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ABSTRACT
This paper presents a systematic and general technique for
establishing a set of motions suitable for use with sensor
systems, by drawing performable and measurable motions
directly from users. It uses reinforcement which rewards
originality to induce users to explore the space of motions
they can perform. A decomposition of movements into mo-
tion primitives is constructed, among which a meaningful
originality metric can be defined. Because the originality
measure is defined in terms of the sensed input, the result-
ing space contains only movements which can both be per-
formed and sensed. We show how this can be used to eval-
uate the relative performance of different joint user-sensor
systems, providing objective analyses of gesture lexicons
with regard to the technical limitations of sensors and hu-
mans. In particular, we show how the space of motions
varies across the arm for a body-mounted inertial sensor.

ACM Classification Keywords
H.5.2 [Information Interfaces And Presentation]: User Inter-
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INTRODUCTION
“At Sea Life Park we shaped creativity in two dolphins
[...] by reinforcing anything the animals did that was
novel and had not been reinforced before. Soon the
subjects caught on and began “inventing” often quite
amusing behaviors.”

This quote, from Karen Pryor’s book [13] on reinforcement
training for animals, illustrates an unusual application of pos-
itive feedback: promoting creativity by rewarding novel be-
haviour. Reinforcement is often used to shape behaviour
into specific forms, narrowing behaviours down to a tem-
plate. But it can be used for the opposite effect; to promote
the discovery of new behaviours by rewarding originality. In
this paper we explore how this strategy can be used to map
the capabilities of a joint user-sensor system by extracting a
space of useful motions directly from users themselves.
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The purpose of these explorations is to derive a systematic
method for studying the capabilities of input devices in con-
text. There is now an enormous and ever-expanding diver-
sity of devices which capture movement for the purposes of
controlling a computer. From familiar pointing devices like
touch screens and mice to more esoteric vision based sys-
tems, pressure-sensing and inertial-sensing hardware, these
devices are incorporated into feedback loops where commu-
nication between human and computer can take place. With
the exception of brain-computer interfaces and a few other
bio-sensors (such as galvanic skin response), all of these
input devices, indirectly or otherwise, measure the effects
muscle activity for the purpose of determining intention.

It is challenging to work out how to most effectively design
new input systems, or how to best exploit the capabilities
of existing devices. There are a number of well-developed
specific interaction paradigms for different classes of input
device. Pointing movements, for example, have been ex-
tensively studied (e.g. [17], [11]) and there exists a range of
techniques for analysing performance and designing interac-
tions where pointing is practical. Static pattern-based “ges-
ture recognizers”, which match defined sensor sequences to
a set of symbols, have been widely explored for non-pointing
devices, especially inertial sensor and vision-based systems.
Scoditti et. al. [15], for example, lays out a taxonomy of
movements for accelerometer control from a symbolic lan-
guage perspective. Still other interaction paradigms use gen-
eral dynamical systems (of which pointing systems are an el-
ementary instance), such as the motion selection techniques
of Williamson et. al. [18] and Fekete et. al. [2]. Many input
techniques are under-exploited, however; capacitive sensor
arrays are often used to detect touches as a set of contact
points, but there is much more usable information that could
be extracted (e.g. from pose variations).

While these specific paradigms are very powerful and are es-
sential for the construction of working, usable systems, it is
interesting to consider how input mechanisms can be quanti-
fied in a broader sense, and how factors which influence the
use of these mechanisms can be analysed within a coherent
framework. This paper looks at the essential characteristics
of one aspect of input mechanisms – determining the space
of motions which are distinguishable and controllable, and
develops a very general technique for exploring, comparing
and quantifying these spaces.
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High reliability, low variability.
Low information capacity: few symbols but very precise.

Low reliability, high variability
Low information capacity: many symbols but imprecise

High reliability, high variability
High information capacity: many symbols and very precise

Figure 1: A sketch of variability and reliability. Imaginary distributions of sensor sequences projected onto a 2D plane are shown, where each
distribution represents one “symbol” and the shaded area shows the range of measured value for repeated performances. To have high information
capacity, there must be both variety and precision, so that there is a partition of the space which separates the symbols well.

Information, semantics and input devices
The quality of a user input system, in terms of its purely util-
itarian benefits, can be quantified by its information through-
put. The more information that is communicated, the better
the interface. This is the basis of many input device stud-
ies in HCI, such as those using Fitts’ Law [3] to estimate
the information capacity of pointing devices. This narrow
focus on information transfer rates excludes many impor-
tant factors in the quality of an interaction, including er-
gonomics, aesthetics, social acceptability, cost and physical
dimensions, but it captures the essential quality which dis-
tinguishes effective input systems from ineffective ones.

In our stance, there is a clear separation between the process
of communicating intention and the associated semantics.
Analysing interaction this way ignores the relation between
movements themselves and the meaning a system ascribes
to them; there is no consideration of whether flicking a fin-
ger is a more suitable operation than shaking a fist for some
particular purpose. In building concrete systems, exploiting
preconceived notions and metaphors inherent in human ac-
tivity is essential method to address aesthetic and subjective
aspects of interaction. But here we focus on a high-level
analysis of the limits of an input mechanism without regard
to metaphor or idiom. In this way we can separate, control
and measure factors such as encumbrance or social context
which impact upon the usability of an interactive system.

To be more precise, the sense of “input system” or “input
mechanism” as used here, is a system which encompasses
the combination of the involved human parts and the physi-
cal sensors. A system which uses accelerometers for sensing
motion of the hand is quite different from one that is attached
to a knee, and different still from a system which uses in-
frared proximity to sense motion of the hand, and these all
form separate input mechanisms.

For a one-dimensional signal, Shannon’s classic formula re-
lates the signal to noise ratio and bandwidth to the through-
put in an analog channel subject to additive white Gaussian
noise:

C = B log2

(
1 +

S

N

)
,

giving a transfer rate (capacity) of C bits per second from a
bandwidth (variability of the signal) B and a signal-to-noise
ratio (reliability or repeatability of the signal) S/N . Al-

though this simple relation is only true for one-dimensional
channels of a very specific type, the principles of variabil-
ity and reliability generalise to more complex interfaces. We
can thus split the analysis into two subproblems (Figure 1):

• Variability The “size” of the space of possible movements
that a user can achieve, or more specifically the subset of
the sensor measurements a user can reach. The larger the
repertoire of movements available, the more efficient the
communication will be.

• Reliability The precision with which actions can be re-
produced at will. The more precisely state sequences can
be reproduced – from the perspective of the sensors – the
more quickly information can be conveyed. If movements
have a variation which is not under the control of a user,
the information capacity of the channel will be diminished
as some movements will be indistinguishable.

Two further concepts flow from these two basic factors:

• Transmissibility How quickly and easily the skills re-
quired to interact with the system can be communicated
or discovered. This is affected by feedback from the sys-
tem and by the ease of learning movements from others,
and depends on factors such as similarity to previously
encountered interactions, and the affordances of the input
device.

• Recognisability How effectively the software can map
sensor sequences into classes that represent user inten-
tion. Even if the user can reliably generate a huge variety
of sensor sequences quickly and accurately, there must be
systematic way of mapping these onto useful actions.

Each of these aspects must be addressed when designing an
input mechanism or when evaluating its performance. Al-
though many of these issues can be addressed for specific
interaction styles (e.g. via Fitts’ law measurements for point-
ing devices), it would be useful to have more general tech-
niques which presuppose less about the interaction style to
be used. This is particularly the case for sensors for which
“traditional” mappings such as targeting are not appropriate.

This paper focuses on solving the first problem: establish-
ing the repertoire of motions which can be used for input.
This problem is tackled by constructing a decomposition of
movements into “motion primitives” which efficiently en-
code the current state and its local temporal variation. A
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similarity metric between these primitives is defined, and
an experimental protocol which rewards users for perform-
ing actions which maximise this metric is constructed, and
thus rewards users for exploring more of the potential mo-
tion space. The result is a map of possible motion primitives
for a specific user and input mechanism.

Gesture design
The problems of designing “gesture-based” interactions –
which often means any interaction involving non-traditional
input devices – have been studied widely. Many papers have
laid out strategies for creating gesture systems, sometimes
involving gesture creation by designers [20] and sometimes
involving user-generated gestures [10], [19]. Although these
studies are valuable in constructing viable gesture lexicons,
they often proceed without reference to the technical con-
straints of recognition.

What distinguishes the work presented here is the principled
analysis of spaces formed by the combined constraints of
users and the sensing hardware, but without regard to spe-
cific domains. The motion exploration techniques specifi-
cally identify the technical limitations of input mechanisms.
Any design process will have to incorporate domain-specific
constraints, but the analytic process we present provides a
solid foundation from which to work.

EXPLORING THE SPACE OF GESTURES
One of the major issues with any new input technique is es-
tablishing what we term a joint user-sensor space. In gen-
eral, the space that is measured by a set of sensors (for exam-
ple, a vector of pixel brightnesses, in a camera-based motion
capture system) is very different from the one in which users
are expressing themselves (which might be the position of
their fingertip relative to their torso). Motions, as measured
by the sensor are sequences in sensor space – the space de-
fined by the vector of values that a given sensor produces.
Users perform actions in user space, which is a more dif-
ficult concept to pin down; it clearly involves the muscular
system but motions are not usually imagined or controlled
as variations in joint angles or other physiological measure-
ments. It might best be defined as the space in which users
think they are controlling (i.e. an intentional space), and can
vary from task to task. The role of proprioception, optical
flow, and other sources of feedback are more relevant in the
control of action than the resulting physical state changes.

Many parts of the sensor space correspond to impossible
real-world configurations (in a camera system, imagine an
image of a user with multiple heads), and many motions that
can be performed cannot be sensed (for a camera, the posi-
tion of the finger when the relevant hand is occluded by the
other arm). Only those motions which are both possible and
can be sensed are communicative. These set of these mo-
tions form the joint user-sensor space and ideally a system
would use only motions within that set and would use mo-
tions from the whole of this set. These criteria will optimise
the information transfer, by minimising useless signals, and
by maximising the set of distinct signals that can be used.

Motion primitives: elements of gesture
Using a very liberal definition, a gesture can be considered
a deliberate movement for the purposes of communicating

[8]. The problem to be addressed can then be stated as iden-
tifying what set of “gestures” can be performed and sensed
reliably; those gestures which lie in the joint user-sensor
space. By quantifying this space, we can obtain the super-
set of all movements which could be used in a gesture-based
system. Gestures, in this general sense, are unbounded in
length. A gesture could last a few hundred milliseconds
or several minutes, and treating “complete” movements is
therefore difficult. The space of length-unbounded gestures
is obviously very large, and there is not an obviously correct
way to make like-for-like comparisons between motions of
different lengths.

If we imagine that gestures could be broken down into a set
of elementary units, so that any movement could be analysed
as the composition of those elementary “motion primitives”,
the problem of establishing a consistent and meaningful ges-
ture space would be much simpler. The simplest dissection
is to divide motions into equal length sections and analyse
these separately. For example, all motions could be split into
equal 0.1 second blocks and analysis carried out on these
sections, and assuming that gestures can be resynthesized
by concatenating these sections, the gesture space would be-
come a catalogue of these sections. In essence, we can form
a codebook of motion vectors. This concatenative approach
is merely the simplest of many approaches that could be en-
visaged, and for some types of motion (e.g. rhythmic mo-
tion, as discussed by Ijspeert et. al. [5]) there are more ele-
gant decompositions. The subdivision of generable motions
into components on which metrics can be defined is the key
to creating processes that can reward originality.

JOINT USER-SENSOR SPACES
There is not one constant joint user-sensor space; there are
many spaces and they are very variable in nature. Even if
the sensing hardware and interpreting software remain con-
stant, the human element of the interaction varies signifi-
cantly. Different people have quite different motions that
they are capable of and willing to make. Those who are
highly skilled in manual tasks may well have a richer range
of motions they can draw upon and greater precision in their
control of movements. An expert in martial arts might, for
example, have much greater control over the velocity pro-
files of their movements than someone who lacks such train-
ing. Those who have motor impairments will have access to
a smaller subset of the possible motion space. Individuals
will also vary over time, both on short scales (for example
as consequence of exhaustion) and on longer time scales (as
an effect of growth, weight change or age-related reduced
mobility). Capturing a systematic picture of the accessible
regions of the gesture space across population groups gives
designers a powerful tool with which to customize interfaces
to satisfy specific needs. We would like both to identify the
set of communicative gestures, and to map the qualities of
those within that set. These qualities might include the stren-
uousness of movement, or the subtlety of the gesture.

Physical constraints
Temporary physical constraints will also affect the space of
motions accessible. As an example, consider trying to op-
erate a gesture recognizer while carrying a heavy bag in
the gesturing arm. The effect of physical constraints, such
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as being seated versus standing, wearing constrictive cloth-
ing, or being constrained within a vehicle can also be mea-
sured. Some constraints will affect the reliability of move-
ment, rather than variability, by adding noise to the process,
and this will not be captured in a motion map. But many
constraints limit the range of movement and can be mapped
out in the joint user-sensor space.

Social contexts
There are also social constraints on gestures that can be per-
formed in different situations in front of different audiences
(see for example Rico and Brewster [14]). Movements which
are quite acceptable in private at home may not be so accept-
able on the pavement of a busy street. The effect of these var-
ious constraints on the input device at hand can be precisely
examined by comparing spaces where audiences are varied
and identifying which motions are excluded. For example, a
mobile phone with an accelerometer-based interface can be
evaluated to identify which motions are usable in a private
setting and which are then unreasonable in a public setting.

False positives and common movements
The consideration of the joint-user space also leads to exam-
ination of regions of the space rendered unusable because
they are too frequently performed inadvertently. Motions
which occur as part of everyday behaviour might be subtle
and unobtrusive, but it can be very hard for a system to dis-
tinguish between these movements executed as a deliberate
attempt to communicate and those which were not intended
to be recognised. Foot tapping is a good example; this is
a simple and unobtrusive movement, but a poor choice for
communication if used alone. People tap their feet idly and
suppressing this behaviour to restrict it only for input pur-
poses is burdensome. We will not treat this in the studies
presented, but it is well within the scope of the analytical
techniques presented here to map out such reserved spaces
by capturing motions during everyday activity and excluding
them from the available space.

Intuitiveness
The word “intuitive” is often used to describe interfaces with-
out a clear definition of what it implies. If we take the mean-
ing of intuitive to describe something which is familiar be-
fore it has been used, we can analyze input systems in terms
of which movements are spontaneously generated. By cap-
turing the exploration process, not just the set of commu-
nicative motion primitives, a picture of the motions which
the interaction inspires can be built up. If a new input mecha-
nism is proposed, and we wish to choose some set of motions
to use as controls, those which occur “naturally” – those
which are afforded by the physical construction of the input
devices or the feedback provided – will minimise the bur-
den of learning to control the device. This “seed set” can
be identified from the motions which are generated early
in the motion exploration process. Those motions which,
across a population, are only generated after other move-
ments have been exhausted are presumably less obvious than
those which are generated at the beginning. Primitives can
be ranked according to their “time of invention” and this
ranked repertoire can then be used either to design gestures
– by sequencing elements with low rank – or to test the in-

tuitiveness of a proposed gesture by computing the average
rank of its component primitives.

REINFORCEMENT FOR EXPLORATION
The basis of the exploration process is reinforcement learn-
ing, where the aim is to reward the novelty of a behaviour,
rather than its similarity to a desired behaviour. Rather than
shaping behaviour, we seek to draw candidate motions from
users’ minds, encouraging them to vary their movement as
much as possible. This is reminiscent of the “superstitious
perception” process discovered in Skinner’s early work with
pigeons. This demonstrated that animals could be condi-
tioned into generating very peculiar behaviours, if a rein-
forcer such as food, was released in a manner completely
unrelated to the behaviour [16]. Recent work by Gosselin et.
al. [4] built on this to obtain images of archetypal objects
by averaging the result of a selection process where subjects
culled a set of purely random images to include only those
resembling the imagined object. The Cybernetic Serendipity
system [12] is a very early example of a system – in this case
an installation – which responds specifically to novelty in in-
put, triggering the movement of mobiles when musical input
was sufficiently different from previous patterns the system
had “heard”.

Our system rewards users for novelty. The hypothesis un-
derlying this approach is that if users are reinforced when
they do something novel, they will eventually exhaust the
range of distinguishable behaviours. Obviously, the ability
to explore the space is dependent on the imagination of the
participants, and since the only feedback is related to nov-
elty, any variation must by driven by the user.

MODELLING
Any analysis of the joint user-sensor space must rely upon
some model of that space. Such a model is an assumption
about how we expect the user-sensor system to behave, and
this choice will constrain the results that can be obtained.
Although any analysis cannot be assumption free, we can
make the exploration as general as possible by making the
modelling assumptions as unrestrictive as possible.

The representation of the movement section should com-
pactly capture the nature of the movement; a trivial record-
ing of sensor values is very simple to implement but for most
sensors will require a great deal of data to represent what is
a much simpler underlying process. Identifying a reasonable
set of latent variables – compressing the representation – will
reduce the potential for “over-counting” the set of available
motions. The more compactly a representation can capture
the space of movements without distortion, the more mean-
ingful distance metrics in that space become.

Sequencing of primitives
The motion sequencing approach could, in its most trivial
form, be reduced to analysis of a sequence of static poses; in
the case of a camera system, this would be analysing video
as a “bag of frames”. This, however, ignores the fundamen-
tally dynamic nature of human movement. Human move-
ment is a continuous physical process driven by muscular
motion and a methodology which takes a static approach
greatly over-counts the space of possible motions, because
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feasible movements lie along smooth, achievable trajecto-
ries. A representation which captures temporal aspects is
essential to modelling the space of motions well.

Simply modelling the transitions between static poses is an
unsatisfactory way to map out the gesture space. We could
for example, identify a range of limb poses and ask users
to transition between random pairs. Even if the poses were
well-selected, this analysis would be dominated by transient
phenomena as static poses are left and entered, and would
fail to model the co-articulation between dynamic move-
ments. Dynamical models of human movement often ap-
proximate limb motion as a spring-like system ([6], [1]) which
have clearly continuous motion; a hand in oscillation cannot
be well approximated by transitions between static poses in
that cycle.

Polynomial approximation
One elementary and compact dynamical model is to repre-
sent the current state state along with (smoothed) time deriva-
tives. A limb measurement, for example, which included po-
sition, velocity, acceleration and jerk (the 3rd order deriva-
tive) can represent a wide variety of motions, and this rep-
resentation captures the physical essence of motion, if we
assume limb motion can be well-modelled by a linear differ-
ential equation over short periods of time.

We generally do not, however, want to assume a mapping
from sensor space to the physical movement space, as this
must necessarily be quite specific, and limits the generality
of the exploration technique. Instead, the motion vectors can
be represented directly as sensor values, along with their var-
ious derivatives. By dividing each one-dimensional signal
into segments, and fitting a polynomial to those segments,
motions can be represented in a simple form which encodes
the time-evolution in a physically-relevant way.

For sensors with very high inherent dimension (like cam-
eras), this is not a practical approach, and some pre-processing
must be applied to extract relevant features (e.g. by tracking
objects). Lower-dimensional sensors, such as accelerome-
ters, pressure sensors or styli can be directly mapped with-
out feature extraction. An extension of this technique would
be to automatically learn a low-dimensional manifold from
a series of sensor measurements, and then use this learned
low-dimensional mapping as the input to the motion explo-
ration system. Assuming that the mapping extracted rel-
evant latent variables, this would extend the technique to
very high-dimensional systems without having to construct
a manual model.

Similarity metrics
The exploration of the space hinges on rewarding users for
doing something novel. This requires a careful definition
of novelty, as once chosen, the experimental results will de-
pend upon this originality metric. One simple model is the
Euclidean distance between motion vectors. This, however,
performs poorly when the scales of different elements of the
sensor vector are widely distributed.

To calculate the novelty of the movement, a suitable similar-
ity metric is required. The choice of metric is an assump-
tion; we have chosen here to use the mean distance of the

nearest k neighbours using the Mahalanobis metric (or gen-
eralized interpoint distance). The Mahalanobis distance is
effective because it accounts for the differences in scale of
the various variables and linear interdependencies between
them (see Figure 2). Using the mean distance to the k near-
est neighbours mitigates the impact of outliers that might
affect the results if distance to the nearest point was simply
used.

Original space Whitened space

Figure 2: The Mahalanobis metric gives get a scale-independent mea-
sure. This is equivalent to decorrelating and rescaling data to a sphere
with unit covariance before comparing. The nearest k neighbours un-
der this metric are found, and the mean distance to them becomes the
originality value of that point. If this value is large enough then M∗

(green star) joins the repertoire.

Other scale-invariant metrics could also be used; the co-
sine metric

(
s = cos(θ) =

Mi·Mj

‖Mi‖‖Mj‖

)
might be effective

for high-dimensional spaces, but the Mahalanobis distance
is well-understood, robust and compensates for linear corre-
lations.

Testing the quality of models
Making assumptions about the nature of movements is in-
escapable in the construction of models. However, it is pos-
sible to evaluate the quality of these assumptions system-
atically. Given a concatenative model with fixed windows,
a data set can be processed with a range of windows and
movement models, and the model error can be compared
against the compression achieved (e.g. by considering the
rate-distortion curve). A model which concisely represents
the motions with minimal error provides an optimal space in
which to judge originality.

CONCRETE IMPLEMENTATION
To apply these techniques, we built a system for perform-
ing motion exploration using an inertial sensor. This sensor
can be attached to various body parts to sense motions of
those parts, and the system can map out motions available
across users and sensor locations. This system uses only
audio feedback as a reinforcer, so that participants do not
have to divert their visual attention. In our system, we have
defined a motion primitive as the measurement of vector of
sensor values at a point in time, along with a number of the
estimated derivatives of this action – the polynomial approx-
imation described above. This combined vector represents
a snapshot of the evolution of the sensor values at a partic-
ular time. A 4th order model was used, which captures the
current state of a sensor stream and its first three derivatives.
A least-squares fit of a polynomial of appropriate order is
performed on a sliding window. Derivatives of order greater

Session: Sensing + Sensible Interaction CHI 2012, May 5–10, 2012, Austin, Texas, USA

1721



than three are likely to be subject to poor fitting, and also
have less obvious significance as high order derivatives are
not something that humans are accustomed to controlling.

In the measurements presented, a 0.65 second running win-
dow was used, as a compromise between capturing the finest
details of movements and capturing movements of sufficient
magnitude to be useful for communication. This choice is
obviously an assumption, but this assumption is numerically
justified in the results section.

Implementation
The novelty detector captures data from a SHAKE SK71

inertial sensor, which provides 3-axis accelerometer, gyro-
scope and magnetometer outputs. The accelerometer, gy-
roscope and magnetometer measure in the range −6g – 6g,
−900 – 900 degrees/second and −0.2mT – 0.2mT respec-
tively, all with 12 bit resolution.

Figure 4: The SK7 inertial sensor, as mounted on the hand. The elastic
mounting minimises slippage.

Each sample therefore consists of a 9 element vector S =
[ax, ay, ax, gθ, gφ, gψ,mx,my,mz]. We do not attempt to
map these values into an alternative space (e.g. to map to de-
vice orientation), partly to reduce the assumptions required,
but also to capture all motions that the hardware can sense
(so including motions involving linear acceleration such as
flicks or lunges).

The inertial sensors are sampled synchronously at 32Hz; the
sensor streams are filtered on the hardware to bandlimit them
before decimating from an original sampling rate of 1024Hz.
A 32Hz rate is sufficient to capture the details of most limb
movement. At a 0.65s window length one motion primi-
tive is therefore extracted from 21 samples of data (the win-
dow time is adjusted slightly to be exactly 21 samples in
length). A bank of Savitsky-Golay filters are applied to the
signal, each designed to estimate one smoothed derivative
efficiently. These coefficients are concatenated into a single
vector M∗ =

[
âx,

ˆdax
dt ,

ˆdax
dt2 , . . .

]
with q = 9 × 4 = 36

dimensions, which represents the motion in sensor space.

When computing the novelty of a motion, we represent the
repertoire (or codebook) of distinct motions as a set of vec-
tors M1 . . .MN . These are the set of motions which the
“novelty detector” has determined are distinct enough to main-
tain. It is initially empty, and is populated as the motion cap-
1http://code.google.com/p/shake-drivers/

ture progresses. As described, the mean Mahalanobis dis-
tance to the k nearest neighbours is used; thus to compute
the distance between a new vector M∗ and an existing sam-
ple in the repertoire Mj , we compute

d(M∗,Mj) =
√

(M∗ −Mj)TΣ−1(M∗ −Mj),∀Mj ∈M,

where Σ is the covariance matrix of the repertoireM1 . . .MN .
We then find the k smallest distances d(Mj ,M

∗) and the
log mean of this, dµ(k)(M∗) = log 1

k

∑k
j=1 d(Mj ,M

∗), is
the similarity to the existing samples in the repertoire. If
dµ(k)(M

∗) > ∆, where ∆ is a threshold setting the “nov-
elty cutoff”, then the sample M∗ is added to the repertoire.
By adjusting ∆ and k the sparsity of the space, and thus the
time taken to exhaust it, can be controlled. ∆ is proportional
to a confidence interval on the interpoint distances.

In practice, calculating the matrix Σ, which represents the
covariance of the repertoire, is quite expensive, and is done
only when a number of new samples have been added to
the repertoire. The current implementation computes this
covariance matrix for every fifty new vectors added to the
repertoire. The matrix is initialised to a covariance matrix
estimated from a pilot trial; it is quickly replaced as the new
repertoire accumulates. As the covariance matrix is neces-
sarily updated during the motion capture, the similarity met-
ric changes slightly throughout the process. These changes
are gradual and result in a smooth variation in the original-
ity feedback. The adaptive nature of the metric maintains
reinforcement at a roughly constant rate over individuals.

Audio feedback: originality reward
The “reward” for novel movements is an increase in the ap-
parent liveliness of the audio feedback presented. When
a new element is inserted into the repertoire, the distance
dµ(k)(M

∗) is accumulated into a leaky integrator, which de-
cays exponentially at a constant rate. This leaky integra-
tor is fed to the audio output to produce the positive feed-
back for novel movements. We use a flexible granular syn-
thesiser to produce the feedback. The integrator output ad-
justs the density of grains and the spectral brightness of the
source waveforms such that more novel movements make
brighter, more intense sounds, which gradually decay away
to duller, sparser sounds as originality decreases. Eventually
the sound fades away to a low hum when no new vectors are
being added to the repertoire. The synthesiser is configured
to sample snippets of ≈ 40ms from a short excerpt of jazz.
This results in an aesthetically pleasant texture which can be
modulated continuously with a degree of subtlety.

EXPERIMENT
As an example of motion space analysis, an experiment was
conducted with the inertial sensor based exploration system.
The exploration was carried out in two conditions: condi-
tion A, with the sensor attached to the dominant hand; and
condition B, with the sensor attached to the arm just above
the elbow. The hypothesis is that the range of reasonable
motions should be smaller for the elbow than for the hand,
because the available degrees of freedom are substantially
lower. The experiment is designed to test whether the pro-
cesses presented here could quantify this difference reliably,
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Figure 3: The process of extracting motion primitives. A short window of the signal is extracted (a), lowpass filtered (b) (original dashed, filtered
in solid). An estimate of the value and derivatives at the central point is made (c) (for the lower blue curve in (b)). These coefficients become the
representation of that movement. Only one axis is shown in (c) for clarity; the motion vector is the concatenation of these coefficients for all axes.

0.65 seconds0.65 seconds

Figure 5: Self organizing map, showing the log density of points on the projected motion space for all participants across all conditions. The breakouts
show the video sequence for the nearest vector to that point, and the motion curves for that vector. The fitted curve (from the motion vector coefficients
Mi) is shown as a solid line, the true raw data as a dotted line, and the area between is shaded.
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Figure 6: Median root mean squared error of Savitsky-Golay fit ver-
sus “compression” (1/window length), computed for the entire dataset.
Choices near the origin represent a good trade-off between error and
compactness. The cubic, 0.65 second model used is shown as a black
star, near the optimum.

and to provide a pool of captured data for exploratory anal-
ysis.

The experiment was conducted in a laboratory. There were
N = 20 participants, 16 male, 4 female, recruited from
a pool of computer science students, with an age range of
18–40. All participants gave informed consent. The SK7
sensor pack was affixed with an elastic strap (see Figure 4).
This prevented the sensor from being moved relative to the
body and so eliminates symmetric motions where the same
movement is performed with the sensor axes in a different
alignment and also prevents users from performing “mo-
tions” such as dropping the device or throwing it into the
air. Participants were requested to keep their legs and torso
relatively steady and concentrate on moving their dominant
arm. We did not aim to completely suppress natural mo-
tion of the rest of the body, but to focus intentional move-
ment on the relevant area. The participants motions were
also recorded with a video camera. This is not used as in-
put, but the captured video stream is synchronized with the
SK7 sensor stream. This provides a visual reference for the
movements performed.

All participants completed both conditions in counterbal-
anced order. Each condition was conducted as a set of three
subtrials, lasting three minutes, with a break between each.
Each subtrial continued from the point the previous one left
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Figure 7: The total number of primitives versus time, for all partici-
pants. Measurements for condition A (hand) are shown as solid lines,
measurements for condition B (elbow) are shown as dashed. The graph
shows a polynomial fit to the true data; the original raw data is shown
as a dotted line for comparison.
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Figure 8: The “size” of space explored. This graph shows the log de-
terminant of the covariance matrix of vectors seen so far for each par-
ticipant log(|det(Σ)|). | det(Σ)| is proportional to the hypervolume of
the covariance ellipse; larger values indicate more of the space being
explored. A value of 0 (|det(Σ)|=1) means that the volume of the co-
variance ellipse was equal to that of the covariance of the entire data
set. The Box plot to the right shows the final distribution of values.

off, for a total of nine minutes of exploration in each con-
dition. The conditions were broken into subtrials to combat
fatigue from long performances. The implementation uses
k = 5 nearest neighbours and a value of ∆ = 1.50 for the
novelty cutoff.

ANALYSIS
In total, across both conditions, there were 203671 36 di-
mensional motion vectors captured from a total of exactly
6 hours of exploration. Figure 6 shows error against model
size for a range of polynomial orders and window lengths;
a 0.65 second cubic model is close to the optimum for low-
order polynomial models.

The number of unique vectors generated by each participant
in each condition is shown in Figure 7. The vectors gener-
ally asymptotically approach a value which varies by par-
ticipant, with a mean value ≈ 5000. Because the process

AJ JM NU

ELBOW

HAND

Figure 9: Individual (log) densities for a selection of participants. Up-
per row shows the maps for the elbow condition, lower shows the map
for the hand condition.

Figure 10: (left, red) Average total acceleration across the space of mo-
tions. The three smaller images below show the individual maps for the
x, y, z axes respectively. (right, blue) Average total angular velocity of
motions. The lower images show the maps for each of the three axes.

is adaptive (the covariance matrix is continuously recom-
puted), there is not a huge variation between the conditions.
This is to be expected, as the feedback is designed to fall off
at a roughly constant rate regardless of the absolute motion
space explored, in order to maintain user motivation. How-
ever, Figure 8 shows a plot of the estimated “volume” of
space explored in each condition; it is clear from this that
there was a much smaller portion of the space explored in
the elbow condition. This clearly supports the hypothesis
that the range of available motions is reduced in the case of
the elbow as compared to the hand.

Motion maps
The motion vectors forming the repertoire are difficult to vi-
sualise directly, primarily because of their high dimension.
The space can be more easily visualised by performing di-
mensional reduction to a 2D layout. In our analysis, we
have used a standard self-organizing map ([7], [9]) on the
whitened feature vectors to reduce the 36-dimensional vec-
tors to a 2D map. The maps used here are discrete 48×48 ar-
rays with a rectangular neighbourhood function. Each point
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Figure 11: (a,b,c,d) Union and intersection of all motion maps for the
two conditions. Each map is the sum/product of the normalised den-
sities for each participant. (e) Map coloured by average time of in-
vention; brighter areas were discovered later in the process. (f) Map
coloured by average energy in |G/s|. Brighter colours involve more
violent motion.

Figure 12: Movement energy (root-mean-square derivative of acceler-
ation), in G per second, versus Mahalanobis distance (linear regression
as a red line). There is a strong inverse correlation between how violent
a movement is and how likely users are to perform it.

on this map represents a vector in the original high dimen-
sional space, and the points are organized so that nearby vec-
tors on the 2D map are nearby in the high-dimensional space.
For consistency between plots, the dimensional reduction
was computed from all data recorded (across all participants,
and all conditions), and each separate condition/participant
map was obtained as a subset of this master projection. All
of the visualisations are thus directly comparable.

We constructed an interactive tool which uses the synchro-
nized video recordings to show snapshots of motions. This
tool finds the point on the map nearest the cursor, looks up
the index in the video and plays the relevant section, or gen-
erates a composite image for that motion. The composite
images show the moving parts of the frame in colour, fading
from purple to yellow, against a monochrome background.

Figure 5(a) shows a map of the space explored by all users.
Maps for individual participant/condition pairs can be pro-
duced; some examples are shown in Figure 9. The maps can
be coloured by objective measurements; Figure 10 shows
maps coloured by total acceleration and by total angular ve-
locity. Motions which involve twisting around the forward

axis can, for example, easily be picked out from these maps.
Figure 11(e) colours movements by time-of-invention (move-
ments that were generally found later are coloured brighter).
Comparing with Figure 10 it can be observed, for exam-
ple, that movements involving twisting tend to be discovered
later. Figure 11(f) shows a map the energy of movements
estimated from the root mean square derivative of accelera-
tion, where the derivatives are estimated from the raw data
corresponding to the vectors at that position. Figure 12 plots
this energy measure against Mahalanobis distance (i.e. how
close the motion was to the overall distribution of the reper-
toire). It can be seen that energetic movements are distinctly
rarer than calmer ones. Densities can also be formed from
the (continuous) intersection, union or difference of a pair of
maps; for example Figure 11(a) shows all motions that users
performed in the hand condition, while Figure 11(c) and (d)
shows movements performed by all users in the hand and
elbow condition respectively.

One notable qualitative result is that the motions on video
bear little relation to the sensor measurements. Arm move-
ments with very different scales can result in very similar
inertial sensor sequences and vice versa; the mapping be-
tween inertial space and human-centered space is complex
and non-obvious. This partially explains the difficulty in
constructing inertial sensor based interfaces beyond simple
metaphors such as shaking and tilting.

These analyses demonstrate how movement spaces can be
efficiently categorised and compared. Motions can be anal-
ysed with cross-referenced objective metrics to identify fea-
tures of interest or relevant trends. This study focused on
variations across body locations, but other variables of inter-
est, such as sensor types, demographics, social context, or
physical encumbrances are equally open to exploration.

Estimating information transfer rates
Our process estimates the repertoire of possible motions. It
identifies the variability of the channel, under the restrictions
of the motion primitive model. Measuring the information
capacity of an input system would require measures of the
variability and the reliability. Measuring reliability (the pre-
cision with which motions can be controlled or repeated) is
beyond the scope of this paper, but an analysis which could
identify reliability of motions across a motion space could
be combined with the techniques presented here to provide
bounds on information transfer rates.

Application
In applying these techniques, there are two essential ele-
ments: defining novelty and providing reward. We have
shown that simple modulation of responsiveness is a suffi-
cient reward to drive users to explore different behaviours.
The major challenge is deriving suitable novelty metrics, and
the key issue there is constructing a decomposition of sensed
data into comparable units which also capture the essence of
the communication. With many simple input mechanisms
the fixed time polynomial representation given here would
be suitable (e.g. with a pressure sensor) but other modali-
ties will require more careful definition of primitives which
compress sensed data into meaningfully comparable units.

Session: Sensing + Sensible Interaction CHI 2012, May 5–10, 2012, Austin, Texas, USA

1725



CONCLUSIONS
The exploration of potential input mechanisms is often nec-
essarily driven by ingenuity in imagining metaphors. When
a new avenue for input presents itself, interactive systems de-
signers have to conceive of ways of building an interaction
around the mechanism; conversely, input devices are often
designed to fit an established metaphor. While this is still
essential, the techniques given here extract maps of motion
primitives with only very limited assumptions and create a
platform for comparing and analysing input mechanisms.
Reinforcement of novelty is a systematic and straightfor-
ward way of identifying joint user-sensor spaces.

This approach does not provide a complete strategy for de-
signing for new input devices. Meaning must still be as-
cribed to gestures, which requires the imagination of design-
ers in creating idioms; recognition techniques must still be
created to categorize movements accurately; and the role of
feedback in the interaction process is unaddressed. How-
ever, the techniques laid out here present designers with a
palette of suitable elements which can be woven into an
interaction; provide measures for comparing the capabili-
ties of input mechanisms under different constraints; and
give implementers a suite of tools with which to rate and
dissect proposed gesture sets. A full information theoretic
analysis will require the development of techniques for sys-
tematically analysing the precision of movements across a
whole space. Probabilistic methods are increasingly being
used to analyse interaction, but such methods often require
a space over which measurements can be normalised. This
has been previously generally inaccessible, but the process
given here provides an efficient way of extracting a suitable
global space of movements.

We have shown here how the exploration process can be ap-
plied to an inertial sensor but these techniques are easy to
apply to other sensors. The techniques provide designers
with a rich set of exploratory and analytical tools for build-
ing movement-based systems. The decomposition of con-
tinuous gestures into simple primitives makes it possible to
systematically compare complete gesture spaces. The out-
puts of these analyses are well-founded objective measures
which necessarily take into account both the restrictions of
input devices and the limitations of the humans using them.
These can be used to compare contexts, populations, devices
and metaphors within a coherent framework.
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