
Hex: Dynamics and Probabilistic Text Entry

John Williamson1 and Roderick Murray-Smith1,2

1 Department of Computing Science, University of Glasgow,
Glasgow G12 8QQ, Scotland, UK
jhw,rod@dcs.gla.ac.uk

2 Hamilton Institute,
National Univ. of Ireland, Maynooth, Co. Kildare, Ireland

Abstract. We present a gestural interface for entering text on a mobile device
via continuous movements, with control based on feedback from a probabilistic
language model. Text is represented by continuous trajectories over a hexagonal
tessellation, and entry becomes a manual control task. The language model is
used to infer user intentions and provide predictions about future actions, and
the local dynamics adapt to reduce effort in entering probable text. This leads to
an interface with a stable layout, aiding user learning, but which appropriately
supports the user via the probability model. Experimental results demonstrate
that the application of this technique reduces variance in gesture trajectories, and
is competitive in terms of throughput for mobile devices. This paper provides a
practical example of a user interface making uncertainty explicit to the user, and
probabilistic feedback from hypothesised goals has general application in many
gestural interfaces, and is well-suited to support multimodal interaction.

1 Introduction

Text entry is an important part of all human computer interfaces, and is particularly im-
portant for communication between humans via computer. However, entry on mobile
devices can be problematic compared to established keyboard-based desktop systems.
The restricted size and reduced processing power of mobile devices, and the changing
contexts in which the devices are used are all obstacles to efficient text entry. Current ap-
proaches include virtual keyboards [1], handwriting recognition [2], and gesture-based
interfaces; the latter is of interest here.

Various interfaces for gestural text entry have been devised, including fixed layout
approaches such as [3] and [4], and dynamic layout approaches, as in Dasher [5] and in
[6]. Of these, only the latter systems support a probabilistic model for increasing accu-
racy and throughput. Support for a probabilistic model is vital for optimal performance;
in particular the best use of the limited bandwidth available can be made only if the
uncertainty in language is adequately represented.

Systems that dynamically optimize letter layouts can impair learning, as the con-
stantly changing interface lacks the stability needed to learn to perform automatic move-
ments. Although initial learning times may be very short, the transition from a novice to
an expert user is often slow or impossible. At the novice level, the user is totally depen-
dent on feedback, while at an expert level, control is more open-loop with rapid, learned

R. Murray-Smith, R. Shorten (Eds.): Switching and Learning, LNCS 3355, pp. 333–342, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

334 John Williamson and Roderick Murray-Smith

responses producing desired control actions. If the configuration changes significantly
with varying contexts, learning and producing such automatic high-speed responses is
more difficult.

In this paper, we describe a system which uses continuous gestures to produce
text. The handling qualities of the system are dynamically altered according to a time-
varying probability model. The gestures for letter sequences remain stable, supporting
user learning and high-speed, open-loop gesturing. However, the changing control prop-
erties reduce the effort required to choose highly probable sequences, and so there is a
direct relation between the information content of a sequence and the effort that must
be expended by the user.

2 Design

2.1 Layout

Each symbol is coded as a pair of primitive gestures, these “gestures” being movements
in one of six directions, allowing thirty-six symbols. Such a division leads to a hexago-
nal layout, with two stages: selecting a letter group and selecting a letter. As hexagons
form a regular tiling, gestures for letter sequences are represented as paths through
such a plane (see Figure 1). Recognition involves selecting points in space such that
the Voronoi tessellation (using the L2 norm) is hexagonal. Crossing cell boundaries in
this tessellation triggers transitions in a finite-state model, which outputs symbols in
response.

Fig. 1. The hexagonal layout. Each letter is assigned to a group, within which it is
associated with a particular edge. In this example, producing “o” requires an upwards
then up-right movement.

2.2 Control

The interface can be controlled with a number of input devices; mice and accelerom-
eters are used in the prototypes presented here. The tessellation must be effectively
unbounded to permit all combinations of symbols to be entered, and so input deflec-
tion is mapped to velocity allowing apparently infinite range of movement. A nonlinear

Hex: Dynamics and Probabilistic Text Entry 335

(a) of (b) was (c) be (d) we

(e) little (f) am (g) take (h) side

Fig. 2. Eight common English words, and paths through the hexagonal space that will
produce them. These paths are generated via cubic splines (see Section 2.5)

.

transfer function, with a dead-zone around zero (see [7]) is used to help stabilize the
control.

The handling qualities of the system are manipulated by simulating a nonlinear
landscape on the selection plane. The local system dynamics are altered by a vector
force-field which is computed from the current probabilities. This field is conditioned
on the current context, where the context may include position, velocity, acceleration,
and the probability of a letter given the current prefix. Given the state x of the system,
we have

ẋ = A(c)x + B(c)u (1)

where u is the control action, and A(c) and B(c) are context-varying state and control
matrices, conditioned on the context c.

The force vectors require greater control effort on the part of the user to move into
low probability areas; this can be thought of as a system of hills and valleys guiding the
user away from improbable regions of the state space.

Given six discrete probabilities for each possible transition, p1, .., p6, the force at
any point is given by a function with squared-exponential decay from the vertices. Each
force is applied from the two vertices which form the boundary across which the tran-
sition can occur. The magnitude of the force applied at each point is given by:

336 John Williamson and Roderick Murray-Smith

f =
k

2

∑

i,j

e
d(vi(j))

2

s pi (2)

where d(vi(j)) is the Euclidean distance from the jth (j = 1..2) vertex of the ith (i =
1..6) edge, k is a constant scaling the magnitude of the forces, and s is a constant
specifying the width of the density around the vertex.

An example landscape is shown in Figure 3, after “q” has been entered, which shows
the deep valley towards the letter group containing “u”.

In addition to this field, fixed forces are applied at the vertices, repelling the user
from these points. This limits ambiguous transitions, and forces the user to make a con-
scious choice at these decision points. These forces are applied as above, having squared
exponential decay, but with constant magnitude. The forces act along the direction from
the user to the vertex, avoiding the slingshot effect that would occur if the forces were
normal to the density.

0
20

40
60 0

20

40

60

−20

0

20

0 20 40 60
0

10

20

30

40

50

60

70

Fig. 3. The vector field (right) produced after the letter “q” is entered, and its magnitude,
shown as the surface plot on the left. The group boundary leading to “u” is at the top of
these diagrams.

2.3 Probability Model

A simple language model (based upon partial predictive matching, see [8, 9]) is used to
produce p(letter|prefix) (referred to as p(l|pr)) on a per-word basis. A tree with proba-
bility information is generated from a corpus (in this case texts from Project Gutenberg
[10]). For simplicity, no grammar or word-level model is used, although this would be

Hex: Dynamics and Probabilistic Text Entry 337

likely to improve performance significantly [11]. More complex language models can
easily be incorporated in this framework.

The probability model is extended to include the dynamics of the cursor. The veloc-
ity and acceleration of the cursor are numerically estimated. The probability of heading
into a hexagon is then given by

cos θ + 1
2

, (3)

where θ is the angle between the movement vector and the center of the hexagon being
tested. The probability of each hexagon is given by

p(h) = p(h|pr)p(h|v)p(h|a). (4)

If a transition into hexagon h represents a single letter lh then

p(h|pr) = p(lh|pr), (5)

otherwise

p(h|pr) =
6∑

i=1

p(lhi|pr), (6)

where lhi is the ith letter in the letter group selected by a transition into h.

2.4 Autocompletion and Prediction

Potential autocompletions can be predicted using Monte-Carlo sampling. Starting from
the current prefix a potential symbol is selected randomly, weighted according to p(l).
This letter is concatenated to the prefix, and the process repeated until the end-of-word
symbol is produced. The probability of the sequence is evaluated as a by-product of this
process.

Each of these word/probability pairs is stored in a list ranked by probability. The
sampling is repeated k times, with k ≈ 300 in the current implementations. The top
autocompletion is then presented, and the autocomplete action can be initiated either by
a specific button press (in the case of a mouse) or a simple shake gesture (for orientation
sensors).

The display can show the path which would generate the current autocomplete
possibilities. Fitting a cubic spline through the medians (the centers of edges) of the
hexagons gives a smooth path which will generate a given letter sequence. Displaying
these splines for the top autocompletes shows the paths of possible completions, giv-
ing a background awareness of the “word density” at any point in state space. It also
facilitates the learning of smooth trajectories for words. We are currently extending this
feedback to an audio display, based on ideas we presented in [12], where we describe
a system for audio display of time-varying probabilities. The use of audio is important
for mobile devices, where screen space is at a premium, and users visual load is often
already high.

338 John Williamson and Roderick Murray-Smith

2.5 Layout Optimization

The layout used in preceding examples was chosen to aid learning , by grouping letters
in a logical manner (such as grouped vowels). Given a source corpus, it is possible
to optimize the layout to minimize some cost function, given a model of the user’s
movement. The cost of a particular layout is

ct =
n∑

i=1

p(wi)c(wi) (7)

where n is the number of words in the dictionary, and c is the cost for each word. For
the sake of computational efficiency implementations prune the cost evaluation, letting
n be the top ranked few hundred words from the corpus.

The cost function used should minimize some aspect of effort on the part of the
user; here we penalize the sum of squared j-th derivatives of the trajectory representing
the word, i.e we have:

c(wi) =
∫ t

0

(
αj

(
djx

dtj

)2

+ βj

(
djy

dtj

)2
)

dt. (8)

In the implementations the third derivative is penalized. This is based on a minimum-
jerk model [13], in contrast to the linear-segment model proposed in [14]. Finally, a
model of the user’s movement is required; we approximate it with a cubic spline path.
This simple approximation is justified experimentally in Section 3.1. We then numeri-
cally optimize the layout to minimize ct.

2.6 Implemenations

The system has been implemented running on a desktop PC with a mouse and with
an InterTrax accelerometer, and on the PocketPC platform with an accelerometer (see
Figure 4).

3 Results

In throughput testing, one of the authors achieved around 10–12 words per minute with
earlier versions of the system. This is the rate for perfect transcription of a hundred
words of written text (rather than groups of five characters per minute), including error-
correction time. In this case, the user had around 30 hours of use with the layout used
for the test. Speeds of around 17wpm are achievable with current versions, for free-
form text entry. It should be borne in mind that the layout used for these tests was not
optimized (see Section 2.5).

3.1 Spatial Effects

Figure 5 shows twenty trajectories for the word “hello”, as performed by one of the au-
thors as force model is adjusted. The four experimental conditions are: forces applied as

Hex: Dynamics and Probabilistic Text Entry 339

Fig. 4. The system running on Cassiopeia E115 with a miniature accelerometer

previously described; forces not applied; forces applied with double magnitude; forces
applied as normal but with probabilities inverted.

Also shown is a cubic spline fit through the medians of the hexagons. It is apparent
that the spline fit is a reasonable approximation; the cubic spline is within the distri-
bution of points on the trajectory for most of the path. Exceptions occur at significant
decision points where the user follows a less constrained path.

The intention of the force model is to increase accuracy and speed in performance.
If the hypothesis that accuracy would increase is to be verified, then the distribution of
the trajectories should be narrower for the cases where forces are present than when
they are not. This can be seen when comparing Figure 5(a) (no forces) with Figure
5(b) (with forces). Increasing the forces should amplify these effects; this is apparent in
Figure 5(c).

To illustrate the effect of the choice of language model on the performance of the
system, Figure 5(d) shows the result of inverting the probabilities in the language model
(p becomes 1 − p). This results in a significant increase in the deviation from the ideal
path, particularly towards the end when the model is confident of its predictions, and so
is opposing most strongly. The vertex and friction forces are as in the other tests, and
so all changes of performance can be attributed to the change in the language model.

3.2 Temporal Effects

The right-hand panel in Figure 5 shows the effect of the forces on the timing of the ges-
ture. Without forces applied (Figure 5(b)) the path is smooth, without any significant
pauses or accelerations (except at the start). The two runs with forces applied normally
and at double strength show a strongly periodic movement. This periodicity is signif-
icantly diminished in the example with inverted forces, even though the forces are of
the same magnitude as Figure 5(a). This enforced periodicity may be due either to a
change in the control strategy pursued by the human, or may simply be a by-product of
the changing system dynamics; more testing will be required to separate these issues.

340 John Williamson and Roderick Murray-Smith

(a) No forces applied

(b) Forces applied as described previously

(c) Forces with double magnitude

(d) Forces with probabilities inverted

Fig. 5. Trajectories from twenty repetitions of the gesture for “hello” with varying
forces. On the left panel, dashed lines show measured trajectories, circles indicate the
centers and medians of the hexagons, and the solid line indicates a cubic spline fit
through the medians. The right panel shows a density plot produced by summing each
of the data points, after convolving with a smoothing window, onto a mesh (higher den-
sity areas are lighter). When velocity is lower the local density will increase, assuming
equal path density.

Hex: Dynamics and Probabilistic Text Entry 341

Whichever is the case, it is a potentially powerful feature. A periodic interface al-
lows for task interleaving; this is important for mobile devices where interaction may be
occurring while occasional attention is required elsewhere. The periodicity of motion
may be a useful metric for estimating performance in an adaptive system – it seems
possible that confident users will produce more regularly timed movements than users
who are relying more heavily on feedback control. Rhythmic movement can also be of
use in feedback presentation, particularly in the audio modality, allowing for structured
output which requires less constant attention.

4 Conclusions

We have created a text entry system based on continuous gestures performed on a reg-
ular tessellation, and demonstrated how dynamically altering the handling qualities of
the system given a probabilistic model of context can improve performance. Testing
shows that the variance of trajectories for probable sequences can be reduced using this
method. Further systematic user trials will be required to establish the effects at the
various stages of learning.

This control-based approach supports users without constraining them, resisting low
probability actions but not preventing them. This creates a correspondence between the
information content of a sequence and the expenditure of energy on the part of the
user. It also facilitates a smooth transition from unskilled, feedback-dependent users, to
skilled users performing automatic, open-loop movements.

Our system uses the probability of the hypothesised goals compatible with the cur-
rent context, to provide feedback directly to the user or by adapting the local dynam-
ics of interaction. This is a general technique of interest to the whole area of gesture-
interface design, improving throughput and supporting exploration and learning in new
users.

Acknowlegements Both authors are grateful for support from EPSRC grant Mod-
ern statistical approaches to off-equilibrium modelling for nonlinear system control
GR/M76379/01, and Audioclouds: three-dimensional auditory and gestural interfaces
for mobile and wearable computers GR/R98105/01. The Multi-Agent Control Research
Training Network EC TMR grant HPRN-CT-1999-00107. We thank Xsens for the use
of the P3C accelerometer.

References

[1] Kolsch, M., Turk, M.: Keyboards without keyboards: A survey of virtual keyboard imple-
menations. In: Proceedings of Sensing and Input for Media-centric Systems. (2002)

[2] Plamondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: A comprehen-
sive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000)
63–84

[3] Mankoff, J., Abowd, G.D.: Cirrin: A word-level unistroke keyboard for pen input. In: ACM
Symposium on User Interface Software and Technology. (1998) 213–214

[4] Perlin, K.: Quikwriting: Continuous stylus-based text entry. In: ACM Symposium on User
Interface Software and Technology. (1998) 215–216

342 John Williamson and Roderick Murray-Smith

[5] Ward, D.J., Blackwell, A.F., MacKay, D.J.C.: Dasher - a data entry interface using contin-
uous gestures and language models. In: UIST’00. (2000) 129–137

[6] Bellman, T., MacKenzie, I.S.: A probabilistic character layout strategy for mobile text entry.
In: Proceedings of Graphics Interface ’98. (1998) 168–176

[7] Jagacinski, R., Flach, J.: Control theory for humans : quantitative approaches to modeling
performance. L. Erlbaum Associates, Mahwah, N.J. (2003)

[8] Cleary, J., Witten, I.: Data compression using adaptive coding and partial string matching.
IEEE Transactions on Communications 32 (1984) 396–402

[9] Cleary, J., Teahan, W., Witten, I.H.: Unbounded length contexts for ppm. In: Proceedings
DCC’95. (1995) 52–61

[10] Hart, M.: Project gutenberg (2003) Available at http://promo.net/pg/.
[11] Lesher, G., Rinkus, G.: Leveraging word prediction to improve character prediction in a

scanning configuration. In: Proceedings of the RESNA 2002 Annual Conference. (2002)
[12] Williamson, J., Murray-Smith, R.: Audio feedback for gesture recognition. Technical Re-

port TR-2002-127, Dept. Computing Science, University of Glasgow (2002)
[13] Flash, T., Hogan, H.: The coordination of arm movements: an experimentally confirmed

mathematical model. Journal of Neuroscience 5 (1985) 1688–1703
[14] Isokoski, P.: Model for unistroke writing time. In: CHI. (2001) 357–364

	Introduction
	Design
	Results
	Conclusions

