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Granular Synthesis for Display of
Time-Varying Probability Densities

John Williamson Roderick Murray-Smith

Abstract— We present a method for displaying
time-varying probabilistic information to users using
asynchronous granular synthesis. We extend the basic
synthesis technique to include distribution over wave-
form source, spatial position, pitch, and time inside
waveforms. To enhance the synthesis in interactive
contexts, we “quicken” the display by integrating pre-
dictions of user behaviour into the sonification. This
includes linear predictions in goal space, and more
sophisticated prediction using Monte Carlo sampling
to predict future user states in nonlinear dynamic
systems. These techniques can be used to improve
user performance in continuous control systems and
in the interactive exploration of high dimensional
spaces. The method provides feedback from users’
potential goals, and their progress toward achieving
them; modulating the feedback with prediction can
help shape users actions toward achieving these goals.
We have applied these techniques to challenging con-
trol problems as well as to the sonification of online
probabilistic gesture recognition. We are using these
displays in mobile, gestural interfaces, where visual
display is often impractical. The granular synthesis
approach is theoretically elegant and easily applied
in contexts where dynamic probabilistic displays are
required.

I. I NTRODUCTION

A. Ambiguous interfaces

Human interactions with systems are difficult
for two reasons: users misinterpret systems
and systems misinterpret users. Solutions to
the latter problem are the realm of recogni-
tion technologies and inference algorithms, but
we suggest that such sophisticated interpretive
mechanisms will be most fruitful if they are
combined with technologies to improve human

understanding of the interaction. In particular,
the interaction experience can be enhanced by
display of the changing state of the interaction
with accurate display of uncertainty and incor-
porating predictive power.

The function of a human-computer interface
is to interpret the actions of the user and
carry out the user’s intention. In practice, a
system cannot interpret a user’s intention with
absolute certainty; all systems have some level
of ambiguity. Conventionally, this is ignored;
however, explicitly representing the ambiguity
and feeding it back to the user can increase the
quality of interaction. Mankoffet al describe
interfaces incorporating ambiguity in [1] and
[2]. This is a particularly significant issue when
the system’s interpretations are complex and
hidden from the user. Physical buttons are intu-
itive because there is no hidden complexity in
the interpretation. Our goal is to have systems
with the all of the power of the most advanced
recognition algorithms, but which remain as in-
tuitive as a simple mechanical button. Explicit
uncertainty in the interface is a step towards
this goal.

Representation of ambiguity is especially
significant in closed-loop continuous control
situations, where the user is constantly inter-
acting with the system to achieve some goal
(see Figure 1) [3]. Formulating the ambigu-
ity in a probabilistic framework, we consider
the conditional probability density functions
of sequences of actions associated with each
potential goal in the system, given the current
context. Examples of goals might be actions



such as “Open File” or “Exit”, in a workstation
interaction task. In this case, ambiguity might
arise when interpreting a mouse click close to
a border between items in a menu.

Users try to maximize the system’s belief
about the goal they desire. The system uses its
model of user behaviour to update its beliefs,
and feeds back the inference so that users can
act to correct any potential misinterpretation.
When the probability is sufficiently high, the
system can act upon its beliefs. In this context,

Interface

Human

Computer

Effectors Perception

Goal

Sensors Feedback

Inference

Comparison

System

Fig. 1. A model of user interaction in a closed-loop system. In
this paper we concentrate on the right hand side of the diagram,
where feedback from the inference process is provided to the
users which they can then compare with their goals.

providing feedback about the distribution of
probabilities in the space of potential goals can
assist the user, especially if the display has
predictive power and can display the sensitivity
of future states to current actions – “What
can I do to increase the probability of my

intended goal?”. Thus, we wish to sonify the
time-varying properties of the distribution of
goal states given potential user control actions.

B. Audio feedback

Audio can be used to present high-
dimensional, dynamic data, and is suitable for
use when the eyes may be occupied – for
example with other visual displays, or with
other tasks such as walking, when using mobile
devices.

A continuous feedback model requires that
the model dynamically updates the probabil-
ity of each goal in real-time, and transform-
ing this to an audio representation of the
changing probabilities. At each discrete time-
step t, a vector of conditional probabilities
P (goal|input) = P (G|I) = [p1 p2 . . . pn] is
updated, and displayed in audio. The update
can be performed by any suitable inference
mechanism, so long as the probability distri-
bution can be evaluated in real-time.

A particularly suitable method for perform-
ing this translation from probability distribution
to audio is sonification via asynchronous gran-
ular synthesis.

C. Granular synthesis

1) Overview: Granular synthesis (see [4],
[5], [6], [7]. For a modern, comprehensive
overview of the subject see [8]) is a probabilis-
tic sound generation method, based on draw-
ing short (10–500ms) packets of sound, called
“grains” or “granules”, from source waveforms.
A large number of such packets are continu-
ously drawn fromn sources, wheren is the
number of elements in the probability vector.

For the discrete case, these waveforms can
either be synthesized or pre-recorded. In the
case of a continuous probability distribution,
where n is infinite, there must be a contin-
uous parametric form for the sources, which
is generated in real-time as the grains are
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drawn. For example, FM synthesis could be
used to represent a one-dimensional continuous
distribution with the modulation index as the
source parameter. After the grains are drawn,
they are enveloped with a smooth window to
avoid discontinuities and the grains are then
summed into an output stream. Figure 2 shows
the basic process.

In asynchronous granular synthesis, the
grains are drawn according to a distribution
giving the probability of the next grain being
selected from one of the potential sources.
This gives a discrete approximation to the true
distribution. As the name implies, this process
causes the relative timing of the grains to be
uncorrelated.

The grain durations used in our implementa-
tions are of the order of 80–300ms with squared
exponential envelopes; this produces a smooth,
textured sound at higher grain densities. Our
system generates grains such that between 100
and 1000 are always active, for a relatively
accurate representation; as one grain finishes, a
new one is drawn with some probability. This
implies an exponential distribution on the time
to generation of a new grain, and it is from
this process that the asynchrononicity of the
synthesis arises.

Asynchronous granular synthesis gives a
smooth continuous texture, the properties of
which are modified by changing the probabil-
ities associated with each grain source. Even
in situations where other synthesis techniques
could be used, granular synthesis gives strong,
pleasing textures which are easily manipulated
in an elegant and intuitive manner. It also has
the advantage that a distribution can be defined
over time inside the source waveform, defining
the probability of a grain being drawn from a
specific time index in the wave. This allows for
effective probabilistic time-stretching, which is
a powerful tool in interactions where progress
towards some goal is of importance (for exam-
ple gesture recognition). Similar distributions

Fig. 2. Simple granular synthesis process. A much greater
number of grains would be used in practice for a smoother
waveform. When a new grain is created, a section of the source
waveform is copied, the position of which being determined
by the distribution over waveform time. This section is then
enveloped. All of the currently active grains are summed to
produce the final output.

over pitch (playback rate) and spatial position
can also be defined.

D. State space representation

Figure 3 shows how a mixture of Gaus-
sians can be used to map regions of a two-
dimensional state space to sound. Each Gaus-
sian is associated with a specific sound, and as
the user navigates the space, the timbre of the
sound changes appropriately. Although here the
densities are in a simple spatial configuration,
the technique can be applied to any state space
representation by placing appropriate densities
in the space. In a dynamic system the den-
sities could be placed on significant regions
such as equilibrium points or along transients.
Application of these ideas to helicopter flight
sonification is given in Section III-B.1.
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Fig. 3. Mixture of Gaussian densities in a two-dimensional
state space as an illustration of the basic concept. Each Gaus-
sian is associated with a waveform.

E. Gesture Recognition

As an example without a explicit state space
representation, we extend the sonification tech-
nique to gesture recognition. A probabilistic
gesture recogniser can be sonified by associ-
ating each gesture model (in our implemen-
tation, Hidden Markov Models) with a source
waveform, and each model’s output probability
then directly maps to the probability of drawing
a grain from the source corresponding to that
model (see Figure 4). The temporal distribution
of the grains inside the source waveforms maps
to the estimate of progress through the gesture.

The design issue is then reduced to creat-
ing a suitable probability model and selecting
appropriate waveforms as sources. The overall
grain density remains constant throughout the
sonification. In practice, this produces a sound
which is incoherent when ambiguity is high,
resolving to a clear, distinct sound as recog-
nition progresses. The primary effect of the
sonification is to display the entropy of the
current goal distribution.

II. D ISPLAY QUICKENING

“Quickening” (see [9], [10]) is the process
of adding predictions of future states to a

display. In manual control problems this allows
the user to improve their performance; it has
been shown that the addition of even basic
predictive power can significantly improve the
performance in difficult control problems:

“Experience indicates that, by using
a properly designed predictor instru-
ment, a novice can, in ten minutes
or less, learn to operate a complex
and difficult control system as well
as or better than even the most highly
skilled operator using standard indi-
cators” [9]

Such techniques are directly applicable to
real-time sonifications of probabilistic state in
interactive systems. Providing the user with
information on the sensitivity of goals to inputs
can allow faster and more robust exploration
and control to be achieved.

In the probabilistic formulation we wish to
evaluateP (Gt+T |I1..t) whereT is a time hori-
zon, andt is the current time. This full distri-
bution is usually computionally intractable, and
so simplifiying approximations are made.

Fig. 5. A visual example of quickening. Here, the controlled
object is the inner circle. The estimated velocity and accel-
eration vectors are shown. Similar visual displays have been
suggested for use in aiding helicopter pilots in maneuvering
[11].

The most basic quickening technique is
the display of derivative of the variables under
control (see Figure 5). In the probabilistic case,
the variables are the time-varying probabilities.
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Fig. 4. Mapping from an input trajectory to an audio display via a number of gesture recognition models. Each gesture is
associated with a model and the output probabilities are fed to the synthesis algorithm.

Displaying the gradient of the density along
with its current value can improve the effec-
tivity of the feedback as users can perceive
whether actions are moving them towards, or
away from, hypothesized goals in a continuous
manner. The prediction takes place directly in
the inferred space, and so is easily applicable to
any problem. However, this assumes that linear
predictions are meaningful in the goal space.

The granular audio display can be quickened
by taking the first, second and higher deriva-
tives of each probabilityp with respect to time
and then forming the sum

v = p +
n∑

i=1

ki
dpi

dit
,

where i is the order of the derivative and
the ki are scaling factors.v is then saturated
to clip it to the range(0, 1). This value can
then be treated as a probability and directly
sonified using the granular synthesis process
described above. When the user increases the
probability of a goal, the proportion of grains
drawn from the source associated with this
goal is increased; similarly the proportion is
decreased as the goal becomes less likely. In
practice, higher-order derivatives are generally
less intuitive from the point of view of the
user, and are also likely to be dominated by
noise unless special care is taken in filtering
the signals.

A. Spatial exploration example

As a simple practical example of a quickened
display, the display from the exploration task
in Section I-D was augmented to include first-
order linear predictions. This aids users in their
exploration of the space by rapidly increasing
the intensity of the feedback as the users move
towards the center of a goal, so that they can
quickly determine which direction will give the
greatest increase in probability.

In particular, the quickening is of use in ac-
curately ascertaining the modes of the distribu-
tion. As a user approaches and then overshoots
the mode, there is a rapid increase followed by
an equally rapid decrease in the intensity of the
feedback for that goal, allowing for faster and
more accurate targeting. In higher-dimensional
exploration tasks, the quickening is particularly
useful for finding subtle gradients which may
be difficult to perceive with an unaugmented
display. As the dimension increases, increasing
the weightingki of the derivatives can help
compensate for the spreading out of the density.

III. M ONTE CARLO SAMPLING FOR

TIME-SERIES PREDICTION

Monte Carlo sampling is a common sta-
tistical method for approximating probability
densities by drawing a number of discrete sam-
ples from the probability density function. This
often leads to more tractable computations than
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directly working with the target distribution.
For example, it can be used to approximate
F (p(x)) wherep(x) is a (potentially complex)
distribution, andF is a nonlinear function.

There is a particularly elegant link between
granular synthesis and Monte Carlo sampling
of probability distributions – each sample taken
in the process can be directly mapped to a sin-
gle grain in the output. Few other sonification
methods would be suitable for directly repre-
senting the output of the Monte Carlo sam-
pling process; approximations to the distribu-
tion would be required. Where there are more
grains than samples, grains can be matched
to samples in a round-robin manner. Hermann
et al, in [12], describe a particulate approach
to sonification of Markov Chain Monte Carlo
for display of the properties of the sampling
process. We concentrate on the use of Monte
Carlo sampling for time-series prediction.

Given a model of the dynamics of a par-
ticular interactive system, where there may be
both uncertainty in the current state and un-
certainty in the model, Monte Carlo sampling
can approximate the distribution of states at
some point in the future. This can be done
by drawing a number of samples around the
current state, and propagating these forward
according to a model of the system dynamics,
with appropriate noise at each step to account
for the uncertainty in the model.

A. Simple dynamic system

As a practical example of the Monte Carlo
techniques, a simple dynamic system, consist-
ing of a simulated ball-bearing rolling across a
nonlinear landscape has been constructed (see
Figure 7). In this system, the bearing has a state
S = [x ẋ ẍ y ẏ ÿ]. The height component is not
included in the simulation as the bearing cannot
leave the surface. Here we assume Gaussian
noise about the current state. The landscape
model is also considered to be uncertain, in
this case with a spatially varying uncertainty.

In Figure 7 the dark-coloured grid on top
of the lighter solid surface shows the two-
standard deviation bound on the uncertainty;
the uncertainty is Gaussian in this example, and
so is fully specified by its mean and standard
deviation.

Prediction proceeds by simulating perturba-
tions around the current state, producingN
perturbed samples. Increasing this number re-
sults in a more accurate representing of the
target distribution, but at a cost of increased
computational load. The model simulation is
then applied to these samples for each time-
step, until the process reachestn = t + T ,
where T is a predefined time horizon (see
Figure 6 for the complete algorithm). In our
example, normal ranges of the parameters are
20–40 for N and 30–80 forT . Appropriate
values of the time horizon depend on the the
integration constant in the simulation process
and the response time of the user. Users can
browse the space of future distributions by
directly controlling the time horizonT . We
have implemented a system with an InterTrax
headtracker which allows continuous control of
the time horizon with simple head movements.

In this example control actions are assumed
to be constant for the duration of the prediction.
Other models, such as return to zero, can easily
be incorporated.

Uncertainty in the model is in this case
simulated by adding Gaussian noise to the
surface height at each time step, thus diffusing
the samples in regions of high uncertainty. A
more realistic, but computationally intensive,
approach would be to draw realizations of
the potential landscapes from a process with
reasonable smoothness constraints, such as a
Gaussian process (see [13]), drawing one re-
alization for each of the sample paths. This
would ensure that the predicted trajectories
would have appropriate dynamics. The audio
output proceeds as described in Section I-C.1,
except that each grain maps directly to one
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• Given a stateS = [s1 s2 . . . sN ] at t = 0, and
assuming Gaussian noise, produce

a1 = S +N (0, Σs) . . . aN = S +N (0,Σs),

to get a vector

At=1 = [a1 a2 ... an],

whereN (µ, Σ) denotes a normally-distributed
random variable with meanµ and covariance
matrix Σ2. Here, Σs is the simulation noise
covariance.

• Then, for eacht until t = T , calculate

At+1 = f(At) +N (0, Σm(At)),

wheref is the model function andΣm is the
model noise.

• Each elementa1 . . . aN of At=T is then mapped
to a grain.

Fig. 6. The Monte Carlo time-series prediction used in the
bearing example.

Fig. 7. Monte Carlo sampling of the distribution of future
states in a simple control task. Each sample at the horizon (the
arrows) corresponds to an output grain. The depressions each
have a sound source associated with their mode. The darker
region has high model uncertainty. On the right an example
where the future trajectory passes through a region of high
uncertainty is shown.

sample at the time horizon. This gives an audio
display of the density at timet = T . This could
be extended to include more sophisticated mod-
els of potential user behaviour by predicting
likely future control actions and applying these
as the simulation progresses. This requires a
method for feeding back the control actions that
lead to the final state.

B. Application domain

This display method is suitable for any
continuous-control system where there is un-
certainty, assuming that there also exists a rea-
sonable model of the system which is amenable
to Monte Carlo sampling. The quality of the
predictions, and therefore the feedback, is com-
pletely dependent on the accuracy of the model
of the system and the model of the user.

The augmentation of the display with pre-
diction, whether in the form of complex time-
series prediction or basic projection along
derivatives means that latencies present in in-
terfaces can be masked. This can be used to
produce more responsive systems, and since
the bound on acceptable latencies for auditory
feedback is very low (around 100–200ms is
the maximum before serious degradation of
performance occurs [14]), this can be a very
significant advantage. However, this is only
feasible in cases where a reasonable model of
the interface is known or can be learned. In
the worst case, a poor and overconfident model
of the system can lead to feedback that is an
active hindrance. However, if the model makes
poor mean predictions, but has an appropriate
level of uncertainty in these predictions, it will
still be of benefit to the user – so long as
the uncertainty is displayed appropriately, as
has been described in this paper. The more
accurate the model becomes, the more useful
the feedback will be.

Particle filters/Condensation filters (see [15])
can be sonified in an analogous manner, each
of the particles in the filter being mapped to a
single audio grain. Such filters are widely used
in tracking and recognition tasks. For example,
the particle filtering gesture recognition system
described by Blacket al [16] is ideally suited
to a granular auditory display. The distribution
over potential models is mapped to the distri-
bution over waveforms, and the distributions
over phase and velocity map to distributions
over time inside those waveforms. Such a dis-
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play completely and accurately represents the
uncertainty present in the recognition system.

1) Helicopter Flight Simulation:As a con-
crete example of the application of these ideas
in challenging control situations, we have inte-
grated the predictive sonification into a com-
mercial helicopter flight simulation package.
We have used X-Plane1 as the underlying en-
gine because of its sophisticated flight models
for rotary-wing aircraft and the availability
of an extensive API for interfacing with the
simulator in real-time.

Helicopter flight is a well-studied example
of an interaction task which is known to be
challenging. Control of the aircraft is difficult
for several reasons: pilots must co-ordinate
controls with four degrees of freedom; there
is significant lag between input and aircraft re-
sponse; and the aircraft is dynamically unstable
(that is, it will not tend to return to a steady
state and must be continuously controlled to
remain stable).

There are certain states of the helicopter
which are desirable (such as hovering or for-
ward flight) which form a small subset of all
the possible motions the vehicle can make.
Representing the helicopter state as a point
in some state space, we can define a set of
goals (from the pilot’s perspective) as regions
in the helicopter state space. For example,
the helicopter might be represented asx =
[u v w p q r φ θ]T , whereφ, θ are the roll
and pitch, u, v, w are the linear velocities
and p, q, r are angular velocities. In this
representation,x = 0 corresponds to perfect
level hover.

We can definea priori densities over such
a state space corresponding to the desirable
regions of flight. It is then possible to apply the
previously described Monte Carlo propagation
and sonification technique. A suitable approxi-
mation to the system dynamics can be obtained
by taking local linearisations around the current

1http://www.x-plane.com/

state. This can be performed by perturbing the
state of the aircraft and measuring the response,
to obtain matricesA and B such that ẋ =
Ax + Bu, whereu is the control input (lateral
cyclic, longitudinal cyclic, collective and anti-
torque, [θ0 θls θlc θ0t]

T ). See [17] for a more
detailed explanation of these equations. As in
the ball-bearing case above, it is assumed that
u remains constant throughout the prediction
phase.

Setting the time horizon to around the re-
sponse time of a particular aircraft produces
an effective sonification of the potential future
states. This is only possible because of the
suitable representation of the uncertainty of the
model, as the linearisation-based predictions
are only accurate within a small region of the
state space. Other techniques which do not rep-
resent the uncertainty would produce feedback
which may lead to over-confident control and
subsequent instability.

In our implementation, a number of straight-
forward goals were created and the Monte
Carlo propagation/sonification algorithm was
applied to obtain samples at the time horizon.
Helicopter control tasks can be divided into a
control hierarchy, so that each high-level goal
is composed of some sub-goals, each of which
is sonified independently. For example, “hover”
is split into “level”, “zero velocity” and “zero
rotation”. In this case, the goal sounds were
chosen arbirtarily.

This demonstrates that the techniques de-
scribed can easily be applied to complex sys-
tems in a very straightforward way. The imple-
mentation of this simulation example requires
very little modification from the earlier exam-
ple described, despite the significant complex-
ity of the problem.

IV. CONCLUSIONS

We have presented a flexible and power-
ful technique for the sonification of time-
varying probability distributions in the context
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of continuous interaction. This display repre-
sents probabilities of hypothesized user goals
in a straightforward manner. In combination
with predictive models to display the distri-
bution of states at some point in the future,
the interaction properties of an interface can
be improved. We have applied this to both
desktop interaction tasks, in the form of gesture
recognition, and to nonlinear control problems.
Any interactive system where some type of
Monte Carlo sampling can be applied can be
sonified in this manner.
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