and it is often more reasonable to draw Monte Carlo samples
from the densities and work with these instead. In some cases the inferential process
is itself at least partially particulate (e.g. in particle filters) – in this case a collection of
samples completely represents the state of the inference. This representation has the
advantage of being easy to feedback to the user in many modalities; in a visual case this
might be presented a cloud of points instead of a single pointer. A direct auditory ana-
logue of visual point clouds is granular synthesis, the main focus of this chapter. Granular
synthesis can be extended to vibrotactile-tactile and force-feedback haptic channels (see
Crossan et al. [2004]), but the specific asynchronous algorithms presented here may be
less suited for such modalities due to the phase randomisation effects introduced by the
granulation process. Synchronous techniques which emphasise phase relations or spa-
tial distribution over spectral content may have better performance on such modalities.

III.3.4 VISUAL UNCERTAIN DISPLAY
Adding uncertainty to a visual display is often simple. Points can be replaced by point
“clouds”, each a sample from a distribution. Greater numbers of points lead to more
solid and less flickering displays, but require additional computational power, and may
saturate the display. Alpha blending and anti-aliased drawing can be used to give a
better sense of the density of particles (at the cost of some computation). The flickering
motion effects of a Monte Carlo sampled visual display may also be useful cue. For
situations where the point density can be evaluated quickly or pre-computed, the den-
sity can be regularly sampled and displayed directly as an alpha overlay. For simple
densities, such as for the Gaussian case, probability isocontours can be displayed (e.g.
the two standard deviation bound).

In some situations, for example in map navigation, there is a static world, and the rela-
tionship to that world is unknown (e.g. the position relative to contours). An uncertain
display could show the position estimates as described above with point clouds, or
alternatively the static world could be convolved with the position density before dis-
playing (i.e. using the density as a point spread function), while the position remains a
point display. 3 Figure III.2 compares these displays for visual map navigation.

3Although in practice some hazard or utility map should be made before convolving so that important but
small details are not eliminated from the display – e.g. tiny rocks in an ocean navigation problem.



Chapter III. Dynamic Probabilistic Feedback 52

FIGURE III.2: Some postulated visual uncertain displays in a map navigation example.
Left to right, top to bottom: Single point, no uncertainty; point cloud (no
alpha); point cloud (alpha blended, anti-aliased); density alpha overlay;
outline of two standard deviation bound; world convolved with position
density.
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In the visual domain uncertain displays are easy, if sometimes computationally expen-
sive, to implement; however it is less obvious how to build uncertain auditory displays.
The next sections show how granular synthesis can be used for uncertain display, with
respect to the goals of the user.

III.4
INTRODUCTION TO GRANULAR SYNTHESIS

III.4.1 GRANULAR SYNTHESIS; A BRIEF HISTORY
Granular synthesis was first described by composer Iannis Xenakis in the early 1950’s
(although the techniques are very similar to those proposed by Gabor for signal analy-
sis in 1947 Gabor [1947]). Xenakis was interested in producing music by mathematical
process; to this end he described a method of producing sound by choosing small sound
segments and arranging them according to probability distributions. At the time, this
was performed manually with magnetic tape. The details are described in Xenakis’s
book, Formalized Music (Xenakis [1971]). One of the best-known early works featuring
granular synthesis is “Concret pH”, featuring extremely short samples of charcoal burn-
ing sequenced together into a four minute piece. This was originally played on an array
of several hundred speakers in the Phillips Pavilion at the 1958 World Fair in Brussels,
making use of the dense spatial textures granular synthesis can provide. Childs [2002]
presents an analysis of Xenakis’ “Achorripsis” which involves probabilistic granular syn-
thesis, and is in effect one of the earliest examples of mathematical sonification. The
technique is somewhat similar to the “micropolyphony” process employed by Ligeti
in his famous 1961 work “Atmospherés” (the opening music for 2001: A Space Odyssey),
where the each member of the orchestra has a slightly different score, giving a dense,
rich structure.

These techniques became much more practicable with the advent of affordable DSP
units, and Barry Truax (Truax [1986], Truax [1988]) and Curtis Roads (Roads [1978])
implemented the techniques on computerised hardware and brought them to a wider
audience. There are now a proliferation of variants upon the technique, almost all of
which are focused on the production of novel musical textures. An comprehensive
overview of the history and current state of granular synthesis related work is given
in Microsound (Roads [2002]).

III.4.2 THE GRANULATION PROCESS
The basic thesis of granular synthesis is that a clear macroscopic structure can be created
from a mass of microscopic events. These events are far too numerous to be specifically
hand selected; they are instead generated by some mathematical process. Originally,
(and in this work), these processes involved sampling from statistical distributions. The
technique can, however, be extended to other parametric processes generating large
quantities of unique but related events; in Miranda [2000] and Bowcott [1989], for ex-
ample, cellular automata are used as a generating mechanism for evolving sound tex-
tures. Informally, the granulation process divides up some original sound waveforms
into small sections, envelopes them with windows to eliminate clicking artifacts and
sums a great number of these together continuously to produce audio output. The
waveforms from which these slices are taken, the specific regions which are selected
and parameters of any post-processing to be performed (such as resampling or spa-
tialization), are all drawn from some distribution. Normally, there are a finite number
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of source waveforms, which could, for example, correspond to goals in an interface.4

Figure III.3 illustrates the basic elements of the process.

4Although if the grains are synthesised in real-time from some parametric synthesiser (e.g. from a
waveguide model) the densities can be continuous over the synthesis parameters.
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FIGURE III.3: The granulation process (shown here for three grains). A number of
slices are taken from a set of original sounds. Sample positions are cho-
sen by some process, here by sampling from a p.d.f. These slices are
then enveloped (to eliminate clicking artifacts), pitch adjusted and spa-
tialized according to the densities for each parameter. All of the slices are
summed together to produce an output sound stream. In practice many
hundreds of grains are active simultaneously.
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More formally, the asynchronous granular synthesis process, as used in this work, can
be defined as follows:

III.4.2.1 PER-SOURCE
PARAMETERS

There are assumed to be a collection of source waveforms
w1 . . .wn. For each waveform wi, at some time t, there will
be:

• an associated probability pi;

• a density over time ti(x) which lies in [0, l(wi)], where lwi is the length of a wave-
form;

• a density over resampling rates (i.e over pitch shift), si(x) over [0,∞];

• a density over spatial positioning, ai(x). For stereo, without loss of generality this
can be defined to be a density over the range [−1,1] where -1 is hard left, 1 is hard
right. For 3d spatialization this can be any density over R3. For other spatializa-
tion techniques (speaker arrays, as used in surround sound implementations), the
density will be over an n-D v vector with each element in range [0,1].

One source, at a particular time, can be represented as the quintuplet ci =< wi, pi,ti(x),si(x),ai(x)>.
Very often the densities ti(x),si(x),ai(x) will be chosen to be either mixtures of Gaussians
or delta functions, simplifying the possible representations.

III.4.2.2 GLOBAL PARAMETERS It is assumed that there is a single global window
length l and a windowing function v(t) over [0, l],

which applies to every waveform. It is possible to introduce these as a per-source para-
meter or a full per-source distribution (although a parametric form for v(t) is needed),
but this prevents a significant optimisation of the algorithm (see Appendix A for de-
tails). Some possible window functions are shown in Figure III.4.2.2, the Gaussian5

and piecewise-linear windows being particularly useful. These are the windows im-
plemented in the GSLib library (Appendix A). The length l is chosen so as to be long
enough to give a sense of the timbre of the source, but short enough that the process
does not become simple playback, and the textural aspects of the synthesis technique
remain audible.

The other important global parameter is the number of grains involved. In the algorithm
used here, there is an upper bound g on the maximum grains simultaneously played
back and a probability of grain generation pg; any number of grains less than g can be
active simultaneously. pg gives the probability of a grain being generated at any time
point and thus defines an exponential distribution over the inter-grain-generation time.
Increasing g and/or pg increases the “smoothness” and continuity of the sound, but
computational cost obviously increases. Very high densities lead to noise-like results.

III.4.2.3 GRAIN INFORMATION The algorithm uses a set of grains r1 . . .rg, of which
some number belong to the active set Ra. Each

grain r j encapsulates:

• its total length l(r j);

• its associated source w(r j);

5The Gaussian window is of course truncated to fit the grain length. Other similar windows such as the
Kaiser, Hann or Hamming windows could be used instead.
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FIGURE III.4: Some possible enveloping windows for granular synthesis. These are
applied to waveform sections to eliminate clicking artifacts. The effect of windowing a
sine wave is illustrated.

• its current pointer into the waveform pt(r j);

• the source parameters t(r j),s(r j),a(r j) which were drawn from t j(x),s j(x),a j(x) at
generation;

• the amount of the grain already produced o(r j);

III.4.2.4 ALGORITHM The synthesis algorithm can be summarised as follows:

1. An new buffer of length b is received and cleared.

2. For each grain r j in the active set Ra:

(a) For every sample i in b:

(b) pt(r j) = pt(r j)+ s(r j);

(c) b(i) = b(i)+w(r j)[pt(r j))]× v(t)a;

(d) o(r j) = o(r j)+1;

(e) if o(r j) > l(r j):

i. remove r j from Ra;

ii. if |Ra| < g, with probability pg:

A. reset o(r j);

B. draw a new source ci from c1...cn, weighted by pi;

C. draw a new set of parameters t,s,a from the densities given by ci;

D. add r j to Ra.

3. transform b to audio output buffer format.

III.4.3 EFFECT OF GRANULATION PARAMETERS
Complete discussion of the various variants of the synthesis technique and the general
effect of parameters on the sound can be found in Roads [2002]. For the specific asyn-
chronous algorithm described above, the following general effects may be noted:
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• Grain Length Longer grains produce a smoother, cleaner sound with less of a
distinct texture. Very long grains (>1s) include so much of the original that the
granular effect is often lost. Shorter grains provide a dense textured feeling. Very
short grains (<50ms) produce a distinct gritty texture and has little of the source
character.

• Grain Density High grain densities imply smooth, thick sounds. Lower densities
have a sparser feel, similar to that of a Geiger counter.

• Envelope Gentle envelopes mask some of the granular texture, and also reduce
the output intensity; sharper ones emphasise the granular texture.

• Temporal Distributions Wide temporal distributions have an effect similar to that
of long reverb, with a wide echoing sound; narrower distributions focus the sound
more clearly.

• Pitch Distributions Wide pitch distributions produce a harsh, dissonant sound,
that quickly turns into white noise. Mixtures of delta distributions (e.g. in a chord
pattern) are much more pleasant to the ear.

III.4.4 WHY GRANULAR DISPLAY?
It may seem that similar effects might be had by associating a sound stream with a par-
ticular goal, and simply modulating its intensity by the probability of the goal. How-
ever, granular synthesis has a number of advantages over this approach.

First of all, granular synthesis makes temporal manipulations easy (see III.5.6), a tech-
nique which is hard to replicate without some form of granulation (although spectral
methods like the phase vocoder – for example the stretcher given in Ravelli et al. [2005]
– can be used in some circumstances). Many time-stretching algorithms are based on
some form of synchronous granular synthesis (see, for example, Itagaki [2000] and
Truax [1994]), often combined with specialised transient analysis to retain the structure
of the fast onset events which are important in recognition of sounds. Pitch-synchronous-
overlap-add (PSOLA) is a popular technique for time-stretching speech (Moulines and
Charpentier [1990]); it is a synchronous granulation process with grain size locked to
the estimated fundamental frequency of the audio. Granular synthesis can produce
time distortions which are fully probabilistic in nature, an effect very difficult to achieve
without granulation.

Secondly, granular output can be used for very low probabilities, producing sparse
snatches of sound which are easily identifiable, due to the ears extreme sensitivity to
the onset of events. Geiger counters, for example, can represent activity over a very
wide range, from extremely sparse events to dense trains of pulses. Granular synthesis
affords smoothly and intuitively changing textures of audio as probabilities vary, rather
than simple intensity adjustments. In contrast, directly mapping volume to probability
makes it very hard to hear low probability sources. It should also be noted that granu-
lar synthesis is scalable to very large numbers of potential sources, as the computation
effort expended on each source depends on its probability. Low probability sources re-
quire little computation time. The naı̈ve approach would require mixing of all streams
with non-zero probability at all times.

Thirdly, granular synthesis provides a simple way of synthesising sounds with pitches
distributed according to some p.d.f. This would be extremely hard to do with multiple
continuous streams of sounds (a very large number of simultaneous streams would be
required to get the effect – effectively granular synthesis with infinitely long grains).
This can produce dense textures with interesting structure.
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Finally, the granulation process has a number of parameters that can be configured to
effect different textures of sound, ranging from clicking Geiger counter-style effects to
dreamy, reverberant sequences. These offer the interface designer a wide palette of
sonorities to tailor to a particular interface.

III.4.4.1 DIRECT DISSONANCE
MODELS

One alternative to granular goal display is to dis-
play the entropy of the distribution via dissonance.
This technique is described in Williamson and Murray-

Smith [2002]. Briefly, each probability is mapped to a sound with a clear pitch, the in-
tensity of the sound being related to the probability. The pitches are chosen so that
they occupy a fairly narrow frequency band. As the entropy increases, more pitches
are apparent within the output, and the dissonance increases, reflecting the increasing
confusion in the inference.

This technique is in fact a special case of granular synthesis, with a single source whose
pitch distribution is being manipulated. However, granular synthesis offers more so-
phisticated sonification, permitting more flexible pitch densities and densities over space,
time and timbre.

III.5
DIRECT MAPPINGS OF PROBABILITY DISTRIBUTIONS

For a simple case where there is a discrete number of potential goals, each goal can be
paired with a source wave. The probability of each goal maps directly to the probability
of drawing a grain from its associated source. A hierarchical menu can be decomposed
in this way, each higher level element being a mixture of its sub-elements, weighted by
the sub-element priors. As the user navigates down the tree, the sound converges from
a mélange of elements to less dense mixtures of elements, until finally a single source
remains. Any interface which features hierarchies of elements with varying probability
can be sonified in this manner.

III.5.1 EXAMPLE: APPLICATION TO TRADITIONAL GESTURE RECOGNITION
A simple application of the type of feedback is in sonifying the output of a probabilistic
classifier, such as an HMM, where there are a number of sub-models mi, each of which
has an updated likelihood p(θ|d) at every time step. This pattern often occurs in symbol
recognition systems. It is, for example, a common structure in gesture recognisers (e.g.
Wilson and Bobick [1999], Nam and Wohn [1996], Rigoll et al. [1998]). Figure III.5 shows
the basic structure of a sonification of this structure. A full particle-filter based gesture
recognition utilising this technique, along with temporal manipulations to represent
phase display, is given in Section IV.5.
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FIGURE III.5: Multiple models in a recognition task are directly sonified via granular
synthesis.

III.5.2 IMPLEMENTATIONS: THE GRANULAR SYNTHESIS LIBRARY
The Granular Synthesis Library (GSLib) is a collection of C routines for synthesising
asynchronous granular audio in real-time. It is non-system dependent – it simply fills a
series of output buffers when required. It generates a continuous stream of grains, with
adjustable grain length, density, and source waveforms. The distribution parameters for
source selection, pitch, panning and time can all be adjusted in real-time. This makes
it straightforward to add synthesis capabilities of the type described in this chapter to
many systems with little effort, provided the existing system is already probabilistic
in nature. The library is discussed more fully in Appendix A. This code was used to
implement the examples described in this chapter.

III.5.3 STATE SPACE REPRESENTATIONS OF INTERFACES
As described in Section II.9, taking a state space view of an interaction, a set of n densi-
ties f1(x) . . . fn(x) can be defined over that space. These are used to define a function from
the state space s ∈ Rn to a probability distribution p1 . . . pn, a point in some goal space.
These output probabilities map in an extremely straightforward way to the granular
synthesis process; each density has an associated sound, and the probability of drawing
a grain from waveform i is just pi.

III.5.4 EXAMPLE: STATE SPACE MAPPING
As a demonstration of this type of approach, placing densities directly on the state space
of a system, a simple targeting/exploration environment featuring granular synthesis
has been constructed. This example places densities directly onto the sensor space, and
produces audio based upon the activation of these densities as a cursor traverses the
space.
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A screenshot from the implementation is shown in Figure III.6. This is implemented
with the granular synthesis library GSLib (see Appendix A). In this example, a num-
ber of Gaussian densities are distributed in a two-dimensional space, having means
drawn uniformly across the rectangular area and identity covariances. Each density has
a waveform associated with it, labelled at the modes on the diagram.

FIGURE III.6: Image from the mixture of Gaussians demo. A number of Gaussian den-
sities are arranged in a 2d state space, each with its associated waveform.
The probability of each source given the current cursor position is soni-
fied. In this image, isoentropy contours are shown. The colours indicate
the mixture of probabilities at that source.

As the mouse cursor is moved through this space, the probability pi of each spatial
“goal” is computed and normalised. These probabilities are fed to the synthesis mech-
anism, which produces a smoothly varying sound with a relatively constant texture.
Temporal distributions in this example are uniform over the entire waveform, with no
pitch or spatialization used. Unprocessed sections of music or sound effects are used as
the input waveforms; the granulation process creates smooth textures from these auto-
matically. See Appendix C for videos and audio demonstrations of these effects.

III.5.5 DISPLAY OF ENTROPY VS. DISPLAY OF DISTRIBUTION
In systems such as the above example, where the complete distribution of goals is soni-
fied, the prominence of each goal is related directly to the prominence of its associated
sound. In cases where the distribution is does not have a single clearly probable value,
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the sound diffuses into a mixture of all possible goals.

Consequently, the sonification emphasises the entropy of the distribution when entropy
is high, and the identity of the source when entropy is low. When the waveforms have
different pitches, for example, higher entropy manifests itself as more dissonant output.
This is logically consistent with the desired behaviour of a probabilistic sonification sys-
tem; since the user cannot hope to perceive the full distribution in all its detail, the sound
simply becomes more blurred and noisy as the entropy increases. A single item, or even
two or three, of high probability is still easily identifiable in the mix. The appropriate
level of information for control of intention is produced automatically.

III.5.5.1 IMPORTANCE OF CHANGE
IN ENTROPY

The change of entropy of the goal distribution
is the rate at which the user is communicating
with the system – knowledge of the dynamics

of the system entropy gives the user awareness of the effect of their communication.
From the user’s point of view, one of the most important indicators in the interaction
is how entropy changes over time: “Am I getting closer to a goal or not?” – “Am I
communicating well?”. A key function of an uncertain display is therefore to feedback
the rate of effective communication to the user.

III.5.6 PROBABILISTIC TEMPORAL AUDIO MANIPULATION
One of the attractive features of this synthesis type is the immediate derivation of tem-
poral manipulations which would otherwise have to be implemented separately. The
apparent “speed” of a sound can be altered without distorting the pitch, in contrast to
naı̈ve adjustment of the sample rate. Time can be stretched, for example, simply by
defining a narrow density on the sample indices within a waveform and translating its
mean by some constant c at equally-spaced intervals tn, of duration ∆t where c < ∆ts (s
being the sample rate). Time compression occurs when c > ∆ts, and the situation where
c = ∆ts is the natural output rate.

Simple “melody completing” type feedback for progressive feedback during an inter-
action task is trivial with this approach. It is in fact more flexible than the common
method of synthesising a tone sequence from a predefined template (e.g. via a MIDI
synthesiser), playing notes at specified intervals during a task. Instead, the granular
technique produces a smooth, continuously changing sound, in which it is feasible to
“hold time still” and still have meaningful output. Equivalently, apparent time rate can
be fixed and the apparent pitch of the sound altered by resampling. This offers a flexible
way of manipulating the audio stream, and can be used to introduce new timbral effects
by employing complex pitch densities.

Since time is represented as a density, uncertainty about the current state of some time-
dependent process can be displayed. In a gesture recognition system, for instance, the
system may have uncertainty about the phase of the gesture. If each gesture model has
an associated waveform, as in III.5.1, the density over samples in that wave is obtained
directly from the phase density. This can be used to create feedback which relates both
the distribution over classes and the distribution over phases in a classification problem.

A fundamental use of temporal distributions is in “motion blurring” highly time-compressed
audio streams to preserve the audio flow and avoid introducing sharp pulsing artifacts
in the output. If a very narrow density over samples is used, and the audio is com-
pressed at some rate much greater than the natural output rate, sections of the audio
are skipped due to the quantization of time into frames (see III.7(a)). This is analogous
to the jerky effect seen in computer animated sequences where motion blurring is not
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applied. By widening the time density so that it encompasses the entire inter-interval
duration, the staccato nature of the sound can be minimised, producing smooth output
at high time compression factors (Figure III.7(b)). This dynamic selection of overlap
time can be used in situations where widely varying rates of a process must be sonified,
preserving the audio “flow”.

Sampling Points

Time

(a)

(b)

FIGURE III.7: (a) Audio densities are sparse and non-overlapping, leading to a jumpy
sound. (b) Densities are adjusted so as to cover the entire inter-interval
region. Sound is smooth and clean

III.5.7 EXAMPLE: ARC LENGTH MAPPING DISPLAY
A simple use of the time flexibility of the granular synthesis technique is to map time
along curves in space, to produce a simple “completion” effect feedback (as in Müller-
Tomfelde and Steiner [2001]) for spatial gestures. The implementation of such a system
is described in this section.

In this implementation, a user can create a static path in a two-dimensional space from
a number of points, through which a cubic spline is fitted. There is a Gaussian density
around the path, and there is an audio source associated with the path, whose prob-
ability given is the density value at that point. The mean of the temporal density is
mapped to the current arc length of the point nearest the user on the path. As the user
moves away from the mean, this density expands, reflecting the uncertainty as to which
part of the path the user is currently “at”. The audio source in this case is a short mu-
sical excerpt; the music can be imagined to be written along the line of the path with
the current time pointer sliding along it, reading the notes off (although the stretching
and compression is smooth here, without note “jumping” effects). An image from the
implemented system is illustrated in Figure III.8. See Appendix C for video and audio
footage.
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More formally, for the trajectory goal the waveform time samples

t ∼ N (δ,σt), (III.1)

where

δ =
Z l

0

√√√√((
dx
dv

)2

+
(

dy
dv

)2
)

dv, (III.2)

for a curve of length l and
σt = dα, (III.3)

where α is some constant defining the rate at which time blurs,

d =
√

(nx − cx)2 +(ny − cy)2, (III.4)

c is the current cursor position and n the nearest point on the curve (subject to monotonic-
ity constraint). The probability of selecting samples from the trajectory waveform is

p1 =
1

2πσv
e

(
d2

−2σ2v

)
, (III.5)

where σv is the trajectory width constant. The probability of selecting from the uniform
background goal is just p0 = (1− p1).
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FIGURE III.8: An image from the arc length mapping demo. The dark path indicates
the mean positions, while the outer circles indicate the one standard de-
viation bound. The current position along the path is given by the tri-
angle extending from the cursor; as the mouse moves closer and further
the potential positions contract and expand respectively. Audio is pro-
duced corresponding to the section of the curve highlighted by the two
endpoints.

Extending this technique to more complex representations of phase is straightforward.
Section IV.5 shows how the technique can be used with a particle filtering trajectory
warping algorithm, displaying the ensemble of estimated phases in a gesture recogni-
tion situation.

III.6
CONCLUSIONS

Many interfaces can benefit from the adoption of appropriately ambiguous display; a
user can only make rational decisions if the feedback perceived accurately reflects the
beliefs of the system. Monte Carlo sampled approximations to uncertainty are a com-
putationally convenient way of representing and manipulating uncertainty, and lend
themselves well to display. Almost any interactive system can be augmented in this
way. The particulate methods map easily onto the visual, auditory and even vibrotac-
tile domains. 6

6See Crossan et al. [2004] for haptic granular synthesis for probabilistic display.
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III.6.1 GRANULAR SYNTHESIS AS A GENERAL METHOD FOR PROBABILISTIC
DISPLAY

Granular synthesis is a powerful and flexible synthesis tool, and is a suitable technique
for uncertain auditory displays, sonifying the time-varying states of a systems belief
states. The nature of granulated approaches makes it easy to synthesise smooth audio
textures with varying timbral characteristics and powerful control over the temporal
flow of the audio. The process can be represented in continuous form, without relying
on discrete alerts to inform the user. The asynchronous “clouds of sound” algorithm
presented here can be adapted to many contexts where belief representation is relevant.
Goal-directed feedback is produced by placing densities on the state space of a system
(possibly combined via Bayes nets), transforming estimates of physically measured state
to points in the goal space. Thus the feedback relates to the inferred goals of the user,
rather than the state of interaction itself.

The following chapter extends these techniques, using Monte Carlo sampling to infer
future potential states of the system and the user, propagating the uncertainty through
time. The resulting distributions are then sonified via granular synthesis, and displayed
with visual point clouds.



CHAPTER IV

PREDICTIVE UNCERTAIN DISPLAYS

Showing the possible futures.

Experience indicates that, by using a properly designed predictor instrument, a novice can
in ten minutes or less learn to operate a complex and difficult control system as well as or
better than even the most highly skilled operator using standard indicators.

– Kelley [1968] [discussing submarine control displays]

IV.1
SUMMARY

IN this chapter, the uncertain displays that were developed in the preceding chapter
are extended to include predictive capability. These predictive displays can help
mitigate the effects of delay in an interaction loop; the appropriately uncertain
display ensures that the display remains “honest” and is not over-confident. The

power of Monte Carlo predictive algorithms in interactions is discussed, and some ex-
amples of complex control problems are augmented with such predictors. Experimental
evidence of the utility of uncertain display is presented. The natural extension from dis-
play of pure prediction to integration into the inferential process itself – using particle
filters to estimate hidden states – is presented.

IV.2
QUICKENING: PREDICTIVE DISPLAYS

IV.2.1 THE NEED FOR PREDICTION
The function of a feedback mechanism to provide the interactor with sufficient infor-
mation to control the system outcome so as to best match the interactor’s intention. It
must therefore display all variables necessary for effective control. To be most effec-
tive, these should be displayed at the time when they are most useful. In particular, the
feedback should wherever possible take into account any delays in the closed-loop that
would otherwise impair control. Humans have adapted to deal with the delays inher-
ent in perception and motor control; this makes control in the physical world possible.
Compensating for additional delays introduced by interactive systems is challenging, as
was discussed in Section II.8.4. Where delays are unavoidable, predictive and preview
displays can be used to mitigate the effects.

Displaying predictions is one way of reducing the cognitive load on the user. The system
can take over some of the modelling that the user would otherwise have had to have

67
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done to control the system. Since the system often has better access to the variables
involved in an interaction task (particularly if there are very many dimensions), and
much greater computational power with which to process them, these models can easily
exceed the best performance of human predictions.

Delays are unavoidable in any system, and there are many such sources in human-
computer interaction. Section II.8.4 outlined some of the important sources of delay
and lag effects in interaction. Everything from hardware latency to muscle dynamics
introduces delay into the control loop. Ignoring these delays and displaying only the
“current” state pushes the work of prediction onto the human interactor.1 This is far
from optimal, both because the system should relieve the user of effort wherever pos-
sible, and because the system may well have better information as to the likely future
outcomes. Systems can predict both their own responses and those of users interact-
ing with them, though prediction of the subsequent states of a human interactor is only
possible in the very short term – otherwise communication would be impossible. When
delays reach the order of 250ms or more control generally degrades to an unacceptable
extent (see Section II.8.4).

The purpose of predictive feedback is to help a user specify intention in a form the
system can interpret reliably. In particular, it can be used to reveal how much effort will
be required to drive the system towards the intended goal, and what classes of action
will improve or degrade the beliefs.

IV.2.2 EXISTING PREDICTIVE INTERFACES
Predictive controllers are widespread in industrial control (see e.g. Qin and Badgewell
[1997]), ranging from sophisticated process models (Ziebolz and Paynter [1954] and
Smith [1959] introduced simulation control) to the simple derivative component of the
well-known proportional-integral-derivative (PID) controller. These controllers use mod-
els of future behaviour to influence the output applied to a system under control. In the
presence of delays, this can significantly increase the quality of control. The same prin-
ciple can be applied to manual control, where the human is acting as a controller. By
extending the display to show (self) predictions of state, the user’s level of control can
be enhanced.

IV.2.2.1 PREDICTIVE INSTRU-
MENTS FOR MANUAL CONTROL

In manual control applications, predictive displays
have been applied, especially in vehicle control and
gunnery. In this field, such displays are often de-

scribed as being “quickened”. The most widespread examples are the rate displays
in aircraft (e.g. the VSI indicates rise/sink rates). Kelley [1968] gives an excellent ac-
count of some of the various predictive displays suggested for submarine control and
also has one of the first discussions of fast-time models for predictive manual control
(see Figure IV.2); Hess and Gorder [1990] give a predictive display for helicopter pilots
during hovering manoeuvres (illustrated in Figure IV.1); Birmingham and Taylor [1954]
describe one of the first electronic quickened displays, and also coined the term “quick-
ening”. Almost all of these displays operate by augmenting the display with derivatives
of a control variable. Kelley’s quote, which opens the chapter, illustrates the power of
predictive instrumentation.

1There is of course no “current” state from either the system or the user’s perspective – evidence arrives at
different times and is fused into a current estimate of the world in both the past and the future. The sensation
of conscious “now” in humans may well be constructed post hoc, as experiments with the readiness potential
(see Libet [1981] or Libet [2004]) indicate.
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Position

Velocity
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FIGURE IV.1: Quickened display for helicopter hover manoeuvres. Adapted from Hess
and Gorder [1990]. The acceleration, velocity and current position of the
aircraft are displayed on a map to aid in low speed movements. The
dashed black line is not part of the display. It indicates the path an object
would take given the velocity and acceleration vectors shown here (with
1 acceleration unit = .07 velocity units).
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FIGURE IV.2: Kelley’s postulated predictor model for spacecraft manoeuvres. This dis-
play is intended to be based on a fast-time model of the process; a simu-
lation approach to predictive control, based upon Ziebolz’s (Ziebolz and
Paynter [1954]) work. Reproduced from Kelley [1968] p.147

IV.2.2.2 PREDICTION IN
COMPUTER INTERFACES

Predictive displays have also been employed in virtual
world navigation (e.g. Chapman and Ware [1992]) and
especially in telerobotics (for example, the predictive ro-

bot arm interface described in Bejczy et al. [1990] or the video overlays for teleoperator
control described in Noyes and Sheridan [1984] and the more sophisticated photoreal-
istic predictive displays described in Barth et al. [2000] and Burkert et al. [2004]).

Predictive displays for mouse pointing tasks in desktop user interfaces based on ve-
locity estimates are discussed in Asano et al. [2005], and in Murata [1995]. The system
described in Asano et al. [2005], for example, attempts to ascertain the maximum of the
velocity profile in a pointing movement, assuming a pointing model where trajcetories
are straight lines with a smooth velocity profile, having a single well-defined maxi-
mum. It then uses this to predict the final goal destination, and displays the result with
an animated “jumping” motion. The system was found to have some improvement in
pointing performance for distant targets.

Glimpse (Forlines et al. [2005]) demonstrates a different style of predictive interface. In
this model, intended for touchscreen based interfaces, gentle pressure causes the display
to indicate what would happen at that point; pressing harder “pushes through” and the
action is actually performed. This reduces the necessity of functions such as undo; users
can perceive what the effect of their actions will be without irreversibly changing the
state of the system.



Chapter IV. Predictive Uncertain Displays 71

IV.2.3 UNCERTAINTY
It is important to note that predictions are most beneficial when they include appropri-
ate uncertainty. Without this, a display of a single future possibility with unrealistic
confidence will lead to instability and inaccuracy; it is quite possible to build a predic-
tive system which is much worse than a non-augmented system if uncertain display is
not employed while the model is inaccurate. If estimates of uncertainty are available,
then the display can reflect the full distribution of potential outcomes at the predicted
horizon, becoming less informative as the relevance of information decreases.

Knowledge of the changing uncertainty of a situation is of importance when planning a
set of actions to perform some goal; a certain but low-value outcome may be preferable
to a risky but potentially high-value outcome in some cases. Dennett (Dennett [1984]),
puts it thus:

If an airline pilot is informed that there is a dangerous thunderstorm ahead,
a storm so severe that were he to enter it he would risk losing control of
his plane, he can divert the plane to another course in order to preserve
or enlarge the margin of error he maintains [...] Recognising this, the pilot
not only strives to control the plane at all times; he also engages in meta-
level control planning and activity – taking steps to improve his position for
controlling the plane by avoiding circumstances where, he can foresee, he
will be forced (given his goals) to thread the needle between some Scylla
and Charybdis. [emphasis in original]

Modelling of uncertainty should include the noise in the inputs to a system as well as
uncertainty about the behaviour of that system.

IV.2.4 LINEAR PREDICTIONS IN GOAL SPACES
In the structure defined in Chapter II, there is a control loop in which the user controls
the system’s interpretation of user intention. The state of the system with respect to
potential goals is the result of inference on some other control process. There are two
basic ways of breaking down predictive models: models which attempt to predict new
positions directly in the goal space, the focus of this section; and models which perform
prediction in some portion of the state space and then project back into goal space.
These are further discussed in Section IV.2.5.

It is possible to add some level of predictive display to any probabilistic control-based
interface by introducing derivative augmentation to the goal space display. Under the
assumption that a linear prediction is a reasonable estimate of future potential position
in a goal space, the current state can be augmented, then sonified as described previ-
ously. Such an assumption is justified by smoothness properties of trajectories in goal
space, as discussed in Section II.7.2, assuming that the system under consideration has
rational evidence accumulation. A predicted value is obtained by taking:

pi =
n

∑
j=0

k j
d pi

dt j (IV.1)

where the k’s are weighting factors, and then normalising p1 . . . pn such that ∑n
i=1 pi =

1. In practice only a small number of derivatives can be used (estimating high order
derivatives becomes difficult as noise rapidly dominates), in which case k j will be zero
except for the first few j.

Augmenting the simple targeting system described in Section III.5.4 with this approach
produces an audio display with characteristics similar to that of the classical derivative-
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enhanced predictive instruments. Approaching a target causes rapid increase in the
intensity of the audio; overshooting causes very noticeable drops in intensity. In con-
trast to the classical instruments, however, more complex systems where the goals are
not so directly linked to the sensor space can also be augmented. The augmentation is
always with respect to the inferred goals, not to attributes of the interaction.

Although this technique is applicable to any suitable interface, it cannot provide accu-
rate predictions for more than very short periods of time. A more sophisticated model
would involve performing predictions in the system state-space and then projecting
onto the goal space where these results are sonified or otherwise displayed.

IV.2.5 SONIFICATION OF MONTE CARLO PROPAGATED UNCERTAINTY
The optimal feedback is the complete set of possible states the system could be in after
some time t has elapsed and their probability. This will involve propagating the density
around the current state forward in time, applying the (estimated) dynamics of the con-
trol loop.2 These original densities should include all possible world states compatible
with the observations. The optimal predictions should integrate over all possible sys-
tem dynamics and user responses. In practice, these predictions are infeasibly complex
and approximations have to be made to produce a tractable model. One powerful way
of producing predictive displays is prediction by simulation; simulating the dynamics of
a system and running the model faster than real-time. These simulations can be run
under varying models and initial states, to obtain the performance of the system under
different assumptions.

The first approximation considered is to represent densities by a large number of indi-
vidual samples drawn from those densities, i.e. a Monte Carlo approximation. This is a
flexible and easy to implement way of representing the densities in such a way that they
can be transformed by any (computable) function. The accuracy of the representation is
limited by the particle counts, and can be adapted when varying levels of computational
power are available. Such approximations are also potentially parellizable.

The second is to constrain the potential user responses to a limited subset of the po-
tential universe of responses. For this purpose, an operator model of the user must
be obtained. There is a delicate balance between choosing a model which responds
like the user (i.e. is complex enough), and a model which the user can model – the
feedback will be useless if the user cannot determine what estimated behaviour was
involved. For the models described below, the most useful approximation is that user
input will be constant during the prediction time. Other approximations (see for ex-
ample, Poulton [1974]), assume user input will return to some neutral state (centreing
on a spring-loaded joystick is a common example), or attempt to integrate over larger
possible actions with more complex operator models. However, the assumption of con-
stancy provides the user with a way to explore the effects of changing the controls at
the future time horizon in an intuitive manner. This provides benefits when the inter-
actor engages in “dithering” to explore the local dynamics of the system; Kelley [1968]
defines dithering as follows:

Testing his internal model is often an important part of adaptation through
inferred changes in the control situation. The pilot sometimes “dithers” the
stick of an aircraft to see if the plane is responding in the way he expects.

2Obviously at least some of the control loop is unknown – otherwise communication would not be possible
– but any short time period is likely to have states occupying a very small proportion of the possible states.
The bandwidth restriction of the interface in fact implies that this should be true, since the rate at which the
state can diverge is bounded.
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FIGURE IV.3: Monte Carlo propagation example. Shown are ten particles being prop-
agated through a dynamic system (vector field shown in blue), starting at the points
marked with black circles. At each step the deterministic dynamics are applied, fol-
lowed by the noise diffusion process. The right hand side shows a close up of the
process. Particle positions at each step are marked in red. The dynamics step is shown
as a green line, the noise step as a magenta line. The initial condition is centred on a
saddle point, leading to a strongly bimodal terminal distribution.

The third step is to replace the continuous dynamics with a discretised version which is
amenable to recursive Monte Carlo updates.

Given a model of the dynamics of the interaction, a prediction model can be produced
by sampling around the current state, and propagating Monte Carlo samples forward
through the joint system-user dynamics to produce an estimate of the potential states
at some time horizon. These estimates can be transformed to goal space via the goal
densities and then sonified or otherwise displayed.

It should be noted that although this work concentrates on the Monte Carlo sampling
approach, in some cases analytic approximations to the predicted density can be ob-
tained without requiring sampling; see for example the Gaussian Process approxima-
tions used for time series prediction in Girard [2004]. These may offer more accurate
estimates in some cases, but are reliable only under more restricted assumptions. For
systems which are approximately linear there are classical techniques for propagating
simple densities (Gaussians or mixtures of Gaussians) – unfortunately human-system
interaction is very rarely linear over anything other than very short timescales.

An example of the Monte Carlo propagation procedure is illustrated in Figure IV.3,
showing particles being propagated in a simple first-order nonlinear system (defined
by a smooth vector field). The general algorithm is outlined below.
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GENERAL MONTE CARLO PROPAGATION ALGORITHM

To approximate the effect of the system dynamics h(x,t) on the density f over the time
period 0 . . .T :

• For n samples:
– Given a p.d.f. f (x) around the current state x, draw a new sample xi

0.
– For each time step t until t = T :

∗ xi
t = h(xi

t,t) where h(x, t) is the model dynamics.
∗ Draw a new sample from the p.d.f. xi

t+1 = fxi
t
(xi

t).

The samples xi
T , i ∈ {0 . . .n} are the output samples at the time horizon. Given the

goal densities on the state-space g j(x), the probabilities p j are calculated and dis-
played.

IV.2.5.1 EFFECTS OF
PROPAGATION

By correctly propagating the uncertainty involved in the pre-
diction, over-confident results can be avoided. Section III.3
gives details for the non-predictive case; these generalise to

the predictive case. In the predictive case, however, uncertainty rapidly increases as
projections extend, and the need for uncertain display becomes greater.

This information allows the user to adopt a suitably stable control behaviour, as Section
III.3.1 discussed. The uncertainty also implies that less information needs to be commu-
nicated to the interactor. The display can thus become less intense, decreasing the level
of attention the user requires. This may seem counterintuitive (because often far more
display “work” is required for a widely dispersed view), but diffusion of both visual
particles and audio granules leads to a pleasing blurring effect.

IV.2.5.2 INTERACTIVE PROCESS EX-
PLORATION VIA TIME HORIZON MOD-
ULATION

In the preceding sections, a fixed prediction hori-
zon has been assumed; however the prediction
system can be enhanced by giving the interac-
tor direct control over this time horizon. This

facilitates interactive scanning of the future set of possible actions to provide the most
pertinent information about the current interaction.3

Users may probe further to gain long-term understanding, or move back to short time
horizons to engage in tight control. This allows the user to make a reasonable judgement
about the trade-off between using a tightly-coupled closed-loop strategy and open-loop
ballistic behaviour. It is also possible to display multiple time horizons with appropriate
display techniques: in a visual (Monte Carlo) setting multiple particle “layers” could be
displayed, or even the entire search particle “beam” (see Figure IV.6 for an example);
in audio automatic, rapid, radar-style sweeps through horizons could be employed, at
least for systems with reasonably slow dynamics.

Adjusting the time horizon in a Monte Carlo prediction process is rather like adjusting
the angle of fire on an artillery piece; higher angles – up to a point – reach further but
are more widely distributed (see Figure IV.4). Similarly, the angle of headlights on a car
can be adjusted to provide either close range, focused lighting, or more distant but dim
and diffuse. In implementations using this technique (see Section IV.3.1), the horizon

3It is interesting to note that it might be possible to link the the complexity of the terminal distribution to
the time horizon and devise an automatic optimal horizon – “semantic autofocusing”.
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control is implemented as a head-tracking device which uses variation in head pitch to
control the prediction distance, as an analogy to the artillery/headlights scenario.

FIGURE IV.4: Artillery fire as an an analogy to adjustable time horizon Monte Carlo
prediction horizons. Higher angles (up to 45o) have greater range (in
time) but increased diffusion.

IV.3
EXAMPLES

This section shows how predictive uncertain display can be used in practice. Dynamic
systems which share some of the properties of interactive systems, but which are simple
enough to demonstrate the ideas without undue complexity, are augmented with Monte
Carlo predictive displays. The real-world problem of GPS navigation (with its variable
quality of fix) is also tackled using uncertain predictive display. The use of the granular
approach with particle filtering is also demonstrated.

IV.3.1 EXAMPLE: BEARING SIMULATION
As an example of the application of the predictive feedback to continuous control sys-
tems, the techniques described above have been applied to a simple physical system
to demonstrate the applicability of the ideas. This shows how simulation models with
propagated uncertainty can be created, displayed and sonified.
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IV.3.1.1 MODEL The model chosen for the demonstration is a simulation of a
small ball-bearing rolling over an undulating surface, with sim-

ulated gravity (see Figure IV.5). The orientation of the surface in this implementation
is mouse controlled, leading to a second order control of the ball position (angle con-
trol leads to changes in the forces applied to the ball, i.e. changes in acceleration). The
deformations in the landscape introduce non-linearities into the system dynamics. This
model is a simplified version of the process used for prediction of navigation behaviour
in the GPS navigation system of Section IV.4.

FIGURE IV.5: Simulated surface with goals distributed across it. The dynamics of the
system are defined by the landscape. In this case, each goal has a smooth
depression around it (leading to an attractor at that point). The solid blue
spheres mark the centres of the goal distributions. Control is effected by
virtually “tilting” the surface (i.e. by adjusting the effective gravitational
vector).

The position of the ball is assumed to be uncertain. Prediction is performed by sampling
from points around the current ball position, and projecting forward through the model
dynamics. The surface also has uncertainty (representing model uncertainty); this is
variable across the surface.

With this algorithm, the model uncertainty leads to trajectories which are unrealistically
noisy (i.e. excessive high-frequency content) because subsequent samples from the sur-
face distribution are assumed to independent; a better prediction algorithm would sam-
ple a smooth example from a class of surfaces and use it for the entire trajectory of one
sample. A Gaussian process, for example, would be ideal for this task.

In this simulation, “goals” are associated with the attractor basins on the simulated sur-
face; each goal is a Gaussian density with mean centred on the attractor. The activation
of these goals is what is sonified. The possible trajectories of the ball are displayed visu-
ally. The visual display relates predictions of the evolution of the system with respect to
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the simulated world; the audio display relates predictions with respect to the potential
goals of a user.

IV.3.1.2 TECHNICAL ISSUES The surface here is a discretely sampled grid, with
linear interpolation between points. The surface is

formed from the sum of a number of (inverted) Gaussians. The system dynamics are
integrated with the forward Euler method, one step per frame, and with a frame rate of
approximately 40Hz.4

FIGURE IV.6: The ball-bearing simulation model. The ball-bearing can freely move
over the surface. The mouse alters the orientation of the surface, and thus
the effect of gravity on the motion of the bearing. Predictions are shown
in red. The predictions at the time horizon are highlighted in green. There
are a number of waveforms distributed on the surface; the centres of the
density associated with them are shown as blue solid circles (at the centre
of each depression).

4The visualisation is written in C, using OpenGL for visual display and the GSLib (see Chapter A) library
for audio output.
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FIGURE IV.7: InterTrax head tracker used for the manipulation of the time horizon in
the rolling object demo. Tilting up and down extends and retracts the
prediction horizon.
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FIGURE IV.8: Predicted and actual states in the rolling ball simulation. Actual and pre-
dicted positions for the bearing are shown. This shows prediction at
approximately two seconds ahead (frame rate is slightly variable but is
around 40Hz. 80 step ahead prediction is used.)
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FIGURE IV.9: Predicted and actual states in the rolling ball simulation (2d projection of
the trajectory).

IV.3.2 EXAMPLE: HELICOPTER DISPLAY AUGMENTATION
The following sections describe how the goal-directed audio feedback can be applied
to a helicopter control task. This example is intended to illustrate how the techniques
can be applied to a well-known control problem, which has many of the same charac-
teristics as interaction tasks in difficult conditions. The presence of high-order control,
delays and unpredictable behaviour make piloting helicopters a challenging task; many
of these same issues are present (in less extreme forms) in interaction problems. Heli-
copter control, for example, is not so dissimilar to operating a brain-computer interface,
in some respects; there are long delays (aerodynamic responses/ long classification win-
dows), strong external disturbances (wind buffeting/spiking neurons) and unfamiliar
actuation (four limb co-ordination/purely mental control).

IV.3.2.1 THE HELICOPTER
PROBLEM

Control of helicopters has been extensively studied as
an example of a difficult control problem. The diffi-
culties of flying rotary-wing aircraft arise from several

causes: the pilot must simultaneously coordinate all four limbs in a fairly complex in-
terdependent way; the pilot must continuously monitor an array of instruments; the
controls are high-order (e.g. cyclic pitch is a fourth-order position control); the heli-
copter is highly dynamically unstable, rather like a spinning top balanced on its point
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– even slight disturbances tend to lead to rapid loss of stability; and there is a very sig-
nificant lag – often many seconds – between input and reaction. The complexity of the
task requires that pilots undergo significant training to learn the controls of the system,
even where artificial stability systems are available. The concentration required makes
flying extremely tiring for pilots.

Helicopter flight is therefore ripe for enhancement with predictive displays. Some ex-
perimental predictor displays have already been developed for aircraft (see Section
IV.2.2.1 for one example). Some classical instruments, such as the vertical speed indica-
tor (VSI), are actually basic predictive instruments, displaying the derivative of a control
variable. An instrument applying the techniques that have been presented in this work
should display the future state of the system with respect to the goals the pilot is working
to achieve.

IV.3.2.2 GOAL FEEDBACK In a flight task, there are several regions of the state
space which are desirable. These include hover, level

forward flight, acceleration and deceleration, low speed manoeuvres (for example pirou-
ettes), banking turns, ascents and descents. These regions can be further subdivided into
a hierarchy of goals; for example hover comprises zero linear velocity, zero angular rates
and level pitch and roll. The goal feedback systems described in the preceding sections
can be adapted to the flight task by defining goal densities over the aircraft state space,
corresponding to these desirable regions. These regions can be combined to form joint
variables representing higher level states.

Prediction can be initiated from the current state and projected forward to some time
horizon; given an uncertainty model, the full distribution at this point can be computed
(here the Monte Carlo sampling described previously is used to approximate this). The
likelihood of each goal at this horizon can be computed by summing over the particles
at the horizon, weighted by the goal p.d.f. (p(g) = 1

n ∑n
i=0 p(xn)).

IV.3.2.3 STATE SPACE The aircraft state-space normally includes position5 (x,y,z),
orientation (φ,θ,ψ) and the derivatives of these. Taking just

the first derivative, a simple linear state space can be represented as [ẋ ẏ ż φ θ ψ p q r]T

(p,q,r are the angular velocities). Here the position and yaw are omitted as they have
no direct effect6on the evolution of the system. The local dynamics of the aircraft can
then be approximated as a linear system

ẋ = Ax+Bu, (IV.2)

where A is the system matrix and B is the input matrix. u is the vector [θ0 θls θlc θ0t]T

representing the control inputs to the aircraft; lateral cyclic, longitudinal cyclic, collec-
tive and anti-torque respectively.

IV.3.2.4 PREDICTION The helicopter state can be predicted by computing a lo-
cal linearization around the current state, and then iterat-

ing through a series of time-steps solving (IV.3.2.3). A value for u is required for each
time step; this can potentially be a model of potential pilot inputs but simpler approxi-
mations are return-to-zero (this is the method that Poulton [1974] suggests) or constant
inputs. The linear approximation is only reasonable for a short prediction period of time
since true helicopter dynamics are far from linear.

5The position of the centre of gravity.
6Wind, ground effect, etc. are not considered.
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IV.3.2.5 SIMULATION Laminar System’s X-Plane 7 was used as a platform for the
implementation of a predictive audio display for helicopter

flight. This has a fairly realistic rotary-wing flight model and features external connec-
tivity via UDP output. This communication layer was enhanced with a C library created
by Andrew Ramsay (Ramsay [2004]). This setup allows real-time simulation with easy
access to all of the important flight variables. The output from this was integrated into
a modified version of granular sonification system created for the bearing example in
Section IV.3.1. The goal densities were Gaussians placed in the state-space (the imple-
mented example used hover and forward flight as goals, as well as sub-goals for each
of these) with arbitrary associated sounds.

Linearization is achieved by rapidly perturbing the simulator state, one variable at a
time, every 200ms8. From this the Jacobian (A) is estimated via central differences. The
uncertainty in state is assumed to be Gaussian (with pre-set variance for each state vari-
able) around the initial state. The uncertainty in the model is likewise assumed to be
Gaussian (on the individual components of A), and each sample trajectory receives a
constant sample from the model distribution. The particles are propagated forward via
equation IV.3.2.3. No further perturbation is performed beyond the initial step.

Some sample trajectories for one helicopter state (in a simulation Bell 206) are shown
in Figure IV.10. The time horizon is controllable adjustable via keyboard adjustments.
Time horizons can range ∼50ms to approximately 5s. Beyond this the predictions are
likely to be so divergent that they are not useful; computational cost also becomes an
issue.

7http://www.x-plane.com
8It should be noted that this is not an especially accurate estimation of the linear parameters but the high

frame rate of the simulator makes it a reasonable approximation.
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FIGURE IV.10: Visualization of the Monte Carlo sampled predictions in the X-Plane
simulator. The “strands” extending from the helicopter body represent
future possible paths for the aircraft.
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Goal densities are defined on the aircraft state space, reflecting forward flight and hover
behaviour, each of which are sub-divided into further sub-goals (e.g. zero yaw rate).
Each goal and sub goal is associated with a target sound. Trajectories which terminate
in these regions trigger the output of grains, exactly as in the previous bearing example.
This produces a mixture of sounds which gradually form a chorus as the components of
the desired behaviour are acquired. Figure IV.11 illustrates this decomposition. Addi-
tional flight modes can be added simply by defining new densities or introducing new
joint variables (possibly extending the state space as necessary).

FIGURE IV.11: Dependencies and densities in the helicopter goal model. Arrows indi-
cate dependencies. Densities are represented as filled semicircles. The
oval objects are goals which are sonified. This graph is simple to eval-
uate as dependencies flow from left to right, and the left variables are
known (they are samples from the Monte Carlo process).
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IV.3.2.6 ANALYSIS Experimentally evaluating such a display is impractical; it takes
a great deal of practice (at least thirty or forty hours) to learn

to control a helicopter simulation to an extent that the display could possibly be useful.
The display does, however, appear to show useful information, with the gradual build-
up of goals forming a distinct pattern as the helicopter transitions into manoeuvres.
Deviation from these patterns is quickly apparent. However, the prediction as it stands
is relatively poor, and diverges quickly from the actual path of the helicopter, largely
because of the lack of an operator model. The display as it stands only sonifies a small
subset of the possible goals a pilot might consider during a helicopter flight. Extending
to further goals (and their corresponding sub-goals) is a simple matter.

This example shows how goal-directed sonification can be brought into dynamic sys-
tems where uncertainty arises largely because of the inability of the user to model sys-
tem behaviour over long delays. The idea can easily be applied to other domains where
such unpredictable dynamics (from the point of view of the user) exist.

IV.4
A DETAILED EXAMPLE: GPS NAVIGATION

IV.4.1 THE GPS DISPLAY PROBLEM

The9 global positioning system (GPS) is now almost ubiquitous in navigation systems.
It does, however, suffer from accuracy problems, especially for activities like walking or
cycling where small distances are important. Lack of satellite visibility in more extreme
latitudes, slow update rates, and signal reflections and shadowing from buildings and
other obstructions limit the utility of GPS for tasks such as navigating in cities. The
navigation signal is subject to random jitter that can jump wildly (from a pedestrians
point of view) even while the user is standing still; Figure IV.12 shows a typical GPS
signal obtained while at a standstill.

9This work was conducted in conjunction with Steven Strachan at the Hamilton Institute, who ported
the prediction code to the PocketPC and performed the experiments described here. This is an abbreviated
version of the work presented in Williamson et al. [2006].
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FIGURE IV.12: GPS position variation while the unit is at standstill in a two minute pe-
riod. Units are degrees (the area shown corresponds to approximately
27 x 39 meters). This data is recorded in a clear area away from ob-
structions, at around 55 degrees north with the MESH GPS device (us-
ing a standard GPS chipset) and an external antenna. Both jitter and
long-term drift are apparent. Noise would be even more pronounced in
heavily built up areas.

One way of mitigating this problem is to give the user a more accurate display of what
the GPS is truly sensing. The uncertainty on position can be displayed to the user, based
upon a model of how GPS signals tend to vary. This can be combined with prediction
to estimate where a user is likely to end up given the current information about their
position and heading. A simple dynamic system can be substituted for the user, and
fast-time simulations from this system can be used for display of possible future states
(i.e. likely potential positions). If specific spatial goals, (e.g. the location of buildings
of interest) are present, these can be displayed or sonified as predictions enter those
regions of space, by placing goal densities on the geographical space.

IV.4.2 PROBABILISTIC PREDICTION DISPLAY: LIKELIHOOD MAPS AND SHADOW
MAPPING

The methods for particle-oriented probabilistic display described in the previous sec-
tions can be applied directly to the map navigation problem. In this problem, there is a
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significant amount of a priori information that can be used in the estimation of position,
and the estimation of likely future movements of the user.

A given location has a particular signal uncertainty associated with it; this depends on
the visibility of satellites, and other interference such as reflections from nearby build-
ings. Each location also has a likelihood of the user being that position. It is, for exam-
ple, very unlikely that a user will pass through a known solid object. How likely such
a position is depends on the nature of the obstacle and how sure the system is of the
existence of such an obstacle. For a particulate display, the map of the certainty of the
signal can be used to define the initial distribution of particles, representing positions
compatible with sensor readings. The map of likelihood of observation can be used to
define how the user is likely to move into a particular area.

Maps can be created based upon particular contexts of use; vehicle navigation is much
more constrained than foot navigation, for example (see Figure IV.16(d)). Where context
can be sensed (for example detecting cycling behaviour with inertial sensors), the maps
can be updated to reflect the likely possible movements. Given a distribution over con-
text variables, a total likelihood map can be formed as a linear combination of likelihood
maps, weighted by the probabilities associated with the contexts the maps are designed
for.

An estimate of the availability (and therefore quality) of a GPS signal can be obtained
by shadow mapping (see Steed [2004]) – computing the visibility of satellites at each point
in a map, based on data about the structure of local occlusions. Figure IV.13 shows an
estimated shadow map for a region of the Maynooth campus in Ireland, computed by
ray-tracing based upon a height map of the buildings. Satellite availability is some-
times also available directly from some GPS devices; this can be used to update the
uncertainty.

The same height map can be used as a simple likelihood map (users tend not to pass
through regions of very high gradient). This is the approach used in the examples below.
Other more complex likelihood maps could be constructed, including obstructions such
as busy roads and anisotropic likelihoods (such as in one-way streets).
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FIGURE IV.13: A shadow map computed for a region of the Maynooth campus in Ire-
land. This is estimated via a raytracing technique given the height of
the surrounding area, and the angle of GPS satellites.

FIGURE IV.14: A likelihood map computed for a region of the Maynooth campus in
Ireland. This is based on building positions. Entrance into buildings is
not modelled in this example.
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IV.4.3 A NAVIGATION APPLICATION
Figure IV.16 shows a GPS navigation interface with true uncertain display in opera-
tion. Samples are drawn from a position distribution, given a measured location and
the estimated uncertainty in the signal (from the shadow map, and also from the “hor-
izontal dilution of precision”, the signal GPS devices use to indicate their estimated
uncertainty). This is propagated forward through the dynamic system which acts as a
proxy for exploration behaviour, causing the particles to flow through likely areas of the
space.10

The update operates as follows:

• Draw samples x0 . . .xS from a distribution ε around the current state. This distribu-
tion represents the sensor uncertainty at the initial position (e.g. from the shadow
maps described).

• For each step t until some horizon T :

– xs
t = xs

t−1 + h + l(xs
t ) + σ(xs

t ) where σ(xs
t ) represents the model noise at the

new point xs
t (a fixed Gaussian, in implementations), and l(xs

t ) represents the
derivative of the likelihood map at that point. h is heading specified by the
user. σ(xs

t ) can be a constant value (as in the implementations) or a more
complex function; e.g. from a map indicating the resolution or quality of the
likelihood map.

• Display the samples xs
T

IV.4.3.1 IMPLEMENTATION A navigation system implementing this algorithm has
been built for the PocketPC (Figure IV.15), with the

MESH(Hughes et al. [2004]) device used for inertial and GPS sensing, as well as for
vibrotactile display. Heading is obtained from magnetometers and accelerometers.11

Ten particles are used for prediction, with time horizon scanning via vertical tilt angle.
A version with simulated GPS and heading signals (controlled via keyboard and mouse
interactions) on desktop machines has also been constructed; this is used to produce the
figures in Figure IV.16.

10The system is similar to the landscape surfaces of Section IV.3.1. More sophisticated substitute systems
(and corresponding maps) could be built, but this suffices as a simple model of navigation behaviour.

11Accelerometers are required for tilt compensation for the magnetic field readings.
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FIGURE IV.15: PocketPC augmented with GPS sensor pack. The sensor pack include
GPS, 3-axis accelerometers, 3-axis gyroscopes, 3-axis magnetometers,
capacitive touch sensing and vibrotactile display

Targets are sonified via goal-directed granular synthesis. Each target has an associated
p.d.f. (Gaussian with fixed variance), defining a transformation from physical space
into goal space. Grains are generated according to the probability of each goal given
the particle positions at the time horizon and these p.d.f.’s. Each goal has an associated
waveform. Vibrotactile feedback is also presented, with a short (250Hz sinusoidal) im-
pulse generated along with each audio grain. Impulses are identical for all targets; the
vibrotactile feedback merely indicates the existence of a target, not its identity.

In this implementation, targets are laid out in physical space. Users can explore the
space in an obvious manner, scanning for targets by swinging the device around. The
display incorporates appropriate uncertainty, and includes a model of how exploration
is likely to proceed. This display is given in terms of the goals (physical targets) that the
user may be interested in.

IV.4.4 EXPERIMENTS AND ANALYSIS
Field trials were performed to analyse the performance of the uncertain GPS navigation
system, and in particular to determine whether uncertain display lead to more robust
behaviour than a simple direct display of noisy sensor readings. These trials involved
participants navigating the area around the Maynooth campus in Ireland. The partic-
ipants attempted to locate four targets distributed in this space, using only the audio
and vibrotactile feedback from the navigation application.

IV.4.4.1 EXPERIMENTAL LIMITATIONS
AND METHODOLOGY

As the GPS signal in the test area was strong,
with few occlusions or sources of reflection, the
effects of GPS distortions that would be experi-

enced in built-up areas were artificially simulated. Noise compatible with the effect of
degraded GPS readings was combined with the true sensed position before the feedback
as to target proximity and heading was presented to the user. This noise consisted of
small offsets (Gaussian distributed with a standard deviation of a few meters) adjusted
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FIGURE IV.16: GPS Monte Carlo navigation application. This image is from a desktop
mockup with simulated GPS input. The GPS enabled version runs on the PocketPC
but does not have such visualisations. The first shows predictions with a likelihood
map designed for walking behaviour. The second figure shows the effect of changing
to a likelihood map suitable for bike navigation, where movement is more tightly con-
strained to pathways. The lower two figures illustrate the effect the shadow map has on
prediction. The first of these two is in a relatively non-occluded area, and predictions
begin, and remain concentrated. The second has poor satellite visibility; predictions
are initially diffuse, but coalesce as obstacles reduce the likely movement paths. They
subsequently re-diverge in open space.
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every five seconds, producing regular disturbance in the apparent sensed position. Fig-
ure IV.17 shows the effect of the introduced noise, and the layout of the targets in the test
area. The time horizon was fixed at a range of approximately 40m in the experimental
sessions to reduce the complexity of the system.
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FIGURE IV.17: True GPS position and artificially disturbed GPS position during the
navigation experiment. The true position is shown in blue; the readings
after the introduction of noise are shown as red points. Hollow green
circles indicate the targets the participant had to locate.

IV.4.4.2 CONDITIONS The experiment had two conditions: mean display and un-
certain display. Mean display assumed that the GPS signal

was certain, and feedback was generated directly upon the sensed+noise signal. The
uncertain display condition represented and propagated the estimated uncertainty in
the GPS signal according to the procedure laid out above.

The experimental design was within-subjects with counterbalanced presentation order.
Participants received a short introduction to the system, along with a demonstration of
the behaviour of the application. Participants had to navigate to the targets in order;
once they were sufficiently close to the target the current target advanced. This pro-
ceeded until all four targets had been located. Five participants took part in the trials.
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IV.4.4.3 RESULTS All participants were able to navigate to the targets with both
uncertain and mean displays. A typical trajectory (showing

also the heading sensed by the device) is shown in Figure IV.18. Time to complete the
task was generally reduced under the uncertain display condition (Figure IV.19). The
total energy of the heading signal (i.e. a measure of how much scanning activity the par-
ticipants exerted during navigation) was also reduced for all participants. The energy
results are summarised in Figure IV.20.
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FIGURE IV.18: Position and heading of a typical user during the navigation task. Posi-
tions are shown as blue points; the arrows indicate the heading sensed
by the inertial sensors.
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FIGURE IV.19: Time to complete task in mean and uncertain display cases. Time is
reduced for all participants except the first in the uncertain display con-
dition.
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IV.4.5 UNCERTAIN ORIENTATION DISPLAY
The complete navigation system is quite complex, and it is difficult to control the pa-
rameters of an experiment examining the complete navigation system well enough to
evaluate the effect of the uncertain versus mean display. A refined experiment was sub-
sequently conducted to examine the effect of uncertain auditory display in orientation
targeting tasks without the distraction of navigation in a physical environment. In this
simplified setup, participants were asked to identify targets located in orientation space
(i.e distributed around them at a constant distance). The magnetometer and accelerom-
eter of the MESH device were used to ascertain the current orientation of the device
relative to these targets. As in the previous example, the uncertain, particulate display
was compared with a naı̈ve mean display.

IV.4.5.1 EXPERIMENTAL DETAILS Five targets were laid out in a hundred and eighty
degree arc around the participant. The targets

were at a simulated distance of ∼71m. Each target had to be acquired three times for
each condition. Acquisition was triggered when the participant held the device such
that the measured heading was within 14 degrees of the true target position for a period
of 5.4 seconds. Exiting the capture zone held the timer until re-acquisition occurred. As
with the navigation display case, artificial noise was introduced to simulate the effect of
degraded GPS signal quality. This noise was introduced to the simulated position of the
participant, and was Gaussian distributed with a standard deviation of ∼4m. The noise
offset was updated once every three seconds, leading to a square wave like signal.

The heading signal was filtered with a low-pass filter rolling off at 8Hz to eliminate
high-frequency noise (especially tremor) from the signal before being displayed and
recorded. The feedback was identical to that of the previous experiment, with both
granular audio (giving the identity) and vibrotactile (presence of target only) feedback
present. No visual feedback was provided, except for a counter to indicate the number
of targets remaining in the experimental trial.

IV.4.5.2 CONDITIONS Four conditions were tested: mean display with additional
noise, mean display without noise, uncertain display with

noise, and uncertain display without additional noise. Eight participants took part in
the experiment, which was within-subjects and had counterbalanced presentation or-
der. The experiments were conducted indoors in rooms with minimal visual distrac-
tions. Each participant had a three minute introduction and a brief demo of the system.

IV.4.5.3 RESULTS Although all four conditions were tested, the variation between
the mean noise and uncertain noise cases are of most interest,

and will be discussed in detail here. Figure IV.22 compares the time to acquire targets for
each subject in these two conditions. There is a noticeable reduction in the acquisition
time when the uncertain display is employed.

Figure IV.21 shows the energy (∑T
t=0

( dθ
dt

)2
) after 63% of the error has been reduced. This

focuses the results on the period after the gross acquisition phase, leaving the feedback-
dependent fine-adjustment phase (see Figures IV.24 and IV.25 for time series with the
63% points marked). The energy values are generally inconclusive in this case.

The variance of the error is illustrated in Figure IV.23. This measures the “average size”
of deviations. Histograms of the error for a typical case are illustrated in Figures IV.26
and IV.27, where the reduced variance is clearly visible. There is a strong reduction of
the variance in the uncertain case as opposed to the mean case; errors were more likely
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to be small with the uncertain display. This is partially due to the “hovering” phe-
nomenon where participants hold just off target in the uncertain case, receiving sparse
feedback but not selecting targets. In the mean case, wild overshoots are more common
(see Figure IV.24).
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FIGURE IV.21: Energy in the 0.1–2Hz band of the heading signal for the period after a
63% reduction in error (i.e. the fine-tuning phase). The blue box plots
show the energy for the mean condition, while the green show the un-
certain condition.
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FIGURE IV.22: Boxplots of acquisition times for orientation acquisition. Again, blue
represents the mean condition, green the uncertain.
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FIGURE IV.23: Variance of error for orientation acquisition. Blue shows the variance of
the error (true angle-sensed angle) for the mean condition, green for the
uncertain.
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FIGURE IV.24: Time series for a typical experimental run in the mean noisy case. The
start and end of the acquisitions are marked, along with the point at which 63% of
the error was removed (this was the criterion used to determine the end of the gross
movement phase).
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FIGURE IV.25: Time series for a typical experimental run in the uncertain noisy case.
The start and end of the acquisitions are marked, along with the point at which 63% of
the error was removed. Compared with Figure IV.24, there is less wild overshooting in
this case, although participants occasionally “hover” just outside the capture zone.
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FIGURE IV.26: Histogram of error for one experimental trial in the mean noisy case.
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FIGURE IV.27: Histogram of error for one experimental trial in the uncertain noisy case.
The distribution is significantly narrower than that show in Figure IV.26
for the mean case.
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IV.4.6 DISCUSSION
These experiments showed moderate improvement in performance when a simple Monte
Carlo uncertain display was employed, versus the naı̈ve display case. There was also a
qualitative change in the behaviour the participants exhibited, with a reduction in over-
shooting and searching behaviour, but an increase in small, long-term errors. This is
likely to be due to the production of feedback even when the orientation of the device
is outside of the target capture zone, as a result of the limited modelling of the noise
expected to be present during the task.

The relatively small amount of noise introduced to the signal, and the the very toler-
ant conditions for acquisition (nearly 15 degree funnel), may have made it excessively
easy to select the targets in the mean condition. More realistic conditions, with a tighter
acquisition requirement would probably favour the uncertain condition more strongly.
The Monte Carlo distribution for the uncertain case was also not optimal for the con-
ditions present; a better choice may improve the performance of such an exploration
system. However, the experiments do indicate that even the simple uncertain display
used here does not confuse users, and reduces negative aspects of their performance.

IV.5
PARTICLE FILTERING

IV.5.1 THE FILTERING PROCESS
Particle filtering (See Ristic et al. [2004] and Doucet et al. [2001] for overviews of the
field),12 is a powerful Monte Carlo technique for the estimation of hidden variables in
dynamic systems. It is effectively a generalised Kalman filter (see Kalman [1960] for
the Kalman’s original paper; Maybeck [1979] has a more readable and in depth discus-
sion), without restriction to Gaussian noise or linear dynamics. It is used to recursively
estimate the properties of a dynamic system where the measurements and dynamical
model are held to be uncertain. It facilitates direct implementation of Bayesian infer-
ence; at each time step a prior is combined with evidence, and the posterior used as
the prior for the next step. Monte Carlo sampling makes the use of a wide class of dis-
tributions possible – analytical approximations to the distributions are not required. It
is reasonably efficient even in moderately high-dimensional problems, such as contour
tracking in image recognition (Isard and Blake [1998b] introduced the technique – which
they called “condensation” – into computer vision for exactly this purpose), and can be
partially parallelised in some cases. It can be combined with Kalman filters for very ef-
ficient estimation of parameters, where some part of a system are linear with Gaussian
noise, while others are nonlinear or have different noise properties. Dynamic Bayes
nets can be estimated with particle filtering approaches (Murphy and Russell. [2001]);
stochastic analogues of the HMM are, for example, possible.

The basic process of an importance sampling particle filter (the most commonly em-
ployed type – see the aforementioned references for more exotic variants) is: draw sam-
ples from some prior; apply system dynamics; weight the transformed samples by some
measured evidence; normalise the weights; and finally draw new samples according to
these weights (i.e. a survival-of-the-fittest process). In many algorithm variants, some
random proportion of samples are redrawn from the original prior to prevent the dis-
tribution collapsing to a point. These samples are then used to form the new prior at

12The technique is also known as the condensation algorithm, Monte Carlo filtering, survival-of-the fittest
filtering, bootstrap filtering and possibly other names. Particle filtering is the most widely used terminology.
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the next time step.13 This process is illustrated in Figure IV.28. The system dynam-
ics and priors can be arbitrarily chosen, making it a very flexible way of implementing
probabilistic models directly from their equations. Particle filters are also temporally
flexible. They can be run forward without evidence updates to form predictions; they
can also be run backwards (particle smoothing – Isard and Blake [1998a] give a concrete
implementation) to re-estimate past states in the light of new evidence.

This technique is obviously similar to the processes described in previous sections for
the prediction of future states of the system, with the addition of a selection step to the
process. As such, it can be sonified and displayed in much the same manner – placing
densities on the (hidden) state space, estimating the values for an ensemble of particles,
and drawing grains according to the distribution of the ensemble.

IV.5.2 IMPLEMENTATION: A SONIFIED PF GESTURE RECOGNISER
This section describes an example of the implementation of the sonification and par-
ticle display techniques in a particle filtering context. It demonstrates how uncertain,
predictive displays can be combined with inference mechanism in a natural way.

This implementation uses a modified version of the Black-Jepson temporal trajectory
matching algorithm (Black and Jepson [1998]) which implements a type of probabilistic
time-warping matcher. In this implementation the algorithm has been adapted to track
the initial offset of the gesture. All priors are Gaussian (or half-Gaussian for positive-
only values). Gestures are two-dimensional and are performed using the mouse in this
implementation. The system displays the particle class and current estimated parame-
ters visually (by transforming the model parameters back into trajectories); it uses gran-
ular synthesis to display the class of the gesture (via waveform source) and its estimated
phase (via the time index parameter). The time display is fully probabilistic; when un-
certainty in the phase parameter is present, the sound becomes temporally blurred.

The display is also predictive; it shows possible evolutions of state which are achievable
from the current assumptions. These are produced by running the particle filter forward
without any sensory input (i.e. without the evidence weighting step). This continuously
shows potential completions of the current motion; it is self-revealing.

IV.5.2.1 ESTIMATION The tracker estimates the following state variables:

• φ Phase within the trajectory, with an initial half-Gaussian (positive only) prior
with mean 0, variance σφ and a Gaussian diffusion distribution N (0,σdφ);

• ω Phase rate (the increment of φ at each time step), Gaussian prior N (1,σω) and a
Gaussian diffusion distribution N (0,σdω);

• x,y Offset from start of gesture; initial uniform prior bounded to size of available
window, diffusion distributions N (0,σdx) and N (0,σdy) which are usually equal;

• α Global scaling of gesture, with Gaussian initial prior N (1,σα) and diffusion dis-
tribution N (1,σdα);

• τ Gesture class with uniform discrete prior over all classes and a uniform diffusion
distribution.

Comparison is made over a time window for estimating the likelihood of parameters,
computing the SSE between the estimated and actual values for n samples.14 Since

13The prior can either be represented directly by the samples, or can be smoothed by placing kernels on the
samples and drawing samples from the resulting mixture (regularised particle filtering).

14At 50Hz sampling, n = 40 is an effective value, i.e. just less than one second time window.
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FIGURE IV.28: Illustration of the basic elements of a one-dimensional particle filter.
Each time step involves deterministic dynamics, diffusion and importance sampling.
The similarity to the Monte Carlo prediction methods is apparent. The major difference
is the introduction of an importance sampling step.
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the comparison is made over this window only, the “global” parameters are effectively
local, and the system tracks these parameters as they change. For one dimension, given
a history of sensor input x1 . . .xn, a set of gesture examples g(t)1 . . .g(t)m a set of particles
s1 . . .sk, the comparison returns a value for each si equal to:

n

∑
j=0

si
αgsi

τ
(φ′)+ si

x − x(T − j))2, (IV.3)

with
φ′ = (n− j)si

ω + si
φ. (IV.4)

The process is identical for other dimensions; the comparison weights are summed.

The recognition process proceeds as follows:

• Sample from the parameter priors for each particle;

• For each timestep:

– Apply the system dynamics (in this case, just update the phase parameter);

– Apply diffusion to all parameters according to their diffusion density;

– Compare the predicted and actual values across the current time window, for
each particle, getting the particle weights;

– Normalise the weights;

– Sample from the old population according to the new weights;

– Replace x of the samples with samples drawn from the original prior (where
x is around 5–10% of the original number of samples).

Approximately one thousand particles are used in the demonstration algorithm. The
priors and diffusion parameters are manually tuned. This give reasonable performance
for a small number of gestures shapes (< 10), even with a single example of each ges-
ture class, and is quite sufficient to illustrate the display techniques. The implemented
algorithm is a very simple – much more powerful (and reliable) inference algorithms
could be used in place. The technique generalises easily.

Images from the recognition process in this demonstration are given in Figure IV.29,
showing the coalescence of particles as recognition proceeds. Display uses alpha blended
points for the current state, applying the transformation parameters for each particle
to the original trajectories to obtain screen positions. Similarly, partially transparent
lines showing the future evolution of particles are drawn extending from these points.
Granular audio generation is exactly as in the previous examples, with class mapped to
waveform and phase mapped to time index.
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FIGURE IV.29: Sequence of screenshots from the particle filter gesture recogniser dur-
ing the performance of an uppercase “R”-shaped gesture. The states
of the particles are drawn as partially transparent circles, with lines ex-
tending showing the future state of the particle. Each gesture class (i.e.
each letter shape) is assigned a different colour. The result is nebulous
display of the distribution of particles.

IV.5.2.2 DISCUSSION Particle filters are an extremely powerful technique for in-
ference, and will become more so as computing power con-

tinues to increase. They can be applied in a wide range of contexts, and are theoretically
sound. They are temporally flexible, and compatible with a Bayesian interpretation of
the world. The display and sonification techniques described here generalise well to
other particle filtering problems (at least where defined classes of model are present);
they make it possible to build systems which have sophisticated inference and match-
ing probabilistic feedback. Feedback of the type presented exposes the inference to the
interactor. Interactors can observe their effect upon the inferential process, and, with
predictive displays, how actions affect the behaviour of the system in the future.

IV.6
CONCLUSIONS

Delays can have a crippling effect on the the efficiency of an interaction – performance
degrades rapidly as response time increases. Predictive displays (along with preview
displays) can help improve performance in the presence of such delays, reducing the
modelling load on the user. The previously introduced probabilistic display methods
can be extended to cope with predictive power, and the process by which this can
be done has been illustrated with a number of specific examples. The Monte Carlo
processes described here are general enough to be applied to many interactive systems,
and lend themselves well to display. It provides temporal flexibility in the display of
results, and can remain appropriately uncertain. The quality of a particular display de-
pends on the quality of the prediction model, and the quality of the sampling process.
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The Monte Carlo predictive process is similar to the particle filtering process. Conse-
quently,particulate audio and visual displays can be adapted to display particle filter
state, including both current and future estimates of the state of the system.



CHAPTER V

AUGMENTED DYNAMICS FOR
INTERACTION ENHANCEMENT

Making likely things easy.

The swimming fish has the quality of integrated skilled motion. The designer of the manual
control system should strive to integrate the man into the system in such a way that this same
quality is evident.

– Kelley [1968]

V.1
SUMMARY

MODULATED dynamics is presented as a powerful technique for interaction
design. The basic principle is that the user should stay in control of a rel-
atively simple, familiar dynamic system whose properties are gently ma-
nipulated according to the evolution of a more complex inference process.

This is shown to be a unifying approach, and one which provides richer opportunities
for extension than many existing ad hoc techniques. As an example of the method in
practice, a text entry system for mobile devices is developed, which uses the augmented
dynamics principle to bring language modelling into a continuously controllable sys-
tem.

V.2
AUGMENTING DYNAMICS; CHANGING FEEDBACK

The control-oriented view of interaction presented in previous chapters requires feed-
back for meaningful interaction. In Section II.10, the breakdown of control loops into
internal (not directly accessible) and external (within the domain of the interface) was
described. This chapter focuses on how adjusting the dynamics of external loops can
introduce intelligence to an interaction in a smooth and non-disturbing manner. The
fundamental goal is that likely things should be easy to do; if there is already strong ev-
idence for some particular action the user should have to expend less energy in con-
firming that hypothesis than some other less likely potential goal. Augmented system
dynamics can be used to create a system with a simple, smooth structure that can also
incorporate significant intelligence. Figure V.1 illustrates this idea.

105
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FIGURE V.1: Feeding the results of the inference back into the control loop.

The potential advantage of augmenting the dynamics over other approaches is that the
process does not wrest control from the user and thus make decisions for them before
sufficient evidence has been accumulated (as opposed to the overzealous autocompletes
present in some interfaces). Instead, it smoothly adjusts the interface properties to make
the input space trajectories required to reach parts of the goal space less costly from the
user to perform. The continuity of process means that the user’s knowledge of the
evolution of ordinary dynamical systems is still valid within the realm of the interac-
tion process; unpredictable jumps of state are minimised. This is the advantage of the
modulated-dynamics approach over discrete automatic completion systems. It is par-
ticularly powerful when combined with a probabilistic predictive display, such as those
described in Chapter IV.

In Hermann and Ritter [1999], “model based sonification” was proposed for the explo-
ration of data sets. The authors note:

..why not sonify data spaces by taking the environmental sound production
in our real world as a model? Nature has optimised our auditory senses to
extract information from the auditory signal that is produced by our physi-
cal environment. Thus the idea is: (i) build a virtual scenario from the data,
(ii) define a kind of virtual physics that permits vibrational reaction of its el-
ements to external excitations, (iii) let the user interactively excite the system
and listen.

The augmented dynamics approach applies the same basic principles to the entire in-
teraction problem; by building dynamic systems which behave in some way like the
physics to which humans are adapted, rich interaction can be implemented in a way
that users can relate to. Because the dynamics of the software-created world are flexi-
ble, long term “intelligent” behaviour can be brought into the virtual physics without
disrupting the basic behaviour of the system.

The key idea is that long-term behaviour (from the inference model) is incorporated
into the evolution of the current state without requiring a very high-dimensional dis-
play. The extension of the input backwards in time – with respect to the goals – is the
advantage of this approach. The effects of long-term behaviour, stretching for the user’s
actions in the last few milliseconds, right through the complete history of interaction
with the system can be brought into the interaction in an appropriate and controllable
manner. Rather than defining specific patterns of movement which are to be achieved,
the movements required to indicate intention develop as evidence accumulates. Con-
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text variables, sensed from the environment or from the user, can be smoothly brought
into the interaction without requiring discrete (and disturbing) mode-shifts. As a sim-
ple example, a system which can infer whether an interactor is moving or is stable can
adaptively dampen particular frequency ranges in its response; this can, for example, be
used to adaptively minimise gait noise without switching the user into a special “walk-
ing mode”.

The extent to which this extension can be done without incomprehensible displays de-
pends on the ability of the user to model the system. High quality real-time feedback,
as discussed in the previous chapter, is one of the things that can maximise the benefit
of these methods.

In order to implement this augmentation, a suitable definition of “easy” must be made.
This corresponds to the cost-per-bit of communicating (as described in II.2.2). This cost
is derived from the physiological and cognitive constraints of the user. Some impor-
tant constraints among these are limb dynamics, response times and control error mod-
els. Limb dynamic limitations are extensively discussed in Schmidt and Lee [2005] and
Latash [1993]. Flash and Hogan [1985] describe the minimum-jerk model, one of the
most widely used models of human motor control in trajectory tasks. Human control
models and response times are discussed in Jagacinski and Flach [2003], Schmidt and
Lee [1999] and in Kelley [1968].

V.2.1 SEMANTIC POINTING AND OTHER INTERFACE ENHANCEMENTS
There have been a number of recent attempts to improve performance in pointing tasks
by dynamically altering the response of the system. These methods include semantic
pointing (Blanch et al. [2004], Blanch [2005]), object pointing (Guiard et al. [2004]) and
“bubble-cursor” pointing (Grossman and Balakrishnan [2005a]). All of these attempt to
reduce the effective distance to a target in a pointing task, based on some estimate of
likely user behaviour, thus making interaction more efficient. These attempt to amelio-
rate the effect of selection on a surface where only parts of the display have functional
value (for example, icons lying on a desktop).

V.2.1.1 OBJECT POINTING Object pointing simply warps over unused (non-information
bearing) regions of the display space so that targeting

requires less movement, at the cost of making the structure of the space less intuitive.
The motor space image of the workspace is a dense tessellation of targets, with mini-
mal space in between, while the visual image remains undisturbed. Guiard et al. [2004]
found that for some test interfaces, this significantly improved selection time.

V.2.1.2 SEMANTIC POINTING Semantic pointing centres around adjustment of the
control-display ratio. This defines the gradient of the

linear relationship between sensor inputs and displayed response of a cursor. The ratio
gain is adapted so that more commonly used or more useful parts of a conventional
GUI have lower gain and vice versa; the cursor “sticks” to likely GUI controls and slips
quickly over less useful areas. This effectively adjusts the motor space image of the in-
terface such that regions are scaled according to their utility (see Figure V.2). In Blanch
et al. [2004], faster targeting times and reduced error rates were observed in the experi-
mental setup, which presumably had accurate identification of areas of of utility.
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FIGURE V.2: The visual space (a)
and motor space image (b) of a
dialog box with variable control-
display ratios. The “save” button,
which has higher utility to the user,
is enlarged in motor space. From
Blanch et al. [2004].

V.2.1.3 AREA CURSORS Bubble pointing (Grossman and Balakrishnan [2005a]) uses
a cursor with non-zero effective area (other area based

cursors are described in Kabbash and Buxton [1995]); the cursor can be “over” mul-
tiple regions of interest at one time. The “bubble” is a circular object which represents
the region of activation associated with the cursor. Objects are selected when they are
under this area and activation (mouse click) occurs. Disambiguation is achieved by se-
lecting the nearest target to the centre when multiple targets lie under the cursor (this
is also displayed to the user). This effectively increases the size of targets for selection.
While this can provide improved performance (as the authors demonstrate), it does not
increase the richness of selection. A model where the activation region was a density in-
stead of an activation area, and targets had associated priors would allow simple prob-
abilistic inference to be brought into the process. The bubble size (in bubble pointing)
is also fixed and is not responsive to changes in input dynamics (e.g. higher velocity
might imply a greater tolerance for larger selection areas along the axis of motion).

V.2.1.4 PSEUDO-HAPTICS Pseudo-haptics (Lécuyer et al. [2004], Lécuyer et al. [2001],
Lécuyer et al. [2000]) involves the modulation of the

control-display ratio as a display mechanism rather than to improve the quality of in-
teraction quality. Lécuyer et al. [2004], for example, demonstrates that simply adjusting
this ratio based upon some map of simulated surface height permitted interactors to per-
ceive apparent textures in the surface (bumps and ridges). The disruption between the
kinaesthetic feedback from the hand motion and the visual feedback is strong enough
that the perception of the contours of the virtual surface are apparent.

V.3
MODULATED DYNAMICS: UNIFICATION AND EXTENSION

It is clear that the basic, unaided, spatial pointing metaphor is not the optimal way of in-
teracting, despite its omnipresence on desktop computers. The basic dynamics of point-
ing devices, as described in II.11, have been extensively tuned to increase performance,
with carefully calibrated acceleration curves and similar enhancements. However, this
fails to address the underlying inefficiencies in the pointer-based interaction methods.
The aforementioned augmentation techniques seek to improve this performance by dis-
torting the motor space so as to be more efficient, while retaining the intuitive visual
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FIGURE V.3: An example of how introducing “helping” dynamics into the system can
improve control performance. This figure shows a simulated acquisition task in which
an operator – modelled as PID controller controlling a second order system with sat-
uration, strong drifts and Gaussian noise – attempts to acquire a target (the circular
region to the right). In the unaided case (left), many of the acquisitions miss the mark
(only ∼25% acquire the target). When the simulated surface shown at the far right is
introduced (a smooth “dimple” around a path heading towards the target), the acquisi-
tion is significantly cleaner (centre figure), with more than 80% of the acquisitions being
succesful. This is equivalent to an increase of target size of ∼ 360%.

appearance of existing displays. This motor space distortion is a very specific example
of the modulated dynamics approach to the design of interfaces. By adjusting the input-
to-cursor gain so that response is more sensitive in regions of little interest, these can be
quickly skipped over to reach relevant targets. The interactor’s control is supported
such that less effort needs to be expended to achieve likely goals. Figure V.3 shows how
introducing dynamics can regularise operator behaviour and increase precision.

In the systems described above the inference is as simple as could be possible: the de-
signer assigns prior probabilities to regions of activation (which may for example, be
uniform across a class of GUI widgets). The augmented dynamics approach seeks to
unify these techniques, and extend them to include both more complex, dynamic infer-
ence and more powerful dynamic systems, which offer greater opportunities for shap-
ing user behaviour.

All of the enhanced pointing techniques have been shown to improve performance in
spatial selection tasks. However, they attempt to fix the limitations of the spatial point-
ing metaphor, a sub-optimal way of distributing information across sensory inputs,
without addressing the underlying flaws of this method. The metaphor has advan-
tages in terms of familiarity, but the failure to incorporate the temporal richness of the
observed signals dramatically limits the efficiency of any such selection mechanism. By
squeezing all of the evidence used for the selection into the last instant (the terminal cur-
sor location), or a very simple model of the dynamics (e.g. using just the estimated cur-
sor velocity), much of the relevant data about the user’s intention is lost. They also fail
to incorporate probabilistic models of likely user actions; all goals are either assumed
to be equally likely or to have a priori likelihoods (not dynamically updated given the
evidence observed).

Conventional “gesture recognition” systems use (or can use) all of this sensory infor-
mation in making decisions; but the prevailing action/response methods make gesture
input frustrating and challenging to learn for anything but the simples gesture reper-
toires. The aim of the approach described here is to bridge this gap, maintaining the
controllability and apparent simplicity of spatial or physically-inspired models, with-
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out excluding the rich spatio-temporal communication possibilities that gesture-based
systems offer.

V.3.1 A GOAL SPACE VIEW OF OPTIMAL DYNAMICS
In terms of the goal space view presented in Section II.7, a system with optimal dynam-
ics requires the least effort on the part of the user to move across the action boundaries
in the goal space such that effort remains proportional to the product of the probabil-
ity and utility of the potential outcome. The designer of a system should ensure that
suitable dynamics are implemented in an interface. This involves trading off the “intel-
ligence” of the system against the controllability of the result. A system which cannot
be accurately modelled and thus controlled by an interactor will fail to be maximally
effective even with the most sophisticated inference models. By introducing smooth
feedback from an inference model which estimates the long term goals of the user to
the immediate-term control system, such dynamics can be created while maintaining
separation between the dynamical design and the inference mechanisms.

V.4
HEX: AN EXAMPLE

This section illustrates the application of these ideas to a real-world problem: text entry
on mobile devices. The existence of well-developed inference models for text entry
makes it a suitable example for the application of the theoretical principles of dynamical
design. The result is Hex, a text entry interface running on a mobile platform augmented
with inertial sensors. These sections reviews some of the issues involved in entering text
on mobile devices, some competitive solutions to the problem, and the basics of inertial
interaction. Hex is then described in detail, and its performance is analysed.

V.4.1 THE MOBILE TEXT ENTRY PROBLEM
Entering text on small mobile devices is a serious practical issue. Mobile devices now
pervade most peoples lives, from the ubiquitous mobile phone to personal digital as-
sistants and even “wearable” computers. Entering text, which is one of the most funda-
mental tasks a user might want to do, is still awkward on these devices, despite huge
research efforts to develop better alternatives. Almost all SMS text messages are entered
using the numeric keypad approach (usually with Tegic’s T9 predictive text system, see
below), a difficult, slow and error-prone process. Even given these practical limitations,
SMS messaging is enormously popular. With better interaction, the flow of messaging
could be made significantly more fluid.

There are several important issues in the design of mobile text entry systems: obviously
a system must support reasonable input rates; it should not require disproportionate
learning time (this, for example, is the major reason for the non-adoption of chording
keyboards despite their superior performance and compact size); it should not be exces-
sively frustrating; it must be feasible to operate within the limited feedback constraints
of mobile operation (e.g. partially eyes-free); it should avoiding “colouring” the user’s
input by strongly favouring certain sequences over others; and it must make effective
use of the sensory hardware available on a mobile device (it should not, for example,
require power-draining or bulky sensors, and should be able to cope with noise sources
such as would be generated by walking or travelling on a vehicle). These requirements
place fairly stringent constraints on the design of new interfaces. In particular, the feed-
back, sensor size and noise rejection issues are of great importance in mobile interface
design.
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System Rates Lang. model Geometry Traj. type Input
Quikwriting none none octa. 2 stroke stylus
TCube ∼ 20 none hex. 2 stroke stylus
Dasher 20–34 PPM tree cont. mouse/eye+

Shark 45–70 bigram∗ hex. cont. stylus
SonicText none none hex. 2 stroke thumbstick
Cirrin ∼ 20 none circle cont. stylus
TiltText ∼ 13 T9 list scroll acc.+buttons
Unigesture 1–4 lookup hepta. 7-way tilt acc.
TUP 6–7 trigram circle tap touchwheel
T9 10–25 lookup grid button buttons
Hex ∼ 17 modified PPM hex. cont. acc./EEG

Table V.1: A comparison of the attributes of the text entry methods listed in this section.
Rates are given in words per minute. “cont.” indicates a continuous trajectory system,
while “2 stroke” indicates a two stroke entry method (two individual stroke motions).
“acc.” indicates accelerometer input. ∗Shark uses a smoothed bigram model. +Dasher
runs on a number of of other devices, including breath control and buttons.

V.4.2 COMPETITIVE APPROACHES
There is now a vast proliferation of text-entry methods for different devices and con-
texts, although few have gained widespread acceptance. This section gives an overview
of existing entry methods suitable for mobile devices, especially those featuring contin-
uous gestural movements. A review of some methods not discussed here is given in
MacKenzie and Soukoreff [2002]. Table V.1 gives an overview of the various methods
reviewed in this section.

V.4.2.1 QUIKWRITING Quikwriting (Perlin [1998]) is a continuous gestural input
method for stylus input devices. It uses gestures based on

moving back and forth to sections of a input area, which is divided into eight parts.
No online language model is used, although the layout is hand-optimised for quick
entry. No data entry rates for the system are available. The system requires two handed
interaction and a touch-screen or other stylus input.

FIGURE V.4: The Quikwriting text entry system. Text is en-
tered by moving back and forth from the octagonal sections.
Taken from Perlin [1998].

V.4.2.2 TCUBE T-Cube (Venolia and Neiberg [1994]) is a text entry system for
stylus based devices based on flick motions on an eight way pop-

up pie menu. Each character requires two sequential motions to select. The layout of
characters is stable and does not involve any language modelling (the ordering is se-
quential). Rates of up to 20 wpm are reported after nine thirty minute training sessions.
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FIGURE V.5: TCube text entry. Entry is based around pie
menus, which the user can pop up at any position on screen.
From Venolia and Neiberg [1994].

V.4.2.3 DASHER Dasher (Ward et al. [2000], Ward and MacKay [2002]) is a prob-
abilistic text entry system based on continuous one dimensional

movement. The interactor “flies” through an expanding array of letters which move
from left to right. The area associated with each letter is determined by its probability,
as given by a PPM prediction model. Users are able to communicate at input rates of
approximately ∼20–34 words per minute with Dasher. Originally controlled by mouse
and eye-tracking input it has been extended to support breath control, and also a hy-
brid speech recognition mode (Vertanen [2004]). Although Dasher is a very efficient
entry system, especially where control is difficult, or the language or other structure is
unfamiliar, the dynamic layout of letters reduces the opportunity for learning highly
optimised strategies for entry, and requires continuous attention to control.

FIGURE V.6: Dasher continuous text entry system. Text is
entered as a continuous one-dimensional gesture. The sizes
of the targets are adapted according to a probability model.
Taken from Ward et al. [2000].

V.4.2.4 SHARK Shark (Kristensson and Zhai [2004], Zhai and Kristensson [2003])
(now rebranded ShapeWriter) is a soft keyboard based entry sys-

tem. Entry is performed with continuous gestures drawn with a stylus onto a soft key-
board. The path through the keyboard is optimised according to a language model so
that trajectories close to those of likely words are warped into the correct shape (this
is performed after the completion of a word gesture). The authors suggest an impres-
sive speed of around 45 words per minute is achievable with the system – with short
sequences reaching up to ∼70 wpm. The use of word length gestures allows the lan-
guage model to have a greater role in the decision process, but at the same time reduces
the amount of direct control the user has over the operation of the interface. The sys-
tem offers substantial room for users to improve their performance through learning,
as the optimal trajectories for particular words are unchanging. Shark also displays the
optimal word trajectory after warping has been performed, showing exactly how per-
formance could be improved. Shark, however, requires two handed interaction, and a
reasonably sized touch-sensitive screen.
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FIGURE V.7: Shark gestural text entry system. Words are
entered as continuous gesture on the virtual keyboard dis-
play. The system then uses a language model to deform the
path to the path for the most likely word given the gesture.
Taken from Kristensson and Zhai [2004].

V.4.2.5 SONICTEXT SonicText (Rinott [2004], Rinott [2005]) is a mobile text entry
system using a spring-centred eight way joystick with audio

feedback. It is intended to be usable without visual attention (e.g. in a pocket). Symbols
are coded similarly to Quikwriting (Perlin [1998]); movements consist of a directional
movement followed by an optional rotation motion, and then a return to the centre
position. Each symbol thus requires either one or two movements. Audio feedback
representing the symbol currently acquired is produced during the interaction. The
feedback has two modes: phonetic (sound of the letter) or synthetic (abstract sounds
representing the letter). Since acquisition is only completed once the user releases the
joystick, returning it to the sensor, the feedback can be used to explore the space. No
entry rates are given for the device, but it is claimed that entry is possible without visual
attention.

FIGURE V.8: SonicText. The joystick can move in eight
directions; each letter requires either a single directional
movement, or a directional movement followed by a “roll”.
Audio feedback is presented during the interaction to re-
duce the need for visual attention. From Rinott [2004].

V.4.2.6 CIRRIN The Cirrin interface (Mankoff and Abowd [1998]) is a gestural
text entry method, based on continuous gestures weaving in and

out of a circular array of letters. It has no support for online language models (although
the fixed layout of letters is pre-optimised via simulated annealing). It is intended for
use with stylus interfaces, where entire sequences can be entered with a single gestural
stroke. One user is reported to have achieved 20 wpm with the system. The lack of any
dynamic language modelling reduces it potential for high input rates, but does make for
a stable interface which can be mastered with experience. Cirrin requires a two-handed,
touch screen interface, making unsuitable for some applications.

V.4.2.7 TILTTYPE AND TILTTEXT TiltType (Partridge et al. [2002]) is a simple text
entry method for extremely compact devices. It

uses a four buttons and a tilt sensing accelerometer. The device can be tilted in nine
different ways which, combined with three of the four buttons, allows for 27 characters.
The fourth button functions either as a shift key (to access numerals and punctuation)
or as a backspace key, for quick correction. The user can hold down a button and scroll
through letters until the desired one is acquired; releasing the button causes the letter to
be stored. No rates are given for entry, but the authors quote the speed as “slow”. It re-
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FIGURE V.9: The Cirrin text entry interface. Text is entered
as a continuous movement, entering and leaving one seg-
ment of the circle to produce a character. The layout is cho-
sen to reduce user effort for likely words. From Mankoff
and Abowd [1998].

quires two hands for use. TiltText (Wigdor and Balakrishnan [2003]) is a similar system,
which uses a full 12-key mobile phone keypad, and uses tilt to disambiguate letters. It
effectively implements T9, but uses the accelerometer in place of the “cycle possibilities”
button. It is two handed, and speeds of up to 13wpm are reported (somewhat slower
than true T9 entry without accelerometer control).

FIGURE V.10: TiltText Tilting text entry with accelerome-
ters. From Partridge et al. [2002].

V.4.2.8 UNIGESTURE Unigesture (Sazawal et al. [2002]) is another tilt-based ap-
proach to text entry. In this model, orientation space is di-

vided into eight regions (seven for characters, one for space). Users tilt into one such
zone to select a character; each tilt motion is recognised as an atomic gesture. When the
space character is reached, the word is disambiguated by a language model. Users then
push a button until the desired word is displayed. Words not in the system dictionary
cannot be entered. This method is one handed, except that buttons must be pressed
for disambiguation in the prototype system. Speeds of 3–8 seconds per character are
quoted for the prototype; this corresponds to about 1–4 wpm.

FIGURE V.11: Unigesture tilt text entry. Orientation is di-
vided into seven zones plus one for space. Users tilt the
device into a zone for each character; the system disam-
biguates the letters at the end of a word. From Sazawal et al.
[2002].

V.4.2.9 TUP TOUCH WHEEL The TUP touchwheel interface (Proschowsky et al.
[2006]) is a text entry system for mobile devices which

is also based on a circular arrangement of letters. However, the system is based around
either tapping or rotating a wheel, rather than continuous strokes. It incorporates a
probabilistic language model, as well as a model of the probability of a letter given the
position of the interactor’s finger (smooth densities around displayed character posi-
tion). This makes for reasonably reliable entry even when the accuracy of the input is
low (large fingers on a small wheel device). However, the current versions of this sys-
tem do not use information about the dynamics of movement to improve interaction
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and, since the model is effectively static, there is no way to shape the user’s behaviour
by modulating the feedback. Input rates are reported as 6–7 wpm for inexperienced
users.

FIGURE V.12: The TUP touchwheel text entry system. The
user can type by tapping on the circular pad. The system
estimates the most likely letters given the position of the tap
and a language model. From Proschowsky et al. [2006].

FIGURE V.13: Keypad text entry. Letters are coded as se-
quences of digits. In the T9 system, each letter is coded as a
single digit, and the entire word decoded at the end.

V.4.2.10 T9 – THE BASELINE Nearly all mobile phones now on the market of-
fer text entry via the numeric keypad. Although the

“multi-tap” method for entry, which directly codes letters as sequences of digits is often
available, it is very inefficient, and most phones offer Tegic’s T9 prediction system for
increasing entry rates. In this system, each letter is entered as a single digit, until the end
of a word is reached, whereupon the possible words compatible with that sequence are
decoded. The user can cycle through the possible words to disambiguate as required.
James and Reischel [2001] report that T9 can achieve speeds between 10 wpm and 25
wpm (when all words to be entered are in the system dictionary). Numerical pad entry
methods usually require two hands (single thumb operation is possible but clumsy),
as well as careful finger co-ordination. This becomes a significant issue as the size of
mobile phones continues to decrease.

V.4.3 TILT CONTROLLED INTERACTION
Since the topic at hand relates to the modulation of continuous dynamics in a control
context, continuous sensing devices are of interest. Inertial sensing, where the orien-
tation and motion of a device is directly sensed, provides rich input with small, cheap
sensors. The availability of MEMS technology means that extremely small solid-state
sensors can be mass produced. Accelerometers, gyroscopes and magnetometers are
three major inertial sensing device types.

V.4.3.1 ACCELEROMETER DEVICES Most notable among these devices are linear
accelerometers, which are widely available com-

mercially. These sense linear acceleration on one or more axes (3-axis accelerometers are
common) with a range of a few G’s. They are sensitive to the effect of gravity, and as
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such function as basic tilt sensors, measuring the orientation of the sensor with respect
to the gravitational vector. Because of the dominating effect of the gravitational force,
smaller translational accelerations are much more difficult to measure on such devices.
MEMS accelerometers also suffer from calibration drift due to temperature changes.
These factors rule out simple modelling of translational movements via double integra-
tion – the changing effect of gravity (due to small tilt variations) and calibration drift
cause position estimates to drift wildly.

These accelerometers are, however, ideal for tilt sensing applications, and can be used
with very little signal processing. They have been employed in a number of mobile tilt
based interfaces. See, for example, Harrison et al. [1998] (tilting for scrolling), Eslam-
bolchilar and Murray-Smith [2004], Eslambolchilar et al. [2004] (speed-dependent auto-
matic zooming with tilt control) or Partridge et al. [2002] (simple text entry via tilting)
for some examples of accelerometer-based tilt interfaces. Jang and Park [2004] discuss
gesture recognition with mobile devices augmented with accelerometers. A number of
mobile phones (such as the Nokia 3220 and the Samsung SCH-S310) already feature
accelerometer devices.

V.4.3.2 GYROSCOPES, MAGNE-
TOMETERS AND OTHER INERTIAL
DEVICES

As noted, gyroscopes (which measure angular rates)
and magnetometers (which measure magnetic field
strength, and can be used as electronic compasses)
are also usable inertial sensors, but are more expen-

sive and more difficult to work with than accelerometer devices. MEMS gyroscopes,
which use tiny vibrating elements to detect motion, suffer from rapid drift and are sen-
sitive to temperature changes. Magnetometers give estimates of orientation with re-
spect to the Earth’s magnetic field, but are disturbed by metallic objects in the vicinity
– severely limiting their use indoors. Fusing the inputs from two or more sensor types,
can, however, be used to gain much greater tracking accuracy, and to separate orienta-
tion changes from translational movements (see Luinge [2002] or Kim [2004] for more
details).1

V.4.3.3 ADVANTAGES AND DISAD-
VANTAGES OF THE INERTIAL APPROACH

Inertial sensing provides rich sensory input aug-
mented cheaply and with very little support hard-
ware. The input is direct and natural, in the

sense that the device itself is simply moved around to effect changes in state, and sam-
pling rates are high enough that fluid, real-time control can be achieved. Inertial sens-
ing platforms also suitable for one-handed use, a major advantage over other input
device types. However, they can lack precision, can induce light reflection issues when
used with screen based displays, and have no inherent feedback – unlike a button ar-
ray or even a screen, which constrains motion to definite surface. All feedback about
the sensed state either comes from direct proprioceptive/visual information about the
position and orientation of the device or from the artificial feedback generated by the
system. The design of appropriate feedback is therefore critical in such applications.

Inertial sensors are also subject to various noise sources (e.g. tremor, gait, vehicular
motion, etc.) which have to be accounted for. The sensing of these states can provide
rich context data, but this requires significant modelling and processing to be of use. The
inertial approach is also limited to the ways in which the physical device itself can be
manipulated – a cumbersome device will lead to poor interaction. Other input devices,
such as touch screens, which use two handed control, suffer less from the effects of the

1The “residue” after such fusion operations is an interesting source for additional context information,
such as the presence of metallic objects.
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physical design of the device.

V.4.4 PROBABILISTIC LANGUAGE MODELLING
For any input system a model must be constructed of possible user goals; the more
effective this model is in reducing the redundancy of the system, the greater communi-
cation bandwidth can be achieved. For text, where the canonical representation is a se-
quence of symbols (the alphabet and other assorted characters), there exists a great deal
of redundancy. “Standard” English has an estimated entropy somewhere between ∼0.8
and ∼1.5 bits per character (Teahan and Cleary [1996], Shannon [1951], Cover and King
[1978]).2 Brown et al. [1992] suggest a maximum upper bound of 1.75 bits per character
(modelling all punctuation and capitalisation), computed for the Brown English corpus.
This is much less than a straightforward coding of the symbols, which requires 6–8 bits
per character. Greater compression can be achieved in situations where the language
is more restricted or regular, such as in technical or legal contexts. Efficient language
coding systems exploit these redundancies to minimise the necessary bandwidth for
storing or communicating text – this is the basis of efficient text entry. The important
issue is to make use of these models in an interaction; a model which has very good
compression properties is of little use if it cannot be reliably controlled by an interactor.

In this work, text coding models which can estimate the p.d.f. of possible text sequences
given an input are of particular relevance. These probabilities can be fed back into
the dynamical model to create the dynamic handling qualities outlined in the previous
sections.

V.4.5 TRANSITION FROM NOVICE TO EXPERT: LEARNABILITY
A further issue in the design of a text entry system is the learnability of the system: how
quickly a user can reach a particular bit-rate. This depends on how well the user can
model the behaviour of the system in response to inputs, which in turn depends on the
long term stability of the system, and on how well the control inputs and feedback of
the system are matched to the user in the context of operation. A system which requires
input as controlled and nuanced as required to play the violin, for example, will be un-
usable without years of training. Equally, a system with a sophisticated model which
depends strongly on changing context variables can become so (apparently) complex
that learning the response of the system to even trivial changes of inputs is very chal-
lenging.

Adaptivity is a major issue in the learnability of a system. Allowing a model to adapt
to frequently used phrases, for example, can greatly increase the representative power
of the system. However, if in doing so it significantly disturbs the model the user has
made of the system, the effect is likely to be detrimental despite the improvement in the
language model.

A key aim of the modulated dynamics approach is to allow the construction of systems
which are locally smooth – from the perspective of the user – but can still incorporate
sophisticated models for improving the bandwidth of communication. These smooth
changes in behaviour should maintain the originally learned behaviour while gently in-
troducing opportunities for richer control and correspondingly higher communication
rates.

2Cutting edge compression engines like PAQ8H (http://www.cs.fit.edu/˜mmahoney/compression/, re-
trieved June 10th 2006) achieve these ratios in practice – with ∼0.9 bits/character for the CIA world factbook
and ∼1.4 bit/character for the Calgary test corpus.

http://www.cs.fit.edu/~mmahoney/compression/
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V.4.6 BASIC HEX ENTRY MODEL
The Hex system aims to implement a mobile text entry system based on inertial sens-
ing, which demonstrates the use of the modulated dynamics approach to increase us-
ability and communication rates. The aim is that Hex should support the flexibility and
power of gesture recognition systems, without require rote memorisation of abstract se-
quences; the intuitiveness of the spatial pointing technique can be preserved. By choos-
ing the dynamic system carefully, the interactor should be able to “bootstrap” from
tightly-coupled control behaviour to faster, semi-open loop control. Hex constructs a
virtual world that supports this transition by providing pseudo-physical indicators of
the structure of the inference mechanism.

V.4.6.1 IMPLEMENTATION
PLATFORM

The Hex system is implemented on an PocketPC de-
vice, with an external tri-axis accelerometer P3C from
XSens devices, which measures linear accelerations from

-2g–2g. The peripheral is built around ADXL202 accelerometers. Tilt can be obtained
from the effect of gravity on the sensor. The setup is shown in Figure V.14. A version
for desktop PC’s controlled via the mouse has also been implemented.

FIGURE V.14: PocketPC aug-
mented with XSens miniature lin-
ear accelerometer.

V.4.6.2 HEXAGONAL TES-
SELLATION MODEL

In the Hex system, text is produced as a sequence of char-
acters. Each character is encoded as a pair of transitions in
a hexagonal grid; first a transition into a character group,

and then a transition into the specific character. The hexagonal tessellation is space-
filling (it has no “wasted” regions of the space), makes it possible to code characters in
only two motions and requires only six basic directions of movement, which is quite
achievable with accelerometer-based tilt input. Other tessellations either waste display
space, require implausibly accurate tilt control or need longer sequences for character
encoding; hexagons are good compromise between these criteria.
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The two transition model provides thirty-six possible characters. Transitions back from
a group backwards to the original state have no effect (a sort of limited undo), remov-
ing six possible characters. The final arrangement looks like Figure V.16. Alphabetic
characters, backspace and space are shown. Additional punctuation and numbers can
be added by introducing “shifted” three-transition sequences, but are not present in the
Hex prototype. Transitions can be quickly computed by finding the nearest (Euclidean
distance) point to a cursor on a hexagonally-arranged grid.3 The accelerometer input is
used to control the movement of the cursor through the grid (see V.4.7.2).

FIGURE V.15: The hexagonal grid
is formed by taking the Voronoi
tessellation of the hexagonally-
arranged points (heavy black
points). Transitions detection
is simply a matter of observing
changes in the nearest hexagon
centre point.

The boundaries of the Voronoi tessellation of these points are hexagonal (see Figure
V.15. Some example words and the trajectories which would generate them are shown
in Figure V.18. A series of images from Hex in action is shown in Figure V.17.4

Every sequence of characters in Hex corresponds to a set of two-dimensional trajecto-
ries. It should be noted that these trajectories are stable, in contrast to adaptive layout
systems like Dasher (Ward et al. [2000]).

3Such a grid can be obtained from a regular square grid, having vertices at (x,y) x,y ∈ Z by keeping only
points where (x ≡ 0 mod 10∧ y ≡ 0 mod 6)∨ (x ≡ 5 mod 10∧ y ≡ 3 mod 6).

4Hex features a spherically distorted display to maximise the visible area for fine control, while still pre-
senting enough information to plan trajectories. This also leaves unused room at the corners, which can be
used for other status information.
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FIGURE V.16: The default layout of letters in Hex.

FIGURE V.17: A series of images from Hex in action. “O” is being entered. The cursor
history is shown as a series of black dots.

V.4.7 BASIC DESCRIPTION OF THE HEX DYNAMICS
Hex involves the simulation of a dynamic system. The Hex model can be described as
follows:

ṡ = h(u,s, l), (V.1)

where h transforms the control inputs, depending on the current state s and the current
language model state l

h(u,s, l) = u+ k(s, l), (V.2)

k represents the effect of the language model. u represents the control input.

u = ω
([

θ
φ

])
, (V.3)
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(a) of (b) was (c) be (d) we

(e) little (f) am (g) take (h) side

FIGURE V.18: The trajectories corresponding to words using the layout given in Figure
V.16. These are created by fitting a cubic spline through the medians of the transition
edges which would produce the word.

where ω is a transfer function applied to the tilt angle estimate (θ,φ). The following
sections outline the details of this process.

V.4.7.1 TILT TO VELOCITY The cursor velocity is controlled by the angle of tilt of
the device, as measured by the accelerometers. Assum-

ing that the device is being tilted without significant external (non-gravitational) linear
acceleration, the orientation φ,θ of the device can be found from the measured x,y,z
accelerations via:

φ = tan−1
(y

x

)
, (V.4)

θ = cos−1

(
z√

x2 + y2 + z2

)
(V.5)

V.4.7.2 STABILITY OF CONTROL:
DEAD-ZONES AND TRANSFER FUNC-
TIONS

The velocity control is mapped so as to have zero
at a user-calibrated point (auto-calibrated at start),
reaching a maximum at ±π

2 . Practically, ranges of
about ±π

4 are achievable with wrist movements
(variability of wrist movements in tilt-based interface are described in more detail in
Crossan and Murray-Smith [2004]). To transform this to a more comfortable range of
movement, a nonlinear transfer function (shown in Figure V.19) is applied. This com-
bines a dead zone (see Jagacinski and Flach [2003]), which acts to reduce small oscilla-
tory deviations near the zero point and slow drift effects, with a tan−1 response which
increases sensitivity in the comfortable range of control.

The controller also incorporates mode switching behaviour. While the control input
maintains a value inside the velocity dead zone, the system acts as a position controller,
and forces from the probability model (see next section) are not applied. This mode
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switching behaviour allows stable small-scale adjustments without restricting the total
range of movement. Blended-mode controllers are found in advanced aircraft control
systems, where very different areas of the flight envelope have to be controlled with the
same input device. Shanks et al. [1996], for example, describes the use of blended control
modes (vertical rate to pitch rate, based on airspeed) in a proposed flight management
system for the VAAC Harrier aircraft, to deal with switches from jet-borne to wing-
borne flight. Pilots control the most relevant variable across the aircraft flight envelope.

V.4.7.3 TRANSFER FUNCTION

u1 =

{
0 |θ| < α
tan−1(βθ) |θ| < α

(V.6)

where α gives the dead-zone width and β the sensitivity of the control. For u2, substitute
φ for θ. Note that when u1 = 0∧ u2 = 0, the entire control mode switches to position
control, and the total Hex dynamics can be written as:

x = xe + v, (V.7)

where xe is the position where the dead-zone is entered, and

v1 = υ tan−1(ψθ), (V.8)

(and similarly for v2) with ψ, υ defining the response within the dead-zone.

This particular arrangement is effective, but more complex transfer functions which take
into account the full variation of wrist movements available could be applied (for exam-
ple, separately treating the θ and φ dimensions to get a fully two-dimensional transfer
surface). Hinckley et al. [2000], for example, found that a circular dead zone was signif-
icantly more effective than a square one in mobile accelerometer interactions.
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FIGURE V.19: The transfer function applied to the control input in Hex.
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V.4.8 PROBABILITY MODEL
To maximise the potential input rate, Hex employs a probabilistic language model to
infer the probability distribution of new characters given a prefix. This model is used to
alter the handling qualities (the response of the system) of the system so that character
sequences which are more likely are easier to perform.

Importantly, the dynamics have no effect on the shape of the optimal gesture for a par-
ticular character or character sequence; they only affect trajectories which deviate from
these paths, the effect being stronger as deviation increases. This maintains the learn-
ability of the system, while smoothly providing the increased communication benefits
of an probabilistic model. They also offer the potential for rich feedback as to the state of
the inference model, with respect to the user’s low-level (kinaesthetic) goals as well as
higher level cognitive goals. Feedback can be produced describing the varying gradient
of the surface as the cursor moves over it; this informs the user as to how the language
model is distorting the dynamics and what effect should be expected as a result. It is hy-
pothesised that this could facilitate faster development models of the system behaviour
in the user’s mind.

The augmented dynamics in Hex can be visualised as a time-varying vector field on
the plane, as shown in Figure V.21. This can be simplified to a simple surface for most
of the calculations (but see V.4.8.1). The movement of the cursor can be imagined as a
ball bearing rolling over this continually warping surface as the device is tilted around
(see Figure V.20), although the tilt dynamics in Hex are first-order rather than a true
second-order tilting model.

FIGURE V.20: A real physical model showing the
design of Hex; rolling a marble (the cursor) across
the undulating surface defined by the language
model.
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FIGURE V.21: A vector field, illustrating the virtual forces applied to the cursor in Hex

The effect of the dynamics is shown in Figures V.22,V.23, and V.24 where sample words
have been performed multiple times. The control inputs and the output trajectories (as
observed by the user, and used for the character entry) are shown, both in spatial and
time series form. The regularising effect of the dynamic system is quite visible.
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FIGURE V.22: Input and output trajectories for the word “the”. Overlaid spatial plots
are shown in the top two images; the lower quadrants show the time series.
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FIGURE V.23: Input and output trajectories for the word “squeak”. Overlaid spatial
plots are shown in the top two images; the lower quadrants show the time series. This
is significantly less likely than “the” (Figure V.22), so the signal complexity is corre-
spondingly higher.
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FIGURE V.24: Input and output trajectories for the word “take”. Overlaid spatial plots
are shown in the top two images; the lower quadrants show the time series. Compare
with the ideal form shown in Figure V.18
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V.4.8.1 A PRIORI MODEL: GEO-
METRIC CONSIDERATIONS

The hexagonal model provides a clean way of di-
viding the space up into sequences of gestures which
can be concatenated and coarticulated into a smooth

trajectory (see the example words in Figure V.18). However, it is apparent that some
areas of the space are more meaningful than others. Consider a transition through a
vertex, as shown in Figure V.25. This provides no information as to which of the two
alternatives was desired.

a

b

FIGURE V.25: Transitioning through a vertex is ambiguous. Very slight changes in initial
position or heading lead to distinct jumps in state. Therefore, the physical
model prohibits transitions in this region.

One way of dealing with this is to keep the full distribution of potential values, and
decode the most likely sequence at some meaningful end point (the end of a word, for
example, as in the Shark (Kristensson and Zhai [2004]) system). Section V.4.13.2 dis-
cusses this in more detail. In the Hex model, however, a transition pair always changes
the state of the system by concatenating a new character. To mitigate the ambiguous
decision problem, the dynamics are altered to prohibit moving through the vertex. Vir-
tual “forces” are applied the cursor, repelling it from the vertices. It should be noted
that these forces, unlike a true surface, always oppose the direction of the travel of the
cursor; in this sense they are more like a resistive friction model.

V.4.8.2 LANGUAGE MODEL The implemented language model is a modified partial-
predictive-match (PPM) model (Bell et al. [1984] Cleary

et al. [1995]), which comes close to the maximum possible compression for English (Tea-
han and Cleary [1996]). A tree of probabilities is stored, giving p(char|prefix). In the
Hex implementation the prefix is variable length, and runs from the start of the word,
terminating at the first non-letter character, as opposed to the fixed length model in the
original PPM algorithm. A section of an example tree is given in Figure V.26. For testing,
the model was trained on the Project Gutenberg corpus.5

The model is stored as a tree, which is pruned so that nodes with probability below a
certain (very low) threshold are cut off. This reduces the size of the tree sufficiently that

5http://www.gutenberg.org/, archive as of March 2003.
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it can be used without excessive memory consumption. For the PocketPC version, an
even more compacted structure is used which codes the entire corpus tree into 1.4Mb
along with precomputed autocompletes for every prefix. This structure has much re-
duced probability resolution (4 bits with logarithmic spacing), but this is quite sufficient
for the interaction as it stands.

For the case when the transitions are into groups of letters (rather than into individual
letters), the probability of a transition into a group is just:

p(group|prefix) =
5

∑
i=1

p(letteri|prefix), (V.9)

where letteri is the i’th letter in the group.

Hex’s language model is non-adaptive. In a production system, adaption would almost
certainly be necessary for effective use (e.g. for proper names etc.). Making the lan-
guage model described here adaptive is straightforward (although current prototypes
pre-compute the probability tree offline). The effects on learnability must, of course,
be borne in mind when adaptive language models are introduced in text entry systems
– making a system sufficiently flexible to give real communicative advantage without
disrupting learned patterns is a difficult research problem.
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FIGURE V.26: A section of the Hex language model (probabilities are from a short test
training set, not from the true corpus). The probability of jumping to a
new character given a prefix is shown along the edges. Black dots indi-
cate pruned regions of the tree.

The language model is used to alter the dynamics so as to create virtual valleys in the
surface, making it easier to roll the cursor towards likely outcomes, and harder to move
towards unlikely ones. A mixture of squared exponential functions used to form to the
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surface, each centred at the vertices of the transition boundary. This causes the surface
to be smoothly raised up towards unlikely outcomes. Some examples are shown in
Figure V.27.

V.4.8.3 LANDSCAPE EQUATIONS The surface dynamics can be summarised as fol-
lows:

k(x, l) =
Z

v(x)+m(x, l)dt, (V.10)

where m is the surface defined by the language model, and v the vertice model.

v(x) =
ẋ
|ẋ|

6

∑
i=1

γe

(
d(x,i)2

−ψ2

)
, (V.11)

where γ and ψ specify the strength and width of the vertex repulsion, and d(x, i) is the
Euclidean distance from x to the vertex i in the current hexagon. The first term forces
the direction to be normal to the current velocity.

m(x1, l) =
(

∂q(x, l)
∂x1

)
, (V.12)

and similarly for x2.

q(x, l) describes the height of the total landscape surface:

q(x, l) =
6

∑
i=1

ωie

(
d2

i
−ζ2

)
, (V.13)

where ζ is the width of the language model landscape deformation (usually with ζ >>
ψ), and ωi specifies the strength of effect for one vertex:

ωi = τ
pl + pr

2
, (V.14)

where τ is a scaling factor and pl , pr give the probabilities of transition across the edge
to the left and to the right of vertex i, respectively.

V.4.8.4 MOVEMENT DYNAMICS AS
INDICATORS OF INTENTION

The interface is a dynamic system, and the tra-
jectory by which a user arrived at a particu-
lar point obviously contains information as to

their future intention. In Hex, the velocity and acceleration of the cursor are estimated,
and used to alter the landscape accordingly.6 The complete probability model in Hex
for a transition into t looks like:

p(t) = p(t|r, l)p(t|v,a), (V.15)

6This is, of course, a very simple use of the movement dynamics. More complex models might reduce
sensitivity when the trajectory is highly irregular and suggests the user is ineffective at controlling the device.
The information matching ideas of Section II.7.2.1 suggest that if the input bit rate greatly exceeds the potential
communicable information, imperfect interaction is occurring. A reduction in sensitivity forces smoothness
in the system-side, hopefully stimulating a corresponding increase in smoothness on the part of the user. In
brain-computer interfaces (for which Hex has already been adapted and is being employed Blankertz et al.
[2006]) there is the even more interesting possibility of using the error potential (Blankertz et al. [2002], Schalk
et al. [2000], Ferrez and Millán [2005]) – which is an indicator of user awareness of error – to dampen the
dynamics. Physiological evidence for emotional state (e.g. as discussed in Picard et al. [2001]) can also be
used to dampen or enhance the movement dynamics.
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FIGURE V.27: Some example virtual landscapes in Hex, showing how the probability
affects the virtual surface. These are snapshots of the landscape during an interaction.

where r is the current prefix, l the language model, v the current velocity vector and a
the current acceleration vector.7

The probabilities p(t|v) and p(t|a) are given by:

p = s+(1− s)
cosθ+1

2
, (V.16)

where θ is the angle between the velocity/acceleration and the centre of the hexagon the
transition leads to. s gives the weighting of the dynamics model; s = 1 has no effect on
the probability, s = 0 has maximum effect. This implies that the probability of crossing
a transition is lowest when movement is normal to it, and most likely when heading
straight for it. In the Hex model, these two probabilities are simply multiplied to obtain
the joint probability p(t|v,a) (possibly with different s’s). Although these variables are
clearly not independent, this approximation suffices.

V.4.8.5 SIMPLE AUDIO FEEDBACK Hex supports simple audio feedback, produc-
ing short indicator sounds when hexagonal bound-

aries are crossed, a complete letter is entered and when a word is completed. Each
individual hexagon boundary (i.e. each direction) has a unique sound, to give some
awareness of the action taken even when the eyes are not available.

7This is similar idea to the technique presented in Lank and Saund [2005] for estimating the “level of
intentionality” of a pen gesture by analysing its motion, taking into account the velocity and curvature of the
gesture, although their formulation is not probabilistic.
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V.4.8.6 AUTOCOMPLETE A minor enhancement is the inclusion of autocomplete
functionality. The most likely completion for a given

prefix is stored alongside the probability tree described in Section V.4.8.2. The current
potential autocompletion is displayed on screen. A simple shake detection algorithm
detects shake movements in the accelerometer input, and autocompletes the word. Fig-
ure V.28 illustrates the shake detection algorithm.

This is a convenient function in the current prototypes, but it is incompatible with the
smoothness ideal of the modulated dynamics approach. Better language modelling –
and especially post hoc interpretation of gestures, rather than character-at-a-time only
input – would be a better approach to improving the interaction, and one that is consis-
tent with the principles outlined in this chapter.

FIGURE V.28: The simple shake detection algorithm used in Accelerometer-Hex. The
z-axis signal is shown at the right. The red line indicates the positive
shake threshold, the green the negative. If a the series crosses the positive
threshold going upwards, the negative going downwards and then the
positive going upwards again within 150ms the movement is considered
a shake. Crossing the first threshold locks the state of Hex until 150ms
has passed, minimising the effect of unrecognised shakes .

V.4.9 MONTE CARLO SAMPLING AND PREDICTIVE DISPLAYS
Although the user perceives directly the effect of actions upon the interface from the
motion of the tessellation, higher-level predictive display is absent from the system as
described so far. To give the interactor an overview of the inference process (and how
it is likely to affect future actions), Hex8 implements a Monte Carlo sampled display,
showing future possible completions of the current word.

8Only present in the desktop versions of Hex; implementation issues make this type of display difficult to
realise on the current generation of PocketPC devices, particularly with regards to storing sufficiently high-



Chapter V. Augmented Dynamics for Interaction Enhancement 134

This display shows the distribution of possible completions. The sampling proceeds as
follows:

1. given a current prefix string si;

2. randomly select a new character cn according to the distribution p(c|si) from the
probability tree;

3. append c to si;

4. repeat 1–3 until the word termination character is observed;

5. place the si into a hash table, accumulating the observation counts for the strings;

6. reset the string to the original prefix;

7. repeat 1–4 k times;

8. normalise the each observation count by the n to get the estimated word probabil-
ities p(si);

9. sort table by observation count;

10. display to v observed strings.

This is done with k in the range of several hundred, with v =2–10. The final words are
displayed by calculating the transitions that would be required to get to these comple-
tions, and fitting a smooth cubic spline through these edges (exactly as described below
in Section V.4.10). This is drawn on screen as a series of points, whose width represents
the probability of the word (normalised observation count). The top ranked word is
also displayed on screen. Figure V.29 shows an example of this process in action.

resolution probability data for the language model.
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FIGURE V.29: Monte Carlo sampling display on the desktop version of Hex. Sampling
is performed over the language model, given the current prefix. Spline
paths for each sample word are drawn on the surface; the thickness of the
line displays the probability of that path. For clarity, this example shows
only two predictions, and the top-ranked predicted word is shown at the
top centre.

The effect is a highly dynamic display that shows both likely directions and the vari-
ability associated with the current state. When a great number of likely potential alter-
natives exist (i.e. high entropy distribution) the display is visually noisy, with rapidly
flickering “lightning-like” effects. When one or two completions are probable, the dis-
play stabilises, with clear paths for the user to follow. This both shows the user the
optimal shape for paths, and also allows for very rapid motion towards a goal when
the obvious completion is visible. In this way, the feedback can provide some of the
performance benefits of an autocomplete function, but without disrupting the flow of
communication or causing the interactor to lose direct control.

V.4.10 LAYOUT OPTIMISATION
The layout shown in Figure V.16 is mainly chosen for ease of learning, grouping similar
sounding letters together. It is almost certain not to be the most efficient layout. A better
layout can be computed by assigning a cost function to the layout and then optimising
to find a minimum cost layout.
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V.4.10.1 COMPUTING THE COST The word-cost of an entire layout can be calcu-
lated by summing over an entire corpus:
n

∑
i=0

c(xwi)p(wi)

where c is a cost function, xwi is the trajectory for word i, and p(wi) is the probability of
word i. This approximation ignores any inter-word correlations.

V.4.10.2 COST AND TRAJECTORY
MODEL

The arrangement shown in Figure V.31 was op-
timised via simulated annealing (see Kirpatrick
et al. [1983]) according to the following model:

• Trajectory The optimal trajectory for a word is approximated as a cubic spline fit
through the medians of the transition edges that form the word, and the centres
of the hexagons that this path passes through (see Figure V.30).

FIGURE V.30: Cubic spline word trajectory generation. The knots are at the centres of
the hexagons and at the medians of the edges the path goes through.

• Cost A minimum jerk cost model is applied to these trajectories (a simple model
of optimal human movements – see Flash and Hogan [1985]), that is:

c(x) = α
Z t

0

((
d3x
dt3

)2

+
(

d3y
dt3

)2
)

dt (V.17)

This is then summed for all corpus words accord-
ing to the cost equation above. This gives the cost
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of the layout for this time step. Any other model
of the cost of a trajectory could be substituted instead.

The complete annealing procedure then involved:

• computing the total cost of the layout;

• permutation of letters perturbed by random shuffling, with the number of shuffles
determined by the current annealing temperature;

• selection of jump state;

• decay of temperature (according to an exponential schedule).

The results of this approach are not particularly stable, as multiple runs often generate
quite different layouts, but with similar final costs. The cost was reduced significantly
by the optimisation process, but the effect of these layouts on real human performance
is hard to ascertain due to the time taken to learn a new letter layout sufficiently well to
produce fluid interaction; the true effects of an optimal layout are only likely to be per-
ceived with sufficient control skill that the minimum jerk model is a reasonable model
of expected action. Obtaining a suitable cost function for novice users is a much more
difficult proposition; the behaviour of such interactors is normally both more complex
and more diverse. The lack of experience leads to almost random variation in some
areas, and what control is present is heavily coloured by the short-term previous expe-
riences of that specific user. It is also perhaps beneficial that the optimisation targets the
experienced user; a small gain in terminal bit rate will be much more useful to interac-
tor using the system regularly than a similar rate gain at the beginning of the learning
curve.

Stabilisation of the optimisation process could be achieved by introducing some prior
on the layout of the characters (e.g. one that is close to one familiar to users, such as
alphabetic order or one which keeps similar sounding letters together, etc.). This would
have a better chance of producing layouts which are easier to compare, and easier for
users to learn.
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FIGURE V.31: An optimised layout of letters in Hex. This minimises the jerk of word
trajectories for the training corpus.

V.4.11 PERFORMANCE AND ANALYSIS
V.4.11.1 HEX AS HIERARCHICAL
CONTROL LOOPS

In Section II.10, the user and interface were de-
composed into a hierarchy of control loops. Fig-
ure V.32 shows how Hex maps onto this struc-
ture. The world is sensed via the accelerometers;

the landscape model forms the short-time dynamics; and the language model is the
inference module.
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FIGURE V.32: Hex in the form of hierarchical control loops. The world is sensed via
accelerometers, which control the landscape dynamic system. This is modulated by
the language model, which infers users goals. Hex has no adaptation, but if it did, the
adaptation process would modulate the inferential mechanism.
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(a) (b)

(c) (d)

FIGURE V.33: Cloud plots of trajectories in Hex, to produce the word “the”. (a) shows
ten trajectories with the normal physical model, (b) shows the effect of
removing the dynamics model (variance is increased here), (c) shows the
effect of doubling the forces strength, creating a tighter but jumpier re-
sult, and (d) shows the effect of inverting the language model probabili-
ties, significantly impairing the ability of the user to control the system.

V.4.11.2 THE EFFECT OF
DYNAMICS

To show the effect of the dynamics on user performance,
Figure V.33 illustrates a series of repeated word trajec-
tories. The sample points from the resulting trajectories

are summed onto a regular grid after being convolved with a narrow Gaussian window
(the images are effectively rasterized Parzen window estimates of the trajectory den-
sity). This gives an impression of the density of the trajectory at each point in space,
showing regions where movement was slower, and where different runs were closer
together. These plots are shown for four conditions: no forces; normal forces; double
strength forces; and inverted forces (i.e. with each letter probability p replaced with
1− p).

The forces have a clear constraining effect, producing a tighter performance in the nor-
mal case than in the case where the language model is deactivated. Inverting the forces
makes the system even worse, making it very challenging to produce probable se-
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quences. Doubling the force strengths produces a tighter plot, but the unnatural “step-
ping” caused by ridges at the transitions between states is visible; this is significantly
reduces the controllability of the system.

V.4.11.3 WORD RATES The author achieves rates of between 12 and 17 words9

per minute with the Hex system (PocketPC version with
accelerometer), for freeform text entry. In terms of bit-rate, this is approximately 2.1
bits/s (assuming 1.5 bits per character, five characters per word). This is competitive
with techniques such as the T9 system (but without requiring fiddly and expensive
buttons), though it is not quite as efficient as some other gestural systems, such as Shark
(Kristensson and Zhai [2004]) or Dasher (Ward et al. [2000]). However, it demonstrates
that building a system according to the principles laid out here is both feasible, and
leads to good results even without significant ad hoc alterations.

V.4.12 HEX IN BCI
There is an ongoing project to adapt the ideas in Hex for text entry in EEG brain com-
puter interfaces, in collaboration with the IDA group at Fraunhofer First (see Blankertz
et al. [2006]). The BCI environment is well-suited to the techniques described in this the-
sis. Interaction is asymmetric, with very limited communication rate (4-40 bits/minute),
but high display bandwidth. Long delays between action and response (of the order
of 500ms) are present, and signals are very noisy. Users have difficulty maintaining re-
liable control under these conditions; unfortunately frustration tends to lead to rapid
decreases in performance.

The user can be supported in such conditions with predictive displays, appropriate
treatment of uncertainty and dynamic systems which are designed to operate with the
frequency, noise and delay properties of the EEG signals. Without this, users have to
learn and compensate for the difficulties of EEG interaction, making a challenging task
even more difficult. Although the details of the work are outside the scope of this the-
sis, current results suggest that even the early adapted Hex model is efficient for EEG
text entry. Rates of up to 7.6 characters per minute (for German text entry) have been
observed, making it one of the fastest EEG BCI text entry systems in the world.

9Actual words, not five character groups.
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FIGURE V.34: Hex used with EEG brain computer interface control. In collaboration
with the BCI group at Fraunhofer First IDA.

V.4.13 ENHANCEMENTS
The current implementations of Hex, as described in this chapter, are complete text en-
try systems (although lacking some basic editing features). The system could however
be extended in a number of ways which could both improve the basic performance of
Hex, and make it suitable in a wider array of contexts.

V.4.13.1 IMPROVING THE
LANGUAGE MODEL

Introducing longer term partial sentence modelling would
be one effective way of improving Hex’s performance;
simply using more suitable corpora would be another.

Some form of grammar modelling running on top of the word prediction would be
relatively simple to implement, and would improve the smoothness between words. En-
coding such a model efficiently (especially for mobile devices) is, however, quite chal-
lenging. Text messaging corpora would give a much more realistic set of words to train
from, but there is a lack of high-quality corpora of this type; one exception is the Singa-
pore SMS corpus (How and Kan [2005]), which is unfortunately too small for training
on its own, with only ∼10,000 messages, and is heavily biased towards Singapore di-
alect. A weighted combination of this and a another standard English model to smooth
out the distribution might be a useful model for mobile text entry models.
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V.4.13.2 WORD LENGTH
INTERPRETATION

The Hex model could be extended so that the complete
distribution over possible words is retained until the com-
pletion of a word. This could be computed by Viterbi

decoding, treating the interface as a hidden Markov model, where the transition and
emission densities are directly observable from the construction of the interface, or us-
ing a particle filter to track the distribution of word states. The latter approach offers a
clear way of combining the predictive, uncertain displays which were the described in
the previous chapter, with sophisticated inference mechanisms.

Foe example, the cursor can be replaced by a “cloud” of cursors sampled from some
prior distribution (e.g. Gaussian centred on “true” cursor position). These samples can
be subjected to the same dynamics as the original cursor (plus some regular diffusion
to avoid a collapse of the distribution). This gives a continuous stream of transition
probabilities, rather than events. These probabilities can be fed to the decoder to track
the distribution of word states. This demonstrates how probabilistic inference can be
brought into an interactive system in an straightforward way, without ad hoc hacks to
introduce “intelligence”.

Hex could also be modified to work as a T6-style system, with only a single transition
for each character rather than a pair. Given that PPM models can compress English to
approximately 2 bits per character and choosing one from six transitions gives ∼ 2.585
bits, this should be quite practical.10

For this to be truly effective a method for interactively reweighting the postulated al-
ternatives must be provided. Better inference is of limited use if it forces the user to
accept only the alternative with highest posterior likelihood, since the cost to the user
of correcting the phrase manually is out of proportion to the difference in likelihood of
the possible outcomes.

V.4.13.3 BETTER VISUAL
FEEDBACK

Hex, at the moment, does not directly display the prob-
abilities of different options; only the handling qualities
change. Directly displaying this, for example by show-

ing thickened boundaries where probability of transition is low, or even directly display
the changing probability surface, might improve the interaction by alerting the user to
the likely responses of the system in sufficient time to plan accordingly.

V.4.13.4 MULTIMODAL FEEDBACK There are numerous avenues for exploring en-
hanced feedback: friction-type physically-inspired

audio or vibrotactile feedback to display the state of the dynamically system; feedback
about the state of the language model using the granular synthesis techniques described
in the previous chapters (e.g. linking to the Monte Carlo visual feedback); and even sim-
ple spoken indicators of change of state (as in Rinott [2004]). Such feedback enhance-
ments could provide an eyes-free text entry system, in which users can gently transition
from the visually oriented display to the more unfamiliar audio and vibrotactile dis-
plays as experience increases.

Representing the response of the surface via friction sounds (such as in the work pre-
sented in Essl and O’Modhrain [2005]) or via realistically modulated rolling sounds (e.g.
as in Rath and Rocchesso [2005]) would give the user a sense of the handling qualities
in a physically-inspired – and thus familiar – way. These metaphors also translate well
into the vibrotactile domain.

10Dunlop [2004], for example, describes a “watch-top” text entry system which operates with only five
buttons.



Chapter V. Augmented Dynamics for Interaction Enhancement 144

V.5
HEX AS AN EXAMPLE OF A GENERAL AUGMENTED DYNAMICS

SYSTEM

Hex is intended as an example of the augmented dynamics approach in a real-life prob-
lem. The aim of this chapter is to demonstrate that controlling the parameters of the
dynamic system with the results of longer term probabilistic inference is a usable tech-
nique for the design of interfaces. Combining a standard probabilistic language model
with a simple dynamic system leads to a design which is both theoretically elegant and
potentially useful. Making use of unusual sensor inputs can be made intuitive with a fa-
miliar physical metaphor (here, tilting a surface); this basic metaphor is a reasonable but
fairly inefficient way of interacting. However, by taking this model and enriching the
dynamics in a smooth fashion, the power of any language model can be brought into the
system without losing the original character of the interaction. Adjustments based on
basic observations of operator properties can be brought into the dynamic system with-
out disturbing the basic operation of the system; the dead-zone and order-switching
features are examples of this. If more detailed operator models are be developed for
human control with a particular input device in a specific context, features which take
advantage of these properties can be integrated into a Hex-like system in a natural man-
ner.

V.6
CONCLUSIONS

This chapter has demonstrated how long term inference about the goals of a user can
be brought into an interaction by changing the way the low-level properties of dynamic
systems that make up the interface. The approach separates the design of a fluid, com-
fortable interface and the design of suitable intelligence to maximise the communication
rate, and unifies a number of existing interface design tools. It provides an alternative
to the traditional pattern recognition approach to gestural interaction, while retaining
the power of the recognition algorithms. The application of the ideas of straightforward;
Hex illustrates how the modulated dynamics approach can be applied to a very concrete
real-world problem. There is great scope for building interfaces which have both pleas-
ant handling qualities and sufficient intelligence to support interaction in bandwidth
limited environments.



CHAPTER VI

ACTIVE SELECTION

Selecting by testing behaviour in a closed-loop.

Purposeful behaviour involves the production of consistent results in a world where unpre-
dictable disturbances make such consistency highly unlikely.

– Marken [2002]

VI.1
SUMMARY

IN this chapter, new methods for selection are described. These operate by identi-
fying control behaviour, and are applicable with many sensing and display tech-
nologies. This approach is developed into an agent-based structure, where the
agents seek to obtain evidence for intention by provoking responses from the user.

This leads to probabilistic interfaces based on damping, resonance and imitation, incor-
porating operator models of the selection process. Algorithms for such processes are
presented, along with implementations and analysis of their behaviour. The selection
methods are extended first to continuous spaces, and then to the interactive exploration
of high-dimensional spaces, using proxy agents to focus display on aspects of interest.

VI.2
SELECTION PROBLEM

One of the most basic task a user interface can offer is the selection of one or more items
from a set. A profusion of methods for doing selection in this most general sense have
been developed over the past fifty years. Some of the more common of these are listed
in Figure VI.1.

145
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FIGURE VI.1: Some traditional selection mechanisms.

There are various theoretical and practical problems with many of the selection tech-
niques that have been devised. One issue is a lack of a solid framework for defining
selection interactions, general enough to be extendable to new modalities or sensing
technologies. Many selection techniques on conventional GUI’s are based around ad hoc
physical analogies, such as targeting and pushing a virtual button or dragging a vir-
tual object to be “dropped”, or the quite different interactions seen in keyboard-based
command-line interfaces, where all of the intentional inference has been performed in
hardware. The GUI has brought some of the intention control out of the physical world
and into the software world. The design issue is how to best make use of the flexibility
that the software interpretation of sensor inputs provides.

The primary limitation on the techniques available is that a user must be able to com-
prehend the manner in which their actions are translated into system responses. One
approach is to base interactions on analogies to physical devices, as in the targeting in a
GUI. The spatial-only targeting analogy is, however, a very small subset of the potential
interactions which could be designed. Gesture recognition systems attempt to extend
the space of possible interaction by taking into account the time history of sensed in-
puts, and so massively increasing the space of options. The promise of this approach is
apparent, but many attempts to build gesture systems have been unsuccessful and with
the exception of some handwriting-like recognition interfaces (e.g. Graffiti on Palm de-
vices) and simple mouse gestures, almost none have made it into products.

Taking the view outlined in Chapter II, and viewing the human interaction problem
as a control process suggests that the interface should be designed to be controllable.
Control-based interactions can offer the flexibility of arbitrary gesture systems with the
learnability and intuitiveness of more familiar systems. The control can be quite general
in timescale; from semi-open-loop interactions (such as control with concatenated ballis-
tic manoeuvres) to tightly-closed loop interaction. Obtaining the best balance between
the memory-dependent but information rich open-loop interactions and the memory-
less tightly-coupled interaction is one of the important issues in designing such inter-
faces

The aim of this chapter is to present a set of selection methods, based around the per-
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ceptual control theory view (outlined in Section II.4.2), which are widely applicable and
open up a huge range of possible interactions that the flexibility of software interpre-
tation allows. These techniques are applicable to many different sensory inputs (with
their corresponding signal properties) and allow for the trade-off between open and
closed loop interaction to be manipulated as a design parameter. The techniques follow
directly from the assumptions set out in Chapter II.

VI.2.1 SENSING
Traditional approaches are not easily extended to new input mechanisms. It is not clear
how a targeting metaphor, say, would work with a pair of foot pedals, or a vibration
detector, or an array of pressure sensors. Such sensors are widely available: accelerom-
eters and even MEMS gyroscopes are now found in many mobile devices (e.g. the Nokia
5500 and Samsung SCH-S310 phones); deformable sensors with many degrees of free-
dom are available for interaction (for example the free curve ShapeTape input device
(Grossman et al. [2003]), or smart textile devices (Lorussi et al. [2005], Mazzoldi et al.
[2002]); microphones and cameras are also widely deployed in existing products, but
their utility for interaction beyond voice recognition or simple static gesture recognition
is rarely exploited. They are often particularly useful outside of the desktop environ-
ment, in mobile or specialised applications. Inertial sensing platforms, such as the one
described in V.4.6.1 or the MESH (Hughes et al. [2004]) are powerful tools for interaction
and can be built into mobile devices; these can be used in a vaguely similar way to a
mouse (as Hex demonstrates), but this requires careful design of dynamics.

VI.2.2 PATTERN RECOGNITION
One common way of dealing with these sensing modalities is to use some form of pat-
tern recognition, as in gesture, handwriting or speech recognition. But even very so-
phisticated static methods have disadvantages, as discussed in Section II.11.4, and have
often fallen short of the mark in quality of interaction. Creating more advanced recog-
nition algorithms rarely makes huge improvements in the usability of systems, and im-
plementation is often infeasible with the limited computational resources of the devices
in which they would be most valuable. The position held in this work is that improve-
ments in algorithms are of limited power unless they are appropriately coupled with
more effective methods of interaction. It is postulated that novel interaction strategies –
involving the user as a critical part of the system loop – can bring much larger benefits
to interactions than incremental adjustments to already heavily optimised algorithms.

VI.2.3 INCORPORATING PROBABILITIES
There are many good reasons for desiring an interaction model which employs proba-
bilistic models to represent uncertainty; Chapter II discusses this in detail. Probability
theory gives a solid and well-tested mathematical basis to the inference of state given
observable evidence, and a vast array of existing techniques can be brought to bear in
probabilistic systems.

A probabilistic model infers the likelihood of items a user may select. The more sophis-
ticated the model, the less information the user needs to input to make selections. This
can range from simple, static a priori probabilities of particular actions to more complex,
dynamic inferences. The design problem is to take a probabilistic model and build a
usable interface with it.

Chapter III gave ways of displaying the state of a probabilistic model; Chapter IV ex-
tended this to predictive displays. Chapter V described methods for altering the dynam-
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ics of the control loop based on statistical inference, improving the quality of interaction
by making likely things easy. This chapter describes a completely probabilistic selection
mechanism, directly incorporating the results of the inference into the process.

VI.2.4 CONTINUOUS SELECTION; SMOOTH GOAL SPACE PATHS
As described in Section II.7, an interface with constant bandwidth should have a corre-
spondingly smooth path through the space of intentions. If a user is to stay in control
of the interaction during a selection process, this smoothness must be preserved (oth-
erwise a step-like action/correction behaviour will occur). An important aspect of the
selection techniques described in this chapter is the smooth change in entropy as selec-
tion proceeds – interactors remain in control as evidence as gathered and can alter their
actions in sufficient time to alter the outcome in a meaningful way.

VI.2.5 FEEDBACK BASED ACTIVE SELECTION; SIDESTEPPING THE RECOGNITION
PROBLEM

Feedback is essential to the control-based interaction approach. By dealing with the
conditional probabilities of actions given stimuli, the recognition problem can be neatly
decomposed into shorter time segments. The basic principle of a feedback-oriented
interaction mechanism is to reduce the possible meaningful actions the user could be
performing, limiting them to those related to feedback previously presented in some
bounded history. This greatly simplifies the recognition problem and partially forces
the interaction to some particular pace (which may not necessarily be constant). In-
stead of static recognition models, where the aim is to infer p(g|xT−k...xT ), the quantity
p(g|xT−k...xT ,yT−k...yT ) is instead computed, where the y’s are the previous system out-
puts.

VI.2.5.1 IDENTIFICATION OF CON-
TROLLED VARIABLES – DISTUR-
BANCES AS TESTS FOR INTEN-
TION

Perceptual control theory, as noted in Section II.4.2,
described behaviours of organisms as control of per-
ception. As a consequence of this perspective, iden-
tification of variables of interest can be performed
by introducing independent disturbances to an en-

semble of variables which an interactor may perceive and control, and picking out those
which are compatible with the interactor attempting to cancel out the introduced dis-
turbances. Powers and later Marken used this approach to identify which specific at-
tributes of their perception humans were truly controlling.

Marken built a number of computer based demonstrations showing the identification
of control of particular elements in a visual display. The original ratio of variance algo-
rithm (Section VI.4.3.1) was presented in Powers [1979] and in Marken [1995] for this
identification process. This chapter explores how the identification of control behav-
iour (and analogous behaviours, such as excitation) can be used as a general selection
technique.

VI.2.6 GENERALISED IDENTIFICATION OF INTERACTION
Feedback is the source of discriminative power in this world-view. An interaction model
based around feedback-oriented interaction should be designed so that the probability
of an observation being made if the previous feedback was interpreted by an interactor
is much higher than the probability of that observation being made were the feedback
not present. It is obvious that no test can ever guarantee the interest of an intelligent
agent in a variable, but the evidence for the hypothesis that such interest is being shown
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can be quantified. The interface robustness can be determined by the quantity of evi-
dence required to assume the belief of a particular intention – which as described in
Chapter II should be a function of the utility of the action associated with that intention.

VI.2.7 ASYMMETRIC CHANNELS
These methods rely on the existence of asymmetric communication channels, where
the display (feedback) channel has greater bandwidth than the control signal. Such
a setup is natural for human communication; the sensory channels of a human have
vastly higher bandwidth than those of the muscular control channels (see Figure VI.2).
Langolf et al. [1976] estimate the capacities of fingers, wrists and arms at ∼ 38 bits/s,
∼ 23 bits/s and ∼ 10 bits/s, respectively (though Balakrishnan and MacKenzie [1997]
suggest that these figures are highly optimistic).

FIGURE VI.2: Asymmetry in the communication channels between an interactor and a
computer. Human sensory channels have much higher bandwidth than
the actuation channels.

Exact measurements of the capacities of the visual and auditory channels are difficult;
but total bandwidth certainly lies in the hundreds of bits per second. The capacities of
the eye and the ear have been experimentally bounded. Asakawa et al. [2003] suggest
that experienced blind users can understand speech signals (which occupy a narrow
spectral band) at rates of up to 500 words per minute (estimated from 1,300 Japanese
morae per minute). This corresponds to about 1.5×6× 500

60 = 75 bits/s for signals in the
speech band alone (and this ignores any information about speaker identity, prosody,
timing and so on). Corliss [1971], for example, quotes the information capacity of the
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ear as about 800-1600 bits/second, depending on the intensity of the stimulus. The
visual system has even higher capacity; but determining its exact capacity is extremely
difficult. Kelly [1962] suggests an (extreme) upper bound of 109 bits/s. The eye can also
selectively track areas of interest, and so can cope when total display bandwidth exceeds
the attentional bandwidth of the visual channel by observing only local variation.

The haptic communication channel is also significantly asymmetric. It is notable, for ex-
ample, that the input frequencies (those generated by the limbs) are bounded at around
12–15Hz. Above this frequency, almost no intentional control can be effected over the
position of the limbs. However, the tactile sensitivity of the skin has a much higher
bandwidth, with spatial arrays of sensors having responses of up to 1000Hz (see e.g.
Boff and Lincoln [1988]). Kuchenbecker et al. [2006] suggest that taking into account
such bandwidth asymmetries is critical in the presentation of realistically stiff surfaces
in force-feedback applications.

VI.2.7.1 MUTUAL INFORMATION In particular, the evidence of interest can be char-
acterised by I(X ;Y ), the mutual information (MacKay

[2003], Kantz and Schreiber [2003]) between a displayed time series Y and the control
input series X – how much predictive information the display signal gives about the
user actions. This quantifies the interaction directly in bits. In practice, direct imple-
mentation of mutual information approaches can be very computationally expensive as
input dimension increases. Simpler approximate techniques, such as those described in
Section VI.4.3.1, are often more practical for computation.

VI.3
A GENERAL AGENT BASED SELECTION FRAMEWORK; BRINGING

THE GOALS TO LIFE

A complete interface can be viewed as an ensemble of systems for extracting intention
from users.1 These can be considered to be independent agents, one for each possible
goal, whose purpose or intention is to identify whether a user’s actions (which represent
some user intention) are compatible with their assigned action. Figure VI.3 illustrates
this. Each agent performs “experiments” on the user to test whether the user exhibits
behaviour which increases the likelihood of the goal associated with the agent.

VI.3.1 AN AGENT VIEW OF INTERFACE COMPONENTS
Conventional interfaces generally involve static agents, fixed once and for all at design
time. Each component in an interface (a button, a menu option, etc.) can be considered
an independent agent. Obviously, not all of the information about the state of agents can
be displayed simultaneously due to the limited display bandwidth of any device. Some
process (e.g. hierarchical structure) must be used to display only the agents salient to
the current decision at any specific time, to cope with limited display capacity.

The “experiment” such a static agent performs can be considered its affordance. A com-
ponent is designed so as to appear useful for action. A well designed interface stim-
ulates processes in the brain which directly relate to control of that object; the design
reveals control parameters of the object.

1In a keyboard, for example, each key is a system for identifying the intention to communicate the label it
bears.
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FIGURE VI.3: The agents as independent interactors. Each user interface goal (a vertex
in the goal space) is now an active agent.

VI.3.2 ACTIVE AFFORDANCES – CONTROL BASED AGENTS
In contrast to existing approaches, dynamic agents can also be constructed. These cre-
ate and display time-varying “experiments” – revealing ways in which they can be con-
trolled – so as to optimally extract information from a user. The agent should be de-
signed such that it changes state in a way which a user can control, and is independent
from control actions that would affect other agents in the interface, thus maximising the
potential discriminative power of the control signal.

The next sections discuss how such agents can be designed and built, and the advan-
tages they can bring to an interactive system.

VI.4
THE STRUCTURE OF AN AGENT LOOP

A dynamic agent can be broken down into four major parts: the model, the disturbance,
the detector, and the feedback unit (see Figure VI.4).

The disturbance generator generates the feedback patterns which the user attempts to
control/imitate. These define the throughput of the system (since the maximum input
entropy cannot exceed the output entropy in such a system) and a major component of
the ease of use – some trajectories (in agent state space) are more difficult to control than
others for the same total objective bandwidth.

The feedback unit displays the output of the disturbance generator to the user; this
is another major influence on usability. Features such as preview display can strongly
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affect user behaviour. The feedback unit also displays the state of the selection process;
the position in goal space.

The model is a representation of the response of a user to the output from the feedback
unit – it incorporates models of the limb dynamics, cognitive and perceptual delays and
other transformations of the agent state to which the user responds.

The detector compares sensor input with the output of the model. The basic function
is to identify information flowing from the feedback the user perceives back into the
system sensors, and thus compute the probability2 of interest for this agent.

FIGURE VI.4: The structure of an agent loop.

VI.4.1 THE HUMAN/SYSTEM MODEL
On of the major advantages of this selection technique is that models of interactor be-
haviour can be directly incorporated into the selection mechanism. This can be done by
comparing the perceptual variable presented to the optimal behaviour a human would have
performed to control that variable. Delays, lags, transfer functions and any other model
of how a user will respond can be built into this process. Since these operator models
will be partially unknown, the detection algorithm can also integrate over parameters
of the models to obtain a more robust estimate of the likelihood of interaction; it is also
possible to adaptively optimise the parameter distributions during the interaction (e.g.
to fit the behaviour different users, or the learning process of a single user).

VI.4.1.1 HUMAN OPERATOR
MODELLING

Any of the models developed in manual control ap-
plications can be slotted into the framework. If they
match the behaviour of a particular user well, the

communication rate will increase. Transfer rate can be improved by better modelling,
without having to restructure the entire interface.

2Most algorithms generate some value or score for interest, which must be normalised over all agents, and
combined with a suitable prior, to obtain the probability of each agent.
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There is extensive work in the field of manual control on modelling of operator behav-
iours in control tasks. Some postulated models of user behaviour are shown in Figures
VI.6 and VI.5. The basic components of any operator model include an input reaction
time delay, a controller with some level of predictive power, an output delay time and
some output limb dynamics filter (normally modelled as a lag). This section briefly re-
views some elementary models of human control which can be applied in detection of
control behaviour. Much more sophisticated operator models can be built, but for the
purpose of detection of control, simplified models suffice.

The approach also makes it easy to determine bounds on the efficiency of the interface
by simulation. The interface can be automatically tested with an operator model and
the communication rate attainable can be measured. Insofar as the operator model is
accurate, this will provide an upper bound on the communication rate of the interface.

FIGURE VI.5: One postulated user model, from Jagacinski and Flach [2003] (p.205), in
turn adapted from Sheridan and Ferrell [1974] (p.254)
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FIGURE VI.6: Another postulated user model, with a general predictive controller.
Adapted from Kelley [1968] (p.140).

VI.4.1.2 CONTROLLERS In some cases human control behaviour can be approxi-
mated as a proportional linear response; this is often suf-

ficient. Sheridan and Ferrell [1974] note that human tracking behaviour is normally
approximately linear except when:

• the control process itself has significant nonlinearities;

• stiction, dead-zones or hysteresis are present;

• effort approaches the maximum the operator is capable of;

• very steep responses in the signal to be controlled are present;

• signals to control are reliably predictable;

• control inputs are discrete.

Gaines [1969], however, suggests that a bang-bang3 model of control is more realistic for
human control behaviour, especially with high-order control or heavily-delayed feed-
back. He notes:

Conversely, because of the strong quantitative and qualitative resemblances
between the output of sample data and “bang bang” models and that of the
human operator, these seem to offer a firmer foundation on which to build
extensive models of human skilled behaviour.

3A bang-bang controller exerts maximum control effort in the opposite direction to the sign of the error.
No intermediate levels are used.
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However, in situations where a system is subjectively “easy to control”, (systems with
low-order dynamics without significant nonlinearities) approximately-linear behaviour
is a reasonable model of operator behaviour.

One example of a nonlinear operator model featuring both linear and nonlinear com-
ponents is Costello’s surge controller (Costello [1968]) (see Figure VI.7); this switches
between bang-bang control when error or change in error is high to proportional con-
trol for small e and ė. This leads to rapid approximate acquisition followed by fine-
tuning behaviour (the type of behaviour Phillips and Repperger [1997] suggested as an
explanation of Fitts’ law).

FIGURE VI.7: Costello’s (Costello
[1968]) surge controller. The error
phase plane is shown (error against
derivative of error). When the cur-
rent state lies outside the diamond,
bang-bang (full on or full off) con-
trol is applied, until the signal en-
ters the central region, where pro-
portional linear control takes over.

VI.4.1.3 LAG MODELS AND TIME
DELAYS

One of the most common models of a human
response in tracking tasks is a delay followed
by a lag. Fixed perceptual delays are simple to

model, and can be assumed to be relatively similar for all users. Typical delays are
discussed in Section II.8.4.

Figure VI.8 shows typical step response for variously parameterised first-order and
second-order lags. Operator response in smooth tracking tasks often has the character-
istic behaviour of a first-order lag, following slightly behind the target, with a damped
response. Sharply curved trajectories often show second-order properties, with over-
shoot and ringing near turning points and sharp changes.

Figure VI.9 shows tracking behaviour (with a target trajectory given by a sum of twelve
sine waves), and corresponding first-order and second-order lag fits. The match be-
tween the trajectories is clearly improved (the lag parameter was optimised over the
whole series in this example). The lag and delay models significiantly reduce the error
between the disturbance and the observed response.

Where preview information is displayed, or the frequency of signals is close to the limit
of performance, or where an interactor is unfamiliar with the properties of a control
system, the behaviour may become much more complex than a simple lag. However, a
lag is likely to remain as some component of the signal, purely because of the physical
properties of the limbs.
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FIGURE VI.8: Step responses for first and second order lags with various parameters.
Such responses (combined with delays) are often good fits to human tracking behaviour.

VI.4.1.4 SATURATION One other common feature of human models is saturation.
The range, force and velocity of movements a human can

perform is restricted. Arm movements are restricted to a sphere of approximately one
meter (although obviously part of this is blocked by the body). The total upward force
an finger can exert saturates at some level. Input devices create constraints of their
own; the range of a joystick is physically limited. Frictional and resistive forces restrict
the maximum velocity of muscle movements.

VI.4.1.5 SPECTRAL COMPONENTS Certain other characteristics of human behav-
iour (or sensed human behaviour) can be mod-

elled in the frequency domain (see Figure VI.10). Muscle tremor, for example, is present
in the 8-12Hz band (Beuter et al. [2003]) and is modulated by motions in the muscles.
Although this can be used as a source of useful information (as Strachan and Murray-
Smith [2004] demonstrate), in tracking or control behaviour it is effectively noise. It
should be noted, however, that the presence and structure of tremor can indicate dis-
tinguish intentional control behaviour from other movements (see e.g. Morrison and
Keogh [2001]). Including a tremor model can remove some of the variability associated
with this phenomenon. Similarly, in tracking tasks which are performed during ambu-
lation, narrow-band frequency components in the 1Hz range occur due to leg motion.
If the sensing platform is sensitive to such disturbances, models of gait disturbances
can be introduced to eliminate the motion from consideration as a part of the control
behaviour.4

4Of course, a system could be built in which the control variable was some function of gait pattern. How-
ever, most interfaces sense motion from the upper limbs or head and lower limbs are not involved in control
for the purposes of communicating intention to the system.
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FIGURE VI.9: Compensation with first-order and second-order lags, for a single dimen-
sional mouse tracking task. The first plot shows a generated disturbance signal (red),
and the observed control input (blue). The sum-of-squared error between these signals
is 3.19×104. The middle plot shows the effect of compensation with a 100ms delay and
a first-order lag (with an optimised lag parameter). The fit is much closer with an SSE
of 1.58×104. The bottom figure shows the application of a second-order lag and delay.
The fit is extremely close with an SSE of 1.00× 104. The second-order system (with an
appropriate perceptual delay) models the dynamics of the operator well.

FIGURE VI.10: Some frequency components in human motion. Several bands are dom-
inated by signals which do not relate to intentional control activity (with
respect to the system).
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VI.4.1.6 SENSOR MODELLING Many existing sensors are well adapted for use in
measuring human motion and are well-behaved when

measuring human activity – the distortions they introduce are small compared to the
distortion created by the operator when controlling some variable. However, sensors
always introduce artifacts. Frequency components or phase distortion may be intro-
duced or modified by the sensors themselves. The response of a sensor may need to
be considered if the frequency response is not approximately flat over the range of in-
terest. Delays will always be introduced (although these are usually shorter than those
created by a human). Saturation effects are also omnipresent and can have a significant
effect. Examples include the physical limitations of joysticks, mouse maximum veloc-
ities which are a result of limited communication bandwidth over serial protocols and
accelerometer saturation effects, which generally limit acceleration sensing to a few G’s.

VI.4.1.7 INTEGRATION, PARTICLE
FILTERING AND ONLINE ADAPTA-
TION

Measurements of the world are uncertain; noise
is added between the generation of signals and
their observation. Models of human behaviour
are never accurate. This can be taken into ac-

count by integrating over possible activity given the signals measured, and over para-
meters of the operator model. This integral must generally be evaluated approximately
(e.g. with Monte Carlo sampling). This is generally computationally challenging, and
has not been implemented in any of the example systems described in this thesis. How-
ever, it may offer significant benefits in the identification of control behaviour.

Online adaptation of parameters (as opposed to integration) may also be beneficial (e.g.
tracking the lag parameter as a user becomes more experienced with the system). Par-
ticle filtering techniques would be ideal for combining such tracking with parameter
integration. The resulting system would incorporate fully probabilistic models of oper-
ator behaviour, more accurately reflecting the evidence for intention.

VI.4.1.8 MODELLING In summary, there are a variety of models of human be-
haviour which can be applied to estimate the signals which

the interactor is attempting to control. Simple linear models (lags and delays) are of-
ten sufficient; however nonlinear models such as the surge controller may offer better
performance. Modelling of context-specific attributes such as saturation and spectral
characteristics may be improve recognition quality in some cases. The introduction of
such models directly into the interface process is one of the major advantages of the
active selection approach over conventional interaction design methods.

VI.4.2 THE FORM OF EXPERIMENTS; DISTURBANCE DESIGN
The design of the stimuli presented by the system is of crucial importance in determin-
ing the level of information that can be extracted from the user. The discriminative
power of the feedback depends on the disturbances being independent from one an-
other, and from any background noise that may be present (such as tremor).5 Exces-
sively complex stimuli will be impossible for a user to control or imitate or will demand
high levels of attention; smooth simple stimuli have a necessarily limited information
rate. The stimuli presented must be as independent as possible (i.e. distinguishable

5Filtering in the operator/sensor model can remove the effects of tremor, but if the display has components
only in this range, no information can be communicated.
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over as short a time frame as possible), given the operator model of an interactor which
will transform the signal.

Filtered white noise (from the output of a linear feedback shift register, for example) is
one useful class of stimuli generator; the filter properties can be adjusted to fit the task
at hand. Specific spectral regions which are known to be non-communicative (e.g. gait
regions) can be omitted from the filter frequency response. Consequently, no display
energy will be generated in this region. A similar filter can be applied in the detec-
tion system as part of the operator model. Other potential generation methods include
Perlin noise (see Section VI.5.3) and sums of sinusoids (with distributions over phase,
frequency and amplitude). All of these methods permit control over the spectra of the
signals generated.

VI.4.2.1 OPTIMAL DISTURBANCES The purpose of a disturbance is to provide a
time-varying signal which a user can transform

to indicate intention. Disturbances should be compatible with the possible signals gen-
erated an interactor, given the available sensors. They should partition the signal space
so that intention signals are as far apart as possible; the risk of confusion should be min-
imised. Operator models can be used as an initial optimisation stage to maximise the
potential bandwidth of the disturbances, and obtain bounds on the performance of the
interface.

VI.4.2.2 DYNAMIC OPTIMISATION
OF EXPERIMENTS

Such experiments can be adjusted in real-time,
based on evidence about the controllability of
that stimuli given the current conditions, and

about the current need for evidence of intention. For example, as selection proceeds a
number of items may become likely while others become very unlikely. At this point
the most salient information is to distinguish between the likely information (or to in-
dicate that none are relevant). Thus the disturbances produced by the agents associated
with the likely goals should be as independent as possible; confusion with the already-
unlikely agents is irrelevant as there is already strong evidence they are not of interest.
For example, the interface can be designed so that the two most likely agents have pre-
cisely inverse disturbances; controlling one of them provides strong evidence for it and
against the other. In general, choosing disturbances whose orthogonality depends of the
ranking of outcomes is a difficult problem; simple heuristics like the preceding are easy
solutions but are not necessarily optimal. Purely random disturbances are suboptimal
(since the stimuli they generate do not depend on the current likelihood of the action
with which they are associated), but are easy to generate and work reasonably well (see
the implementations in Section VI.5.1).

VI.4.2.3 MULTIMODAL LOAD
BALANCING

The optimisation of disturbances can also be used
to distribute display energy across modalities de-
pending on the interest displayed in each of the in-

put channels. For example, a system can produce (independent) disturbances on both
the visual and auditory channels; if evidence of interest is identified on one of these
channels only, display energy can be concentrated in that channel, and attenuated in
the other. This optimisation could be used to identify the most salient communication
channels as interaction contexts change. Since the quality of selection depends on the
quality of display – and the quality of selection can be quantified by the current bit-rate
– the relative power of a display channel can easily be ascertained.
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VI.4.3 DETECTION OF INTERACTION: SENSING INTENTIONAL BEHAVIOUR
The detection of intention proceeds by identifying signals which are compatible with
the disturbances generated, based upon the model of the operator. Each individual
stimulus is transformed by the human/sensor model and compared with the signals
sensed from the input devices. The detection unit computes the similarity of the signals,
and estimates a distribution over goals.

The detector should discriminate between behaviour that is likely to be intention and
that which is accidental, and between the various intended goals the system presents.
Many algorithms for estimating the likelihood of interest are possible. One of the sim-
plest is the ratio of variance technique, described in the following section. Direct imple-
mentation of mutual information methods is also possible.

VI.4.3.1 RATIO OF VARIANCE The technique described by Marken (Marken [1995])
for detection of control behaviour is simple and ef-

fective. Given some disturbed variable, postulated to be under control, a comparison
is made between the variability of the variable with and without the control signal ap-
plied. If control is being (successfully) applied, the variance of the variable should be
reduced by the control action. By computing the variance σc of the display signal ya
and the sum of control and display signal ya + x, for one agent a, over a running time
window T − k...T to the expected variance given no control σe (which is just the vari-
ance of ya over this period), the ratio r = σc

σe
can be computed for each agent. When r is

approximately 1, no control is being applied; when it is very small there is significant
likelihood of interaction.6 This process is illustrated in Figure VI.11.

6The actual likelihood is determined by the accuracy of the user model, and the time window over which
the comparison is made.
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FIGURE VI.11: Controlled and uncontrolled agents and a computed Gaussian fit, for
a single dimensional tracking task using mouse motion and a Brownian noise distur-
bance. Top-left shows the histogram (blue) and Gaussian fit (green) of an agent (the one
the user is trying to select) without applying the control inputs. The effect of applying
the control inputs to the agent is shown to the right, where the variance is markedly
reduced. The lower pair of figures show the same process for another agent present
during the selection task. Exactly the same control inputs were applied to this agent;
however since the disturbances are independent there is relatively little change in the
distribution of offset.
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The output from this process is generally somewhat variable in its value. This can be im-
proved by choosing a non-rectangular comparison window, down-weighting the oldest
samples (for example with an exponential window). The values can also be smoothed
by applying some filter to the sequence. One suitable process is a linear increase, expo-
nential decay function applied to the output, based on a thresholded value of r. This
involves computing:

ot =

{
ot +α r < γ(α > 0,γ > 0)
otβ r > θ(0 < β < 1,θ > 0,γ < θ)

(VI.1)

where γ and θ define the increase and decay regions respectively, and α and β give
the increase and decay rates, respectively. ot is computed for each agent, and the result
normalised, giving an estimate p(a). This produces a time series which looks like Figure
VI.12 (based on the motion example of Section VI.5.1). The estimates of agent likelihood
vary smoothly over time and the output from the estimation process can be fed back to
the user during the interaction.
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FIGURE VI.12: Probability and entropy time series for a selection task. The top panel
shows the probability of each agent, and the entropy (∑n

i=0 pi log2 pi) is
shown below in blue. The gradually changing likelihoods of the hy-
potheses are visible. Selection events are indicated by the rapid in-
creases in entropy (the vertical jumps in the lower diagram).
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FIGURE VI.13: Simple computation of the mutual information between a one-
dimensional display (position on screen) and control variable (mouse input) during a
tracking task using simple histograms. The joint probability p(x,y) is shown as colour
level. The marginals p(x) and p(y) are shown in green. The mutual information is
∑x ∑y log p(x,y)

p(x)p(y) . The left figure shows a controlled agent; the right shows a second agent
which was not being controlled. The mutual information between the disturbance and
sensed signals in the controlled case is 2.17 bits, while it is 1.11 bits in the uncontrolled
case (although the bit measure is strongly dependent on the estimation procedure). This
technique becomes less effective in higher dimensions (longer time windows, or high-
DoF inputs).

VI.4.3.2 ALTERNATIVE: MUTUAL
INFORMATION

A non-parametric estimate of the mutual infor-
mation7 could be implemented directly, for ex-
ample via a histogram or other non-parametric

fitting approach (e.g. kernel density estimation, see Figure VI.13 for an histogram-based
example). The value

I(X ;Ya) = ∑
x

∑
y

log
p(x,y)

p(x)p(y)
(VI.2)

is computed directly for each agent a, and the result normalized to produce the intention
likelihoods. This direct implementation is afflicted with the curse-of-dimensionality –
especially as it is necessary to compare the time series over some time window rather
than at a single point, and it can consequently become very computationally expensive.
However, it is a more general technique than the ratio of variance approach, and may
produce better results where it is computationally tractable.

VI.4.4 PRIOR STRUCTURE AND INCORPORATION OF LONG-TERM
PROBABILISTIC MODELS

Any prior structure over agents can be incorporated into the model, reweighting the in-
tention estimates. Long-term inference (for example giving the conditional probability
of sequences of goals) can be applied in a straightforward way. Nothing in the design of
the interface needs change; only the level of evidence required for each agent is altered.
If the likelihoods of each agent are being displayed to the user, the effect of the priors
will be transparent to the interactor.

7This absolute measure is not the most useful measure for an interaction, where the relative information
gain by assuming perception of feedback is more important. This measure can be approximated via data
surrogacy techniques (see Palus and Hoyer [1998], Theiler et al. [1992]), where the two series are subjected
to identical random transformations which destroy the relationship of interest but retain the other statistical
properties (this is a common technique for detection of synchronisation of oscillators).
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VI.4.5 FEEDBACK UNIT
The final unit of an interaction agent is the feedback component. This is responsible for
displaying the state of the agent (and its disturbances) in the optimal manner to extract
intention from the user. Good feedback should display the optimal behaviour that will
communicate intention in a way that a user can relate to. Display of disturbance should
relate to the control inputs a user can apply. The change of state should be displayed in
a form which directly suggests manipulation with the control sensors an interactor has
available. Two dimensional trajectories are ideal for mouse control, for example. A face
expression control system could be visualised as an array of faces with flexible poses,
which the user can manipulate by performing corresponding poses.

VI.4.5.1 MEMORY AND ITS
EFFECTS

Systems which do not rely upon feedback for classi-
fication instead rely upon user models of (invisible)
classes. This requires less feedback information, but

requires significant mental effort and training. Memory based interaction is not strongly
affected by delays in the control loop; motions can be communicated as bursts of internal-
loop control activity. Display enhancements, such as prediction and preview increase
the modelling power of an interactor, even without extensive training. These can bring
some of the speed benefits of “open-loop” interaction into an otherwise closed-loop in-
terface. Cues encoding specific motion patterns can be displayed in advance.

VI.4.5.2 PREVIEW DISPLAYS In general, human tracking behaviour can be improved
if the goal-related trajectories of a system can be dis-

played in advance (preview display). Most of the possible motions in any interface will
not be information bearing; they will be equivalent to some other motion, or will have
no meaning whatsoever. Showing the optimal (best separating, or easiest to perform)
trajectories that communicate intention makes it easier to plan actions to communicate
intention. The asymmetry of the communication channels means that it is quite possi-
ble to display detailed information about the future state of the disturbances, and thus
simplify the control problem for the interactor. Doherty and Wickens [2001], for ex-
ample, demonstrate increased control performance in (simulated) aircraft manoeuvres
with “pathway in the sky” preview displays shown on the aircraft’s HUD. Such dis-
plays can also be combined with predictive display (displaying how the system will re-
spond). Many control-based selection interfaces can support such predictive displays,
transforming the problem from continuous attention control to partially intermittent
control. The pace of the interaction can be relaxed so that the timing of movements is
not strictly synchronous with their display. This requires that the operator model be ad-
justed so that estimates of delays can be sufficiently flexible to deal with this relaxation
(e.g. coping with leading behaviour as opposed to lag behaviour).

VI.4.5.3 PROBABILISTIC
FEEDBACK UNIT

The agents must provide two distinct types of feedback.
They must display their current disturbance in a form
that an interactor can control; and they must also repre-

sent the current distribution over intentions (i.e. goal space position). It is natural to
produce this feedback on a per-agent basis, since each agent represents a single inten-
tion. The feedback about goals can either be represented visually (as in the examples
in the following sections), or can be sonified with the techniques of Chapter III. This
display makes the evidence accumulation process clear to the user, and (at least for
longer-term interactions) presents the system’s beliefs in sufficient time for the interac-
tor to intervene if the intention estimation is deviating from the true intention.
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VI.4.6 SUMMARY: THE POWER OF THE CONTROL-BASED INTENTION AGENTS
The active agent takes advantage of the asymmetry of the human-computer interface
to provide a powerful framework for selection mechanisms. This approach to the se-
lection problem has several advantages over conventional approaches. The problem is
cleanly split into the four major components described above, each of which can be dealt
with separately and independently. Models of control behaviour can be used directly;
they form a key part of the interface. Entropy changes gradually; the path through goal
space is smooth and continuous, and the interactor can control the system’s belief about
user intention. The agent approach is general and is not tied to specific modalities. The
characteristics of the available modalities can be explicitly accounted for, and the dis-
tribution of display energy over modalities can even be dynamically optimised during
interaction depending upon their current communicative effectiveness.

VI.5
IMPLEMENTATION EXAMPLES

The following sections illustrate the implementation of active selection interfaces, with
various display and sensing methods. These proof-of-concept interfaces demonstrate
the active selection technique can be workable, but are not suggested as practical inter-
faces in their current form. Usable interfaces would require features such as hierarchical
structure or focus and context displays. The models and detection algorithms are of the
very simplest order in all of these examples; more sophisticated behavioural models
would be necessary for high-effeciency interaction.

VI.5.1 EXAMPLE: BROWNIAN MOTION SELECTION
Figure VI.14 shows an example selection mechanism based on motion cancellation with
a mouse input. The interface consists of a number of agents (in the image, twenty
six agents – one for each letter of the alphabet – are shown), each of which follows a
smooth, unpredictable trajectory across the screen. The trajectories are generated from
integrated, lowpass filtered white noise:

y ∼ N (0,σ), (VI.3)
z(t) = ysα+(1−α)z(t −1), (VI.4)
x(t) = x(t −1)+ z(t), (VI.5)

where α changes the filtering level and σ adjusts the scale of the motion.
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Mouse input simultaneously affects the translation of all of the agents. An agent can be
selected by controlling out its motion, stabilising its position. The probability of interest
in an agent is indicated visually by an expanding circle around the agent’s position,
with radius proportional to the current probability of interest. The display also shows
the moving average of the agents position, as a guide when stabilising the position.
The agent trajectories are computed in advance, and a prediction of the future path of
the agent is displayed extending from the agent’s position. This, as described in Section
VI.4.5.2, allows time to plan motions accurately. The ratio of variance algorithm (with
the integrate/decay modification) is used to estimate the agent of interest. First-order
lag compensation is applied with a fixed lag parameter (no integration over parameters
is applied). The following table summarises the decomposition of this interface in
terms of the components above:

Component Implementation
Operator Model First-order lag (fixed)

Disturbance Low-pass filtered noise
Detector Ratio of variance with smoothing
Feedback Preview trajectory display
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FIGURE VI.14: A sequence of images from Brownian motion selection example, from
the initial state, through partial selection, to the completion of the selec-
tion process. Here, there are a number of objects (labelled with names
from the phonetic alphabet) with smooth random disturbances. Corre-
lating the mouse motion with the object motion results in selection.
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Figure VI.15 shows a probability time series for the 26 agent case; Figure VI.16 shows the
same for 100 agents; while Figure VI.17 shows the same for 1000 simultaneous agents. It
is apparent that the selection mechanism scales well with increasing numbers of agents;
the bit-rate remains around ∼1.5–2 bits per second across the cases. Testing beyond
approximately 1000 agents is constrained by computational power.

VI.5.2 EXAMPLE: ORIENTATION DISTURBANCES
Figure VI.22 illustrates a different configuration, which is significantly more compact
and less visually noisy than the translation based display. It features a rectangular array
of “egghead” objects – spheroids with cross-hairs and eye-like features superimposed
on their surfaces – which are subject to random changes in orientation. The random ori-
entation trajectories are designed to operate in a manner similar to the motion of human
eyes, with rapid (but smooth) saccades rather than slow continuous trajectories. Selec-
tion is performed by orienting the desired agent so that it appears to face forwards. The
accuracy of humans in determining the direction of gaze makes this an effective display
method. High-quality antialiased drawing is used to obtain maximum accuracy in the
orientation display, avoiding jumping artifacts when small changes to the orientation
are made. Any image can easily be image-mapped onto the spheriods to distinguish
them, as would be required for a practical selection interface.

The disturbance motion is a nonlinear transformation of a sum of sinusoids, with fre-
quencies and phases drawn from Gaussian distributions so that each agent has a differ-
ent signal generator. One such signal generator is assigned to each of the two axes about
which the visual representation of the agent can rotate. The signal is passed through a
nonlinear function to produce the saccadic effect. The generation for each axis is as
follows:

x(t) =
1

2
(

1+ e−v(∑n
k=1 sin( fkφ+θk)r)− 1

2

) , (VI.6)

followed by a saturation such that:

x(t) =


βmin x(t) <= βmin

x(t) βmin < x < βmax

βmax x(t) >= βmax

, (VI.7)

where n is the number of sinusoidal components, v is a scaling factor, r gives the “jumpi-
ness” of the signal, βmin and βmax give the saturation points, and φk and fk give the phase
and frequency of each component respectively. A time series from this function is shown
in Figure VI.18 (for twelve sinusoidal components), showing the irregular changes in
orientation with smooth transitions between the levels.
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FIGURE VI.15: Probability and entropy time series for the Brownian motion selection
example. The probability of each agent is shown, with the overall entropy shown below
in blue. The lower figure shows a close up of the time series, where the continuous
change of probabilities is visible. Green ’*’ symbols mark succesful selection events.
The sharp drops in entropy happen when selection has occured and the state is reset.
Each selection was separated by approximately 0.5–1 second; the visible onset of the
increase in probability occurs about half a second after selection behaviour begins.
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FIGURE VI.16: Probability time series for the 100 agent Brownian motion selection
example. The lower figure shows a close up of the time series. Green ’*’ symbols mark
succesful selection events.
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FIGURE VI.17: Probability time series for the 1000 agent Brownian motion selection
example. The lower figure shows a close up of the time series, highlighting one single
selection where many hypotheses become likely before fading away as new evidence
arrives. Green ’*’ symbols mark succesful selection events.
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FIGURE VI.18: Time series from the “saccadic” disturbance function, for one dimension
in orientation space. The function features plateaux with smooth, rapid
transitions between the levels.

Figure VI.19 shows the probability time series for fifty objects, while VI.20 shows the
series for two hundred objects. The bit-rates here are ∼1.9–2.2 bits per second.Figure
VI.21 shows the fifty object case, using a joystick rather than the mouse for input. As the
controller model was not adjusted to reflect this change, the rate of evidence acquisition
is somewhat impaired, with bit-rates of ∼1.5 bits per second. However, selection is still
quite possible.

FIGURE VI.22: Here, there are again a number of objects (the “eggheads”), with rela-
tively rapid but infrequent perturbations to their state. The orientation
offset of all heads can be controlled with the input device. Maintaining
a head in the “looking straightforward” position causes selection.
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FIGURE VI.19: Probability time series for the “eggheads” orientation selection example.
The probability of each agent is shown. The lower figure shows a close up of the time
series, where the continuous change of probabilities is visible. Green ’*’ symbols mark
succesful selection events.
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FIGURE VI.20: Probability time series for the “eggheads” orientation selection example.
with 200 objects. The lower figure shows a close up of the time series. Green ’*’ symbols
mark succesful selection events.



Chapter VI. Active Selection 175

FIGURE VI.21: Probability time series for the “eggheads” orientation selection example.
with 200 objects using a joystick for input . The lower figure shows a close up of the time
series. Green ’*’ symbols mark succesful selection events.
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VI.5.3 EXAMPLE: SELECTION (ZOOMING) ON CONTINUOUS SPACES
Thus far, the selection problem has been restricted to the selection of a goal or goals
from a set of discrete alternatives. This is general enough to encompass many common
user interface tasks. However, the technique can be further extended to continuous
spaces. Rather than a set of individual agents, each looking for evidence of intention,
the interaction can take place with a function which smoothly varies in time and space.
This could, for example, be used for interaction on spaces such as maps, possibly in
combination with a generalised fisheye lens (Furnas [1986]).

The principle is identical to the previous systems, except that the agents are replaced
with a single (possibly multi-dimensional) function. This function is sampled, regularly
or otherwise, and compared with the sensor inputs. The spatial covariance of the func-
tion can be used to specify the localisation of the selection; rapidly spatially varying
functions will have greater discriminative power than smoothly-varying ones.

FIGURE VI.23: An image of the continuous selection interface. The red line shows the
current state of the agent function. The black gridded surface extend-
ing backwards is a prediction of the future state of the selection line.
Vertical mouse movement moves the entire surface up and down. Sta-
bilising one part of the display increases the likelihood of interest in that
neighbourhood; this is displayed via the circles visible at the top of the
image, which represent the log likelihood at each sample point.

An implementation of such a selection interface is shown in Figure VI.23. The distur-
bance function in this case is a two-dimensional cosine-interpolated Perlin noise func-
tion (Perlin [1985]), which generates smooth random functions with configurable fre-
quency content.8 The function z(x,y) consists of a sum of “octaves” of functions gener-
ated by interpolating between regularly spaced points with heights drawn from some

8The interpolator is based on the one described by Hugo Elias, at
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm, retreived 12th June 2006.

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
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random distribution:[
u
v

]
= A

[
x
y

]
, (VI.8)

j(a,b,τ) = a
(

1− 1− cos((τ−bτc)π)
2

)
+b

(
1− 1− cos((τ−bτc)π)

2

)
, (VI.9)

l(u,v, i) = j(r(bαiuc+ bqαivc),r(bαi(u+1)c+ bqαivc),αiu), (VI.10)

z(u,v) =
n

∑
i=0

γi j(l(u,v, i), l(u,v+1, i),αiv), (VI.11)

where n is the number of octaves, τ is an interpolation parameter, α is the octave size, A
is some transformation matrix specifying the covariance of the function, γ is the octave
weighting, r(x) is a random number generator seeded by x,9 and q is an arbitrary integer
constant used to hash the co-ordinates. The result is a function with approximately 1

f
frequency distribution (becoming more accurate as n increases). Increasing γ increases
the proportion of high-frequency energy. This function is very flexible with regards to
its spectral properties, and can be evaluated at any point without the evaluation of any
other points. Some example Perlin noise surfaces (surface plots of z(x,y)) are shown in
Figure VI.24.

In the implemenation, successive one-dimensional slices of the two-dimensional func-
tion are used as the disturbances (i.e. one dimension is used to represent time). Preview
display is implemented, showing future slices of the function as a landscape moving
towards the lower edge of the screen. The test for control is evaluated at regularly
sampled points along the “current” slice, and the likelihoods computed for that slice.
Figure VI.25 shows a time series of these probabilities for a noise function with a long
length-scale; Figure VI.26 shows a time series for a function with a shorter length-scale
(rapidly spatially-varying function). Although in these examples the function is regu-
larly sampled (and so there is effectively a finite collection of agents), the function can
be evaluated everywhere and a value for the likelihood of interest can be computed at
any point; the probabilities are spatially as well as temporally smooth. The temporal
smoothness is a result of the selection mechanism; the spatial smoothness is a result of
the correlated structure of the disturbances.

9This could for example be implemented with a hash table and a standard random number generator,
storing newly generated numbers only if the value at that point is not already in the hash table.
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FIGURE VI.24: Perlin noise examples, showing the flexibility of the function. Left to
right, top to bottom: 2 octave function with low persistance; 2 octave with high persis-
tance; 4 octave, low persistance; 4 octave high persistance; 6 octave low persistance; 6
octave high persistance; 4 octave, medium persistance with an “octave” size of 1.6 in-
stead of 2 (i.e. with dense frequency bands); 4 octave, medium persistance, octave size
of 3.9 (widely spaced frequency bands).
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FIGURE VI.25: Probability time series for the continuous selection mechanism with a
long length-scale. The rising ridge near the centre indicates the increas-
ing probability of interest in that region. In this example, the interactor
is attempting to select a region near x = 40. Probabilities are smooth in
both space and time.
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FIGURE VI.26: Probability time series for the continuous selection mechanism with a
short length-scale. Here, the interactor is selecting a region near x = 50.
The localisation is tighter than that of Figure VI.25.

VI.6
PERSPECTIVES

The active selection process can be viewed in a number of ways. So far, it has been
considered as a compensatory control problem. The interactor applies control signals to
damp the changes of state of an agent; controlling out the disturbances. Heavy damping
increases the probability that the interactor is interested in the goal the agent is associ-
ated with. If the task is reversed so that the interactor is to move in sympathy with the
agents, the problem is transformed from damping to imitation. The process is rather like
some form of gesture recognition, with dynamically optimised gestures. The agents
display a signal; the user attempts to imitate this signal. The compensatory display be-
comes a pursuit display. This involves changing only the display the user perceives –
the underlying process remains entirely unchanged.

Alternatively, excitatory interfaces can be produced. In such an interface, interactors
stimulate modes of agents. Agents have no activity until they are stimulated. Once
they have some initial level of energy, they display ways in which their activation can
be increased (e.g. by resonating). Such interfaces use little display bandwidth when
nothing relevant is occurring, but display progressively more feedback as interaction
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levels increase. The next sections describe how such interfaces can be implemented in
practice.

VI.6.1 EXAMPLE: RESONANT INTERFACE
Excitatory interfaces involve the stimulation of particular modes of an agent. Figure
VI.27 shows a very simple physical example; weights supsended on different lengths of
cord can be independently stimulated by the holder.

FIGURE VI.27: A physical resonant system. Weights are suspended from a bar by cord
of varying length. It is easy to excite modes of the system such that one
weight vigorously oscillates while the others stay relatively steady.

An excitatory interface initially displays no activity. The interaction is again self-revealing;
the resonant modes of the object can be ascertained by stimulating the system with
an impulse and observing the resulting motion. The desired agent can be selected by
producing sympathetic motions. These modes can range from one-dimensional sim-
ple harmonic motion to more complex resonances (e.g. multiple resonant frequencies)
or multi-dimensional resonances (for example, agents having resonances with specific
inter-dimensional phase-relations).

Figure VI.28 shows how a simple resonant selection interface can be implemented in
software. Selection proceeds by inducing sinusoidal oscillation in one of the agents,
each of which has a specific resonant frequency. This frequency gradually drifts, with
the rate of drift being a function of the current activation. This helps discriminate be-
tween two agents with (initially) closed spaced frequencies.

One-dimensional movements are transformed by a bank of high-Q (i.e. narrow reso-
nant peak) bandpass filters with initially equally spaced centre frequencies (see Figure
VI.28). The centre frequency slowly drifts randomly, at a rate determined by current
filter energy. This interface has three basic stages of varying dependence on feedback.
Users first inject an impulse to observe the natural frequency of oscillation and then
phase lock with the oscillator. They then stimulate the resonant frequency, increasing
the likelihood of interest in the agent. As the energy increases, the frequency drifts more
rapidly and an observer must rely upon the feedback to retune movements. The total
energy of each agent is normalised to estimate the likelihood of each agent; once this
crosses some threshold, selection occurs.

Figure VI.29 shows the a time series of agent probability generated from an implemen-
tation of the above algorithm. The interface is one-dimensional, with mouse input and
visual (position display) and auditory (chime sounds generated at the turning points of
the agent trajectories, with volume proportional to the amplitude of oscillation) feed-
back. Figure VI.30 shows the position of the agents during the selection process, where
the resonant characterestics of the agents are apparent.



Chapter VI. Active Selection 182

This interface is highly inefficent in the form described, compared to other mouse input
techniques (although it is suitable for other sensing devices which have naturally lim-
ited bandwidth, as the next section describes). The slow harmonic resonances have very
little information content. More complex resonances (e.g. with patterns generated ac-
cording to the disturbance generation algorithms described previously) could of course
be introduced to expand the range of possible motions and consequently the bandwidth
of the interface. Hybrid systems can also be constructed where agents have an excita-
tory phase followed by a damping phase. This minimises the “noiseiness” of the display
when no interaction is required, while still permitting high-bandwidth selection.

FIGURE VI.28: A resonant interface setup for selection. Input signals are passed
through a bank of high-Q bandpass filters whose centre frequency drifts
randomly, at a rate determined by their current energy. This type of in-
terface exhibits time-varying dependence on feedback.
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FIGURE VI.29: Probability time series from the one-dimensional resonant interface,
where the fourth agent (light blue) is being selected. In this case se-
lection would have been declared around t = 30, however the process
was allowed to continue for the purposes of illustration.
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FIGURE VI.30: Position time series from the example one-dimensional resonant inter-
face during the selection of the fourth agent from ten (light blue). The
sinusoidal resonance of the agents is apparent.

VI.6.2 EXAMPLE: FOOT PEDAL INTERACTION
The selection interface illustrated in Figure VI.31 uses a footpedal (Figure VI.32) for
control. The interface is identical to that described above for the mouse motion; the
footpedals are a natural canditate for this style of interaction, being limited in control
bandwidth, and easy to rhythmically stimulate.

The result is an interface with which selection can be performed via footpedals alone.
Communication rates are approximately 0.35 bits per second, which is unsuprisingly
significantly less than that attainable with mouse inputs. The limited accuracy of foot
motions, and the low information content of the resonances restrict the achievable com-
munication rates. However, it demonstrates that the technique can be adapted to new
sensing modalities with little effort (although better modelling can of course increase
the quality of the interaction).
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FIGURE VI.31: Probability time series for the footpedal selection example. As in the
Brownian motion time series, each sharp drop indicates a selection
event. Bit-rates of approximately 0.35 bits per second are obtained.

FIGURE VI.32: The CH
Products footpedals used
in this example.
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VI.7
MONTE CARLO MARKOV CHAIN EXPLORATION

The following section10 briefly outlines how the active selection approach could be used
to explore and zoom displays and sonification in high-dimensional spaces. The idea
clearly illustrates the power of the active selection approach.

VI.7.1 FOCUSING IN HIGH DIMENSIONAL SPACES
The problem of navigation in high-dimensional (but often sparse) data spaces is com-
mon in data visualisation and sonification. Many techniques have been developed for
doing such exploration, such as parallel co-ordinates (Inselberg [1985]), worlds within
worlds (Feiner and Beshers [1990]), or exploration along principal curves (Hermann
et al. [2000]). Specialised input devices have been suggested for high-dimensional nav-
igation (e.g. the data glove based n-Vision system (Feiner and Beshers [1990])). Particu-
larly in sonification contexts, where the data must be presented in a primarily temporal
form, and spatial cues are very limited, navigation can be a very challenging problem.
The approach outlined in this chapter leads to a novel way of performing dynamic nav-
igation, zooming and focusing on regions of interest – that correspond to postulated
user goals – during exploration.

Navigating directly in the dimensions of the original space is challenging: the dimen-
sions are often too numerous to control satisfactorily; the space is often extremely sparse,
with only a tiny fraction of the total explorable volume containing relevant data; and the
original dimensions may be meaningless to the interactor. Dimensional reduction tech-
niques like PCA, force-directed models (Morrison et al. [2003]), ISOMAP (Tenenbaum
et al. [2000]), or local linear embedding (Roweis and Saul [2000]) can identify “better”
manifolds for which to display data, or on which to perform navigation. These static
representations of the data space make it possible to navigate with low-dimensional
control, but they are computationally expensive (they cannot easily be updated dynam-
ically) and are based upon geometrical considerations rather than the hypothesised in-
terests of a user.

As an alternative, it is proposed that the navigation be performed interactively by inde-
pendent proxy agents, who explore the space under the control of the user and display
relevant information about their local neighbourhood.11 The user’s control is expressed
directly in terms of postulated goals. The agents, in effect, move along manifolds whose
structures deform as the expressed user interest changes. The interaction becomes an
exploration process, rather than static visualisation.

This is done by defining continuous salience densities over the high-dimensional data
space. Such maps represent the predicted level of interest in regions of the space,
given various user goals, i.e. P(X |g). These are formed from combinations of basic,
computable, properties of the data: density, local dimensionality, class boundaries (for
labelled data), density isosurfaces, or more specific, task or dataset-related attributes.
Figure VI.33 shows some simple example salience maps. These maps reflect particular
aspects of the data an interactor may be interested in at some point in time. The quality
of the interaction depends on how well these salience maps correspond to the user’s
true goals; poor identification of areas of salience will lead to explorations which are
difficult to control and display irrelevant information.

10Some of the ideas in this section were developed in discussions with Thomas Hermann at the University
of Bielefeld.

11Dimensional reduction is still useful in this context, to introduce additional dimensions to the space which
represent “better” distance metrics between data points for the purposes of exploration.
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(a) Data point density (from a Parzen window estimate).

(b) Class density for class 2 (green ’+’ symbols).

(c) Class boundary estimates.

FIGURE VI.33: Some example two dimensional salience maps, for a three class syn-
thetic data example. Each class is drawn from a Gaussian distribution (with different
covariance). Data points are shown as ’+’, ’*’, ’.’ symbols, one for each class; contours
give the salience density. Labelled data is used for illustrative purposes; it is not a re-
quirement.
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FIGURE VI.34: Proxy agents and intention agents in exploration. The intention agents
identify aspects of the data the user is interested in; this is used to
weight the combination of salience maps into a single map, which the
proxy agents explore and visualise/sonify.

The proxy agents navigate the space, seeking to explore the regions estimated to be
most relevant at the current instant. They display, sonify or otherwise reveal attributes
of data in the vicinity of the proxy agent.
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Along with the exploration agents, there are also intention agents of type described ear-
lier in this chapter. Each intention agent is associated with one salience density. They
produce disturbances, and attempt to ascertain which of these aspects the user is cur-
rently interested, exactly as in the interactions described earlier in the chapter. Figure
VI.34 shows this structure. The exploration agents then focus on these aspects, adjusting
their behaviour to traverse these newly relevant areas of the space. In other terms, the
user “rewards” the system if the agent begins to reveal interesting structure, shaping the
behaviour of the system towards salient regions of the space. If a user ceases to provide
evidence for interest in any particular goal, the traversal relaxes to a global prior density
(e.g. a salience density favouring data point density). As the user provides stronger and
stronger evidence for a goal, the agent behaviour becomes more tightly focused.

VI.7.2 METROPOLIS FOCUSING
A proposed proxy agent exploration algorithm is a Markov Chain Monte Carlo process,
which wanders the space, jumping around regions of high probability (i.e. high salience).
This section explains how Metropolis-Hastings sampling can be used to implement
proxy agents.

Metropolis-Hastings sampling (MacKay [2003]) is an efficient way of obtaining Monte
Carlo samples from distributions, which extends well to large numbers of dimensions.
It forms a continuous space, discrete time, Markov chain, selecting new samples from
some local proposal density, and accepting them according to some accept/reject rule.
The process moves randomly through the space, but roughly follows the density from
which it is sampling. The proposal density defines the behaviour of the sampler; for
many proposal densities the process will eventually converge. However, in the explo-
ration task, it is not important to obtain independent samples from the original distrib-
ution; what is important is that the process wanders “interesting” parts of the space.12

Figure VI.35 shows an MCMC process exploring a space with various salience densities.

A global salience density can be formed from linear weightings of individual density
maps. The total probability of salience can be computed as ∑n

i=1 p(g)P(X |g) for n goals
g0 . . .gn. This density is continuously updated as interaction proceeds. The MCMC
process walks this (dynamic) density.

VI.7.2.1 THE ENTROPY LENS When little interest in any goal is being shown by
the user, it is likely that the system is failing to dis-

play any aspect of interest. Thus it should seek to change its behaviour so as to reveal
more of the space. Conversely, if a user shows very strong evidence for interest in an
aspect of the data, the system should endeavour to focus more tightly. This can be
achieved by changing the rate of the random walk – adjusting the width of the proposal
density to widen when goal entropy is high and to shrink as goal entropy decreases.13

This “entropy lens” zooms in with strong interest, and relaxes back to a rapid summary
of the data as overall interest decreases.

12Many other exploration algorithms are of course possible. Hybrid (Hamiltonian) Monte Carlo processes
(MacKay [2003]), which include derivative information when making jumps, are one possible alternative.
These can be significantly better at exploring the space.

13Salience densities themselves do not specify locality – only regions of interest. The proposal density
defines the locality of the jumps.
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FIGURE VI.35: Markov Chain Monte Carlo exploration example. This is a 2-
dimensional example for ease of display. (a) shows data points in a space, with a Parzen
window kernel density estimate overlaid as contours. (b) shows a (Gaussian) density
around the isocontour p = 0.2 of the density in (a). (c) shows the MCMC process (with
Cauchy proposal density) where the estimated goal is the density shown in (b), overlaid
on the original data. The process walks the boundaries of the data density. (d) shows the
MCMC process with increased proposal width (this would correspond to higher goal
entropy). (e) shows the MCMC process relaxing back to a exploration of the data point
density.
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VI.7.2.2 OUTLINE OF THE
ALGORITHM

In the following, the proposal density will be assumed
to be isotropic. The Metropolis agent algorithm oper-
ates as follows:

• Starting from a point s;

• for each time step t:

– The proposal density is adjusted so that the var(Qt(x)) = g(γ), where γ is the
current selection entropy and g is some function (for distributions without
variances, some appropriate width scaling parameter can be used instead);

– a new sample s′ is drawn from the proposal density Qt(x);

– the total salience density is computed as

Pt(x) =
n

∑
k=1

λk fk(x); (VI.12)

– accept jump to s′ with probability

p j =

{
1 Pt(s′) >= P(s)
Pt (s′)
Pt (s)

Pt(s′) < P(s)
(VI.13)

– feedback from the local neighbourhood of s is produced;

– the intention agents update their disturbances;

– evidence for each goal is computed by the intention agents, updating λ0 . . .λk;

The display or sonification can display relevant attributes of the data in the locality of
each agent (for example displaying specific properties of the k-nearest neighbours to
the agent, or every data point within some radius). Sonification techniques like crys-
tallisation (Hermann and Ritter [2005]), which perform local neighbourhood sonifica-
tion would be quite suitable for such an interface. These sonifications or displays can
combine display of the specific attributes of the data with display about the salience
densities which they represent; the feedback shows both the local structure and the “di-
rections” in which the agents can explore.

The structure laid out above demonstrates how the active selection approach can be
applied to general exploration problems. The approach can provide opportunities for
control expressed in terms of smoothly changing intentions, where the system reveals
the motions which the interactor may use to express such intentions. The continuous,
smoothly changing estimates of likelihoods of possible intention make this style of inter-
action possible. The flexibility of the technique potentiates the integrate the expression
of the available control motions with feedback about the objective structure of a space.

VI.8
CONCLUSIONS

This chapter has outlined a coherent framework for continuous selection interfaces,
where the spatio-temporal aspects of interaction can be dealt with in a way that utilises
existing generative models of human behaviour. The interactions operate by injecting
signals into the control loop and identifying selective filtering activity on the part of
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the interactor. The methods are probabilistic by nature; the interface is viewed as a col-
lection of agents who accumulate and evaluate evidence for the intention to effect the
specific action with which they are associated. Prior model structures can be built into
the interface directly. Communication rate is bounded by the properties of the chan-
nels that communicate intention, the quality of modelling and the quality of display.
Spatial-metaphor-specific bounds (Fitts’ law) do not apply in such contexts. Implemen-
tations have shown the that technique is workable, and is adaptable to different sensor
contexts. The framework encompasses metaphors based upon control, imitation and
excitation and hybrid combinations of these. The selection interfaces of the type de-
scribed here can be improved by better operator modelling. The techniques presented
here are extremely general and can be applied in a wide range of contexts.



CHAPTER VII

CONCLUSIONS

Summaries and the path ahead.

VII.1
SUMMARY

This chapter summarises the main points from each of the preceding chapters, drawing
them together into the structure laid out in Chapter I.

VII.2
FRAMEWORKS FOR INTERACTION

This thesis has laid out a theoretical basis for the design of interactive systems. This
framework encompasses conventional HCI while revealing a number of relatively un-
explored areas. Concrete techniques for applying the concepts have been discussed, and
working interfaces which embody these novel interaction concepts have been created
using these techniques.

VII.2.1 THEORETICAL ASPECTS
The previous chapters have presented the continuous uncertain interaction framework,
and details the major components of this framework: evidence display and evidence
acquisition. Under this model, interaction is viewed as a continuous, hierarchical con-
trol problem, where hidden variables must be estimated across the interface boundary.
Sensing provides evidence for goals, and is accumulated over time. Evidence is never
certain, and models mapping sensing to intention are always inaccurate. The accumula-
tion of evidence can be delayed and can happen at different rates on different channels.
Uncertainty and delay are treated as key elements of interaction design in this frame-
work. Feedback is a critical element, informing the user and reducing the complexity
of the inference algorithms needed. The communication of intention is mediated by
lower-level control loops with which the user engages via the physical embodiment of
the interface.

The four aspects that have been tackled in this work are: the development of display
techniques for uncertain information which inform the user about the true state of the
system’s beliefs; the extension of such displays to have predictive power; the design
of changing dynamic systems which facilitate the flow of information by incorporating
long term inference; and the construction of selection mechanisms which are probabilis-
tic and directly include models of interactor behaviour. These form the major compo-

193
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nents of the interface framework. Some aspects have not been considered, in particular
the role of learning and adaptation – the outermost loops of the interaction process.

VII.2.2 FEEDBACK, UNCERTAINTY AND PREDICTION
Chapters III and IV emphasised the importance of feedback with appropriate levels of
uncertainty. Without this, decision making cannot be rational. Appropriately uncertain
feedback regularises the behaviour of the user, and reduces the control effort they must
apply when sensing is uncertain. Systems should display their beliefs about the inten-
tion of the user, and permit the user to control those states.

The sonification methods of Chapter III reveal the system’s beliefs about an interactor as
the interactor controls the system. Such feedback directly displays goal space trajecto-
ries as the user manipulates the interface. The inferential processes going on inside the
system are revealed, along with the effect an interactor’s actions have upon the beliefs
of the system. Granular synthesis makes it easy to transform probabilistic models into
rich audio feedback, with timbral, spatial and temporal flexibility. Point cloud displays
or convolutions can be used in visual contexts. However, the abstractness of the audi-
tory feedback makes it particularly suitable for display of uncertain belief. The flexible
nature of the granular synthesis approach, and the ease with which it can be integrated
with existing probabilistic models, makes it an attractive option for the augmentation
of interfaces.

Delay has a critical effect on control, and human capacity to compensate for delay is
limited. Incorporating prediction in displays can reduce the negative effect of delay
upon interaction. The Monte Carlo prediction approaches of Chapter IV can be applied
to many interaction contexts. Such displays can relate both the likely future states of
the system, and the likely future states of the system’s belief about user goals. Monte
Carlo filtering processes are equally amenable to sonification and probabilistic visual
display. These techniques facilitate displays that remain appropriately uncertain; where
the evidence or model is poor the display can signal this clearly.

The displays can be applied in many contexts, from complex, unstable dynamic systems
such as the helicopter control problem – where there is uncertainty in the evolution of
the model but accurate sensing – to the slower-paced but noisy GPS navigation problem,
where there is very significant uncertainty in the evidence acquired by sensors but reli-
able models of behaviour. Uncertain displays have been experimentally demonstrated
to have a beneficial effect where noisy measurement subsists.

VII.2.3 DYNAMICS AND CONTROL
Chapters V and VI discussed the acquisition of evidence for intention, and in particular
the design of dynamic systems which mediate the flow of information. These techniques
seek to optimise the ability of a user to provide evidence for goals by enhancing the
ability to control the intermediate dynamic system. Evidence from multiple timescales
can be brought into the immediate interaction.

The augmented dynamics approach of Chapter V unifies enhanced pointing techniques,
but it also motivates a large class of alternative approaches. Long-term inference can be
brought into short-term control loops, bridging the gaps in the control loop hierarchy.
Doing so can regularise the behaviour of an interactor, requiring less input energy when
prior information is available. Control is not wrested from the hands of the user; it is
augmented by the inferential engine. Local, tightly-coupled control can remain stable
while slowly changing estimates of evidence improve the qualities of this loop. The
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technique leads to useful systems; the Hex system is a functional text entry devices for
mobile, inertial interaction.

Chapter VI introduced active selection methods. These are a viable alternative to con-
ventional interactions. They can be directly designed to take into account the specific
properties of communication channels, using manual control models of operator behav-
iour and including the characteristics of the sensing channels present. The methods are
suitable for adaptation to unconventional sensing contexts where pointing metaphors
are impractical or nonsensical. They are bounded by the quality of modelling, the power
of the comparison models, and the information capacity of the input and output chan-
nels; they do not suffer the Fitts’ bounds of spatial interfaces. Evidence for intention is
accumulated gradually and rationally, and can be displayed to an interactor as the ac-
cumulation occurs. Interactors can thus control the system as evidence is acquired; de-
cisions are made with appropriate opportunities for intervention, and can easily incor-
porate existing probabilistic models of user intention. The technique potentiates many
interesting techniques for interaction where control is expressed in terms of intentions,
mediated by agents who seek to gain evidence for such intention.

The overview figure of Chapter I (reproduced below, in Figure VII.1) shows how these
components fit together into an architecture for the design of interaction. Techniques
for displaying the changing states of the inference process have been given in the form
of the granular synthesis and visual particle displays of Chapters III and IV. Chapter V
showed how these changing estimates of intention can modulate the immediate world
with which the user interacts. This increases the potential flow of information with-
out disruption. The design of specific dynamic systems which can extract intention by
revealing the ways in which they can be controlled was the focus of Chapter VI. This
agent-based approach gives a concrete way of designing the short-term interaction. To-
gether, these form a powerful basis for the construction of novel interfaces.

FIGURE VII.1: The overview of the interaction process, marked with the areas covered
in this work.

The approach to interface design detailed in this work opens up a rich seam for fur-
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ther exploration. Entirely new interactions can be built based upon the principles laid
out, featuring continuous control across multiple timescales with rich, representative,
multimodal feedback. New sensing channels or contexts of use can be brought in to
the interactions easily. Sophisticated inferential tools can be introduced into the interac-
tion without ad hoc alterations. Interactions designed according to these principles have
strong theoretical underpinnings and can be analysed and designed coherently.



APPENDIX A

GSLIB – THE PROBABILISTIC GRANULAR
SYNTHESIS LIBRARY

GSLIB, the granular synthesis library developed for the implementation of
demonstrations in this thesis, provides a convenient way of sonifiying prob-
ability distributions. It is a pure C granular synthesis implementation, heav-
ily optimized for speed. The accumulation functions operate in fixed point

(important for mobile devices which often lack FPU’s) with a packed representation to
partially parellize the computations. The basic version depends on the availabilty of
the Allegro1 library, but is otherwise platform independent. Any sound library which
can provide a series of buffers to fill for audio output can easily be adapted to work
with the library (for example, SDL, DirectX or the Windows MMSystem routines). The
library code has has been used succesfully on Windows 98/XP/2000 (with Allegro) and
Windows CE (ARM), running with the standard Microsoft MMSystem audio output.
Since Allegro is available on Linux, Mac OS X, QNX and Beos and many other UNIX
platforms, the library should compile without issue on most machines.

A.1
PARAMETERS

The library renders audio in buffers, of a certain specified length. These buffers are
filled with the grains from the synthesis process, with the appropriate transformations.
More details on the granular synthesis process and its parameters are given in Chapter
III. Specification of the audio is given via PDF’s for the parameter distributions. These
parameters are:

• Source: Discrete distribution over wave form sources that have been registered
with the library.

• Time: Continuous distribution over samples inside the source wave form.

• Pitch: Continuous distribution over pitches of grains.

• Pan: Continuous distribution over stereo pan position of grains.

The system also has a global grain density, grain length, maximum number of grains,
and parameters for adjusting the grain envelope. These are fixed and are not defined by
distributions.

These parameters can be split into two groups: initialize time and run-time parameters.
Initialize time parameters must be set before synthesis begins, and cannot be modified

1http://www.talula.demon.co.uk/allegro
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during synthesis. Run-time parameters are updated by callbacks which are called every
time the (sub)buffer is filled; these specify the time-varying properties of the synthesis.

A.1.1 INITIALIZE TIME PARAMETERS
At initialize time, the following parameters must be set:

• Grain length. Length of grains in samples.

• Envelope type. GSLib supports two envelope types, Gaussian and linear (see Fig-
ure III.4.2.2). For the Gaussian type, the width of the kernel can be set; for the
linear type the attack/decay time as proportions of the grain length are given.

• Maximum number of grains. This fixs the maximum simulatenous number of
grains.

These parameters are initialize time to provide significant optimizations to the granula-
tion process, especially envelope precalculation.

A.1.2 RUN TIME PARAMETERS
The density of the grains (as a probability of activation at a time step) can be specified
at run time, as can all of the basic parameters described in Section A.1. For discrete dis-
tributions, the parameters are specified as individual probabilities. For the continuous
parameters, Gaussian, half-Gaussian ( f (x) > 0 = 0 or f (x) < 0 = 0) and delta functions
can be used, as well as mixtures of these.2

A.1.3 MONTE CARLO OR ROUND-ROBIN MODE
The library can operate in normal (Monte Carlo) mode where parameters are automati-
cally drawn from the parameter distrubutions. Alternatively, the parameters can be set
individually on each grain generation (round robin mode) for using custom distribu-
tions. This makes implementing the type of display in Chapter IV very straightforward.

2Although types cannot be mixed, so a Gaussian and delta mixture cannot be created, for example.
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A.2
ANNOTATED EXAMPLE

//Compiles correctly with MINGW GCC 3.4.2 on Windows
//gcc -Wall granular-example.c -o granular-example grain_source.c \
//grain_engine.c pdf.c -lalleg
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <assert.h>
#include "grain_engine.h"

// Allegro [http://www.talula.demon.co.uk/allegro] for audio i/o
#include "allegro.h"

//Output sample rate
#define SAMPLE_RATE 44100

//Output buffer size. Shorter has less latency,
//but can lead to clicking artifacts when the buffer underruns
#define BUFSIZE 4096

//Allegro’s output audio stream structure
static AUDIOSTREAM *out_stream;

//Wave files to used
static char *wave_names[] =
{"sh5.wav",
"choir1.wav",
"bass2.wav"};

static int n_waves = 3; // Number of wave files

// Load the waveforms
void load_waveforms ()
{

SAMPLE *samp;
//defines the properties of a grain generator
grain_source *source;
int i;

for (i = 0; i < n_waves; i++)
{

// Read each wave and put it in a grain_source structure
samp = load_sample (wave_names[i]); // Allegro function

if(samp==NULL)
{
printf("Sample %s missing\n", wave_names[i]);
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exit(-1);
}
source = create_uniform_source (i, samp->data, samp->len);
// Register the source with the engine (important!)
add_source (source);

}
}

//Audio generation loop
void play_audio ()
{
unsigned char *buf, *dbl_buf;
int copied = 0;

// Create a double buffer (16 bit = 2 bytes for each sample)
dbl_buf = malloc(BUFSIZE*2);

//Start the audio stream, 16 bit mono stream at SAMPLE_RATE
out_stream =

play_audio_stream (BUFSIZE, 16, FALSE, SAMPLE_RATE, 255, 128);

//Set the sub-buffer length (callback is called for each one)
set_buffer_length (128);

//This loop can also be implemented in a multi-threaded manner

//Check keyboard state, exit when the user presses escape
while (key[KEY_ESC] == 0)
{

//Get next audio buffer (if one’s available)
buf = get_audio_stream_buffer (out_stream);

//If no buffer available
if (buf == NULL)
{

//If new buffer not already created
if(!copied)
{
//Call the synthesis algorithm
fill_buffer (dbl_buf, BUFSIZE * 2 );
copied = 1;

}
else

rest(1); // Wait a millisecond
}

else // output buffer ready
{

// Copy double buffer into output buffer
memcpy(buf, dbl_buf, BUFSIZE * 2 );
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copied = 0;
//Mark the buffer as ready to play
free_audio_stream_buffer (out_stream);

}
}

//Stop the audio
stop_audio_stream(out_stream);

}

//This is the callback that updates the properties of a source

double update_source_pdf (grain_source * source)
{
static double phase = 0.0;
double p, pitch_width;

// Probabilities here are simple sinusiodal functions
// phase determined by their ID
p = fabs(sin(phase+source->id))*0.3;
phase+=1e-4; // Update the phase

// Set the probability.
//THIS MUST BE CALLED on every update_source_pdf
set_probability (source, p);

//optional parameters
//Set the pitch to a narrow gaussian about its natural rate.
//Width of the Gaussian changes as a cyclic function
//This produces a dissonant sound slowly resolving to clear tones
//and then back to dissonance
pitch_width = fabs(cos(phase*0.2+source->id)) * 1e-1;
set_pitch_distribution(source,1.0,pitch_width, D_GAUSSIAN);

//Set the phase distribution to start at phase*10000
//with 500 sample half-Gaussian (negative only) distribution
//this causes the sounds to "play" forwards very slowly.
set_distribution(source, phase*10000, 500, D_GAUSSIAN_BACKWARD);

//Return the probability this source was assigned
return p;

}

void init_grains ()
{
//Set sample rate, bit depth and channels
set_format (SAMPLE_RATE , 16, 1);

//Maximum grains (this must be set)
set_max_grains(200);
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//P(generation) = 0.4
set_grain_density(0.4);

//Set the grain length to 4000 samples (˜100ms)
set_grain_length(4000);

//Don’t normalize the probabilities
set_normalize(0);

//Squared Exp. envelope, width 0.1
set_envelope(ENV_EXP, 0.1);

//Register the callback
register_distribution_function (update_source_pdf);

//Initialize the engine
initialize_engine ();

}

int main (int argc, char *argv[])
{

//Open the allegro subsystem
allegro_init ();

//Install the sound driver (if possible)
if (install_sound (DIGI_AUTODETECT, MIDI_NONE, NULL) != 0)

{
printf ("Could not initialize sound driver...\n");
exit (-1);

}

//Init RNG
srand (time (NULL));

//Install keyboard driver.
install_keyboard ();

//Initialise the engine
//must be done _BEFORE_ loading the waveforms
init_grains ();

//Load the wave data
load_waveforms ();

//Start the audio playback loop
play_audio ();

//Close down the allegro subsystem
allegro_exit ();
return EXIT_SUCCESS;



Appendix A. GSLib – The Probabilistic Granular Synthesis Library 203

}
END_OF_MAIN ();

The sound output from this example is available online at the GSLib homepage (see
below).

A.3
LIMITATIONS OF THE LIBRARY

There are some minor limitations of the synthesis library: the library cannot deal with
run-time adjustment of grain length; envelopes can be adjusted at run-time but not on
a per-grain basis; and pitch shifting is implemented with linear interpolation, and can
produce aliasing and interpolation noise at large pitch shifts. These are unlikely to be of
much consequence in most applications.

A.4
OBTAINING AND COMPILING THE LIBRARY

The library is available at http://www.dcs.gla.ac.uk/˜jhw/thesis/gslib.html. To use
in a project, simply include grain engine.c, grain source.c and pdf.c into the build.
Register the callbacks and initialize the parameters as described above, and then pass
fill buffer() a new buffer every time one must be filled.

http://www.dcs.gla.ac.uk/~jhw/thesis/gslib.html


APPENDIX B

GUIDELINES FOR DESIGN

GUIDELINES for design, aimed at designers building systems according to the
principles laid out in the thesis, are presented in this chapter. The major
points of the thesis are condensed into these guidelines.

• Where uncertainty is present in an interactive system, the full uncertainty should
be preserved as far as possible and the inference done on the complete distribution
of potential values when an action must be performed. Early, irreversible, filtering
of the values to sequentialise the process should be avoided.

• The utility and likelihood of the goals a user interface provides should be explicitly
accounted for. These can either be used directly to formulate design, or used to
make decisions about the structure of the interface (e.g. ranking interface elements
by expected value).

• Uncertainty in an interface should be displayed to the user wherever it is relevant;
doing so can regularise their behaviour in a natural manner. Granular synthesis is
a powerful way of forming such audio displays. Point cloud displays can be used
for visual display.

• Designers should take careful note of delays that will be present in interacting
with a system and should employ predictive displays to mitigate the effect of such
delays, wherever possible. Such displays should taken into account the certainty
of the model and the sensor readings upon which they are based.

• When introducing “intelligence” into an interface, the flow of the underlying con-
trol process should not be disrupted. Creating a stable dynamic system which the
user interacts with – whose parameters are influenced by the higher level infer-
ence – can be used to achieve this. The user should be able to model the response
of system well at short time scales, with the ability to model dropping off as a
function of the communication bandwidth of the interface.

• Designers should ensure that decisions are only made when sufficient evidence
has accumulated to support them, and that the arrival of such evidence does not
violate the input bandwidth limitations in the joint human-computer loop. Sys-
tems which fail to do this degrade poorly with reductions in control quality.

• Where asymmetric control loops exist (with system output bandwidth exceeding
input bandwidth) selection can be performed by providing statistically indepen-
dent stimuli, and testing for behaviour compatible with controlling those stimuli;
this is applicable to many sensor and display types.
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ONLINE MATERIALS

ONLINE materials which accompany this thesis are briefly listed below. The
up-to-date index, is available at http://www.dcs.gla.ac.uk/˜jhw/thesis/.
These materials include demos (suitable for desktop Windows machines),
videos, audio and pictures of the various implementation demonstrations

in action. The electronic version of this thesis, with hyperlinked crossreferences, is also
available. The granular synthesis library code GSLib can also be obtained; see Appendix
A for details.

C.1
MATERIALS

C.1.1 CHAPTER III
• Gaussian Spatial Example

Demo, sound files and video of the implementation.

• Trajectory Following Example
Demo, sound files and video of the implementation.

C.1.2 CHAPTER IV
• Ball Bearing Example with Uncertain Predictive Feedback

Video of the implementation.

• GPS Navigation Demo
Video of system mock up on desktop machine. Video of application running on
PocketPC device.

C.1.3 CHAPTER V
• Hex

Video of Hex in use on both desktop and PocketPC.

• BCI Hex
A video of an early version of Hex adapted for use in BCI.

C.1.4 CHAPTER VI
• Pointing without a Pointer

Video and demo of the trajectory following selection example.

• Egghead Selection
Video of the Egghead Selection Demo.
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C.1.5 CHAPTER A
• GSLib demo

Audio generated from the example source code.



INDEX
accelerometer, 88, 94, 113–116, 118, 119, 121,

122, 133, 138, 141, 147
action transfer, 39
adaption, 33, 129
affordance, 150
ambiguity, 50
arc length, 65
area based cursors, 108
attractor basins, 76
audio feedback, 132
auditory icons, 49
augmented dynamics, 105, 106, 109, 123,

144
autocomplete, 133
autocompletes, 106

background interaction, 23
ball-bearing, 76
bandpass filters, 181
bang-bang, 7, 154
barrier of action, 28
Bayesian, 18
BCI, 141
bit costs, 15, 16, 19, 107
bit-rate, 16
bit-rate curves, 16
blended control modes, 122
brain computer interface, 6
Brownian motion, 167
bubble pointing, 108
bubble-cursor, 107
button, 3, 17, 41

cellular automata, 53
chording keyboards, 16
Cirrin, 113
closure, 29
computation

ultimate purpose of, 15
condensation, 99
Context, 10, 107
control loop, 5
control process, 19
control theory, 20
control-display, 108

control-display ratio, 44, 107
corpus, 136
crystallisation, 191
cubic spline, 136
cybernetics, 21

Dasher, 112, 119, 141
dead zone, 121, 122, 144, 154
debouncing, 41
dececision making, 27
delay, 7, 17, 31, 67, 68, 152, 155, 158

visual, 48
delayed auditory feedback, 43
dissonance, 59
disturbance, hyperpage148, 151, 189
disturbance rejection, 21
dithering, 72

earcons, 49
EEG, 18, 44, 141
egghead, 168, 172
English

entropy of, 117
entropy, 25, 27, 62, 135, 189

change of, 62
enveloping, 53
enveloping windows, 57
error Models, 33, 107
error potential, 131
evidence space, 23, 32
excitatory interfaces, 180
exposed mechanics, 48

feedback, hyperpage5, 21, 164
filtering, 8, 9
finite state automaton, 41
fisheye lens, 176
Fitts’ Law, 40, 43
footpedals, 184

gait, 116
gait disturbances, 156
gait noise, 107
Geiger counter, 58
gestural interfaces, 39
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gesture, 1, 2, 42, 100, 103, 146, 147
gesture recognition, 59, 109
GIS, 50
goal space, 10, 23, 25, 27, 40, 41, 46, 71, 89,

148
goal space cursor, 25
goals, 19
GPS, 50, 75, 84, 88–90
Graffiti, 146
granular synthesis, 47, 51, 56, 89
GSLib, 60, 61, 77
GUI, 2, 146
Gutenberg, 128
gyroscopes, 115, 116, 147

handwriting, 42
Helicopter, 79
Hex, 110
hexagonal tessellation, 118
hidden states, 37
hidden variables, 15
hierarchical control,
hierarchy of control, 6, 21, 33, 139
HMM, 59, 99
horizontal dilution of precision, 88
human computer interface

evolution of, 2
human control models, 107

importance sampling, 99
index of difficulty, 44
inertial interaction, 110
inertial sensing, 38, 110, 115, 147
information amplifier, 15
information theory, 21
intention, 4, 15, 19, 33 37, 41, 46, 48, 67, 189,

191
intention cursor, 22
intentionality, 21
interaction, 15
interactor, 3
InterTrax, 78
intuitive, 16
ISOMAP, 186
isomorphism error, 38

jitter, 37

Kalman filter, 99
keyboards, 41

lags, 17, 152, 155, 158
latent variables, 17, 38

Limb dynamic, 107
limb dynamics, 6, 44, 107, 152
local linear embedding, 186
loop subsumption, 5

magnetometers, 88, 94, 115, 116
manual control theory, 4, 20
Markov Chain Monte Carlo, 189
MEMS, 116, 147
MESH, 88, 94, 147
Metropolis-Hastings, 189
minimum jerk, 107, 136, 137
modalities, 48
mode switching, 121
model based sonification, 106
Model-View-Controller, 24
Monte Carlo, 9, 37, 50, 51, 65, 72–74, 90, 99,

133, 135, 143, 158
motion blurring, 62
motor space distortion, 109
multimodal interfaces, 9
mutual information, 150, 163

negative feedback, 20
negotiated control, 5
negotiated interaction, 23
negotiation, 33, 47
neuro-muscular delay, 45

olfactory displays, 48
operator models, 45, 152
optimal dynamics, 110

parallel co-ordinates, 186
partial-predictive-match, 128
particle filtering, 99, 158
particulate display, 86
pattern recognition, 3, 147
pattern-matching, 42
PCA, 186
perceptual control theory, hyperpage21, 148
perceptual delays, 155
Perlin noise, 159, 176
physically-modelled synthesis, 49
pitch, 58
point clouds, 51
point spread function, 51
PPM, 128
prediction, 28, 67
prediction by simulation, 72
predictive controllers, 68
predictive displays, 7, 46, 133
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preview display, 164
probabilistic language model, 123
probabilistic models, 9, 109, 147
probability theory, 4
process feedback, 47, 48
proprioception, 6, 33
proxy agents, 186
pseudo-haptics, 108
PSOLA, 58

quantization, 17, 18, 37, 38
quickened, 68
Quikwriting, 111

Ratio of Variance, 160
readiness potential, 68
recognition, 42
reflective interfaces, 47, 48
Resonant Interface, 181
response times, 107
reversibility, 28, 29
rhythmic interaction, 31
robustness, 27
Royal Majesty, The 50

saccades, 21
salience densities, 186, 189
saturation, 44, 156, 158
segmentation, 3, 43
selection, 145
semantic pointing, 40, 107
sensor fusion, 116
sensor space, 32
sequentialisation, 2, 8
shadow mapping, 86
shake detection, 133
ShapeTape, 147
ShapeWriter, 112
shaping, 33, 34
Shark, 112
simplex, 25
simulated annealing, 136
smart textile, 147
SMS, 110
SonicText, 113
sonification, 49, 191
Southwest Airlines Flight 1248, 50
speech, 42
stability, 20
state machines, 17, 23
stiction, 154
surge controller, 155

surrogacy, 163

T9, 28, 110, 115
targeting, 2
TCube, 111
telerobotics, 70
terminal events, 39, 46
text entry, 110
theoretical Models, 4
tilt controlled interaction, 115
tilt sensing, 116
TiltText, 113
TiltType, 113
time

continuity of, 17
time horizon, 89
time horizon modulation, 74
time-dependent utility of information, 30
time-stretching, 58, 62
touch screens, 39
transfer curves, 40
transfer function, 121
transparent interfaces, 47
tremor, 116, 156
TUP Touch Wheel, 114

uncertain auditory display, 94
uncertain display, 94
uncertainty, 2, 8, 9, 17, 37, 46, 47, 50, 71, 85
undo, 28, 46
Unigesture, 114
utility, 14, 29

vibrotactile, 88, 143
Viterbi decoding, 28
voice recognition, 147
Voronoi tessellation, 119

wearable, 110
WIMP, 39

X-Plane, 81
Xenakis, 53
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