
Determining general term weighting schemes for

the Vector Space Model of Information Retrieval

using Genetic Programming

Ronan Cummins and Colm O’Riordan

Dept. of Information Technology,
National University of Ireland,

Galway, Ireland.
E-mail: ronan.cummins@nuigalway.ie

colmor@it.nuigalway.ie

Abstract. Term weighting schemes play a vital role in the performance
of many Information Retrieval models. The vector space model is one
such model in which the weights applied to the document terms are of
crucial importance to the accuracy of the retrieval system. This paper
outlines a procedure using genetic programming to automatically deter-
mine term weighting schemes that achieve a high average precision. The
schemes are tested on standard test collections and are shown to per-
form consistantly better than the traditional tf-idf weighting schemes.
We present an analysis of the evolved weighting schemes to explain their
increase in performance. These term weighting schemes are shown to
be general across various collections and are shown to adhere to Luhn’s
theory as both high and low frequency terms are assigned a low weight.

1 Introduction

Information Retrieval (IR) deals with the retrieval of information according to
specification by subject. IR stems from traditional data retrieval and deals with
retrieving information from semi-structured or unstructured information sets
using natural language queries. With the advent of World Wide Web and the vast
increase in the quantity of information available, the need to retrieve information
based on a user’s query has become increasingly important. IR systems attempt
to return only documents that are relevant to a given information need. However,
the use of natural language in both queries and document sets leads to difficulties
in retrieving accurate information for the user due to a number of reasons -
e.g. ambiguity, synonomy and polysemy. An IR system must make an effort to
interpret the semantic content of a document and rank the documents in relation
to the user’s query.

The vector space model [14] is one of the most widely known and studied IR
models. This is mainly due to its simplicity, its efficiency over large document
collections and the fact that it is intuitively appealing. The effectiveness of vector
based models depend crucially on the term weighting applied to the terms of the
document vectors [13].



Founded in the early 1990’s, the Genetic Programming area [7] has grown
quickly and helped solve problems in a wide variety of areas including robotic
control, pattern recognition, music and synthesis of artificial neural networks.
GP is based on the Darwinian theory of natural selection [1], where individuals
that have a higher fitness will survive and thus produce offspring. These offspring
will inherit characteristics similar to their parents and, through successive gen-
erations, beneficial characteristics will flourish. GP can be viewed as an artificial
way of selective breeding.

This paper presents a Genetic Programming framework that artifically breeds
term weighting schemes for the vector space model. The next section introduces
some background material in both Information Retrieval and Genetic Program-
ming. Some past approaches of evolutionary computation techniques applied to
IR are also reviewed in this section. Section three describes the system and ex-
perimental design. Results and analysis are discussed in detail in section four.
Finally, our conclusions are discussed in section five.

2 Background

This section presents background material for the vector space model and genetic
programming. Traditional term weighting schemes are introduced and Luhn and
Zipf’s contribution to IR is summarised. The basic genetic program is outlined
and some existing evolutionary approaches to the IR problem are briefly re-
viewed.

2.1 Standard term weighting approaches

The classic vector space model represents each document in the collection as a
vector of terms with weights associated to each term. The weight of each term
is based on the frequency of the term in the documents and collection. The
query (user need) is also modelled as a vector and a matching function is used
to compare each document vector to the query vector. Once the documents are
compared, they are sorted into a ranked list and returned to the user. The tf-idf
family of weighting schemes [13] is the most widely used weighting schemes for
the vector space model. The term-frequency (tf) is a document specific local
measure and is calculated as follows:

tf =
rtf

max freq
(1)

where rtf is the actual term frequency and the max freq is the frequency of the
most common term in the document. The max freq measure is used as the nor-
malisation factor because longer documents tend to have more terms and higher
term frequencies. The idf part of the weighting scheme is an Inverse Document
Frequency measure [16]. The main heuristic behind the idf measure, is that a
term that occurs infrequently is good for discriminating between documents.
The idf of a term is a global measure and is determined by using the formula:



idft = log(
N

dft

) (2)

where N is the number of documents in the collection and dft is the number
of documents containing the term t. Therefore idft will be a larger figure for
terms that are rarer across the document set. The weight assigned to a term is a
product of tf and idf. One of the most common and simplest matching functions
of the vector space model is the inner-product measure and is calculated as
follows:

sim(di, q) =

t∑

k=1

(wik × qk) (3)

where q is the query, di is the ith document in the document set, t is the number
of terms in the document, wik is the weight of term k in document i and qk is
the weight of term k in the query.

It has been shown by Zipf [18] that the frequency of terms in a collection
when placed in rank order approximately follows a log curve . Furthermore, it
was proposed by Luhn [10] that terms that occur too frequently have little power
to distinguish between documents and that terms that appear infrequently are
also of little use in distinguishing between documents. Thus in Fig.1, the bell-
shaped curve of the graph relates the frequency of terms to their distinguishing
(resolving) power.

Fig. 1. Zipf’s law and Luhn’s proposed cut-off points [15]



2.2 Genetic Programming

GP is a heuristic stochastic searching method that is efficient for navigating
large, complex search spaces. The advantage of this evolutionary approach is
that it can help to solve problems in which the roles of variables are not correctly
understood. GP is often used to automatically define functions whose variables
combine and react in complex ways.

Initially, a random population of solutions is created. The solutions are mod-
elled in a tree-like structure with operators as internal nodes and operands as
leaf nodes. These nodes are often referred to as genes and their values as alle-
les. Each solution is rated based on how it performs in its environment. This
is achieved using a fitness function. Once this is done, reproduction can occur.
Solutions with a higher fitness will produce more offspring. Goldberg uses the
roulette wheel example where each solution is represented by a segment on a
roulette wheel proportionately equal to the fitness of the solution [3]. Reproduc-
tion (recombination) can occur in variety of ways. The most common form is
sexual reproduction where two different individuals (parents) are selected and
two separate children are created by combining the genotypes of both parents.
The coded version of a solution is called its genotype, as it can be thought of
as the genome of the individual, while the solution in its environment is called
its phenotype. The fitness is evaluated on the phenotype of a candidate solution
while reproduction and crossover is performed on the genotype. Once the re-
combination process is complete each individual’s fitness in the new generation
is evaluated and the selection process starts again. The algorithm usually ends
after a certain number of generations, after convergence of the population or
after an individual is found with an acceptable fitness.

Fig. 2. Example of crossover in GP



2.3 Evolutionary Computation applied to IR

There have been several approaches to adopting and applying ideas from evolu-
tionary computation in the domains of information retrieval. These vary in the
form of evolutionary algorithm used and also in the manner of their application.

Related work where a genetic programming technique is used to evolve weight-
ing functions which outperform the traditional tf-idf weighing schemes has pre-
viously been conducted [11]. Fan et al. [2] also adopt a genetic programming
framework to search for weighting functions and test them against more modern
weighting functions. However, these approaches lack a detailed analysis of the
weighting schemes presented.

A genetic algorithm approach to modifying document representations (a set
of keywords) based on user interaction has also been adopted [4]. By evolving sets
of weights for the document (i.e. evolving the representation), better descriptions
for the document in the collection can be found.

Horng and Yeh [6] extract keywords from a subset of relevant documents to
construct a query and use a genetic algorithm to adapt the weights to best suit
the relevant documents.

3 Design and Experimental Setup

The GP approach adopted in this work evolves the weighting scheme over a
number of generations. An initial population is created randomly by combin-
ing a set of primitive meaures (e.g. dft, rtf , N) using a set of operators (e.g.
+, -, ×, /). The average precision, used as the fitness function, is calculated
for each scheme by comparing the ranked list returned by the system for each
weighting scheme against the human determined relevant documents for each
query. Average precision is calculated over all points of recall and is frequently
used as a performance measure in IR systems. The matching function used in
all experiments is the inner-product matching function.

The three document collections used in this research are the Medline, CISI
and Cranfield collections1. The documents and queries are pre-processed by re-
moving standard stop-words and stemmed using Porter’s stemming algorithm
[12]. The weighting scheme applied to the query terms is a relative term fre-
quency weighting scheme.

All experiments are run for 50 generations with an initial population of 1000.
Experimental analysis shows us that the population converges before 50 genera-
tions when using the largest terminal and function set. The solutions are trained
on an entire collection and query set. They are then tested for generality on the
collections that were not included in training.

Trees are limited to a depth of 6 to promote generality as shorter solutions
are usually more general [8]. The aim is to discover general natural language
characteristics that will aid retrieval performance and not to learn characteristics
specific to a single document collection. The following tables show the function
and terminal sets used in our experiments:

1 ftp://ftp.cs.cornell.edu/pub/smart



Table 1. Terminal Set

Terminal Description

1 the constant 1
rtf raw term frequency within a document
l document length (no. of unique words in a document)
df no. of documents a term appears in
N no. of documents in a collection
max freq frequency of the most common term in a document
tl total document length (no. of words in a document)
V vocabulary of collection (no. of unique terms in the collection)
C collection size (total number of terms in the collection)
cf collection frequency (frequency of a term in the collection)
max c freq frequency of the most common term in the collection

Table 2. Function Set

Function Description

+, ×, /, - addition, multiplication, division and subtraction functions
log the natural log
sin, tan trigonometric functions
sqrt square-root function
sq square

4 Results and Analysis

The aim of the first experiment is to evolve general solutions for each of the
document collections and show that they are general by testing the solutions on
previously unseen data. The second experiment analyses the characteristics of
the evolved solutions.

4.1 Experiment one

This first experiment uses all of the terminal and function set in Table 1 and Ta-
ble 2. The depth of the solutions is limited to a depth of 6 to promote generality
as it is seen from prior experiments that solutions with higher depths are often
very specific to the training set. Solutions are evolved on each of the document
sets to compare the generality of the solutions. Table 3 shows the differences in
average precision for solutions when evolved on different document collections.

Firstly, it can be seen that the evolved weighting schemes show a significant
improvement in average precision over the tf-idf solution. It can also be seen
that the solutions achieved an average precision, on the collections on which
they were not trained, which is within 1% to 2% of the best solution found
on the collection on which they were trained (underlined). This shows that the
solutions are quite general and exploit general natural language characteristics.



Table 3. Average precision for best solutions found on each collection

Training set

Collection Docs Qrys tf − idf CISI Medline Cranfield

CISI 1460 76 20.74% 25.47% 24.86% 24.03%
Medline 1033 30 49.04% 56.74% 58.85% 56.69%
Cranfield 1400 225 37.44% 41.33% 41.85% 43.04%

The cf measure is seen to occur consistantly in the fittest solutions from this
experiement.

4.2 Experiment two

This experiment uses only the global measures in the terminal set. The global
part of the weighting scheme is evolved to investigate the properties of the cf
measure. Thus, the terminals used in this experiment are limited to cf, df, 1 and
N. The following is the best solution evolved on the CISI collection using only
these global measures:

gwt =
log(N/df)

√
df

× log(
cf

df
) × log(df) (4)

Table 4 shows the average precision for the CISI training collection and the
collections that were not included in training. We see that the precision of new
global scheme is consistantly higher than that of the idf measure.

Table 4. Average precision for gwt and idf for the CISI solution

Collection Docs Qrys idf gwt

CISI 1460 76 18.85% 22.25%
Medline 1033 30 46.63% 54.09%
Cranfield 1400 225 33.41% 37.06%

When the terms in the collection are placed in rank order, as shown in Fig.3,
the gwt weight of these terms is similar to that which Luhn predicted would lead
to identifying terms with a high resolving power. More recently, it has also been
predicted that a flattening of the idf measure at both high and low frequencies
would result in increased precision [5]. The reason for the flattening of the curve
at low frequency levels is due to the presents of the cf measure. An interesting
point to note is that the global weighting scheme identified completely ignores
terms that occur once or twice across a collection. This weighting scheme also
completely eliminates terms of all frequencies that are totally concentrated in



Fig. 3. gwt for terms placed in rank order for the CISI collection

one document (i.e. have a document frequency of 1). It also eliminates terms
that occur exactly once in every document and thus whose concentration is very
low. This has the effect of considerably reducing the size of the vocabulary of
the collection as typically words that appear once or twice represent about 65%
of the vocabulary of a corpus. It is interesting that these characteristics are
identified by evolutionary techniques to be advantageous, since they are used
in some feature extraction techniques like document-frequency thresholding [9].
The traditional idf measure also appears in the evolved global weighting scheme,
reinforcing its value in global weighting schemes.

Low frequency terms are poor discriminators because they cannot distinguish
between as many documents as higher frequency terms. Consider a query with 3
terms (t1, t2 and t3). If each term in the query has a document frequency of 1,
the maximum number of different sets of documents that can be distinguished
by the query is 4 (3 of the sets containing only one document), regardless of the
frequency of the term within the document. However, if the document frequency
of all 3 terms is greater than 4, the maximum number of different sets of docu-
ments that can possibly be distinguished increases to 8. Thus, if a query has k
terms, the terms with the highest resolving power have a document frequency
of N − k ≥ dft ≥ 2k−1 where dft is the document frequency of a term and N is
the number of documents in the collection. In Fig.4, C represents the document
collection and the sub-sets represent document sets that contain terms with the
same document frequency.

The idf part of the tf-idf scheme will incorrectly identify terms with a low
frequency as having a high resolving power. This weakness in the tf-idf scheme is
due to the fact that there is only one global measure. The tf measure counteracts
idf to some degree but only in a local context. In formulating a scheme for term
weighting, firstly terms within the collection with a high resolving power, must be



Fig. 4. Measuring the discriminating power of terms

identified. Then, documents containing these terms can be examined on a local
level so as to distinguish these documents from each other as best as possible.
This weakness with the idf measure is ammended by the global scheme presented
here. The cf measure can be viewed as a high pass filter and idf as a low pass
filter. The GP combines these in the correct way to create a scheme which will
correctly identify terms of a high resolving power.

5 Conclusion

The cf/df measure presented in this paper has been independently found by evo-
lutionary techniques to be advantageous in terms of average precision on general
document collections. This measure further strengthens Luhn’s hypothesis that
middle frequency terms contain a higher resolving power. The measure is shown
to increase average precision on general test collections over the standard solu-
tions. The results presented here also suggest that the evolved schemes work for
general natural language document collections.

In evaluating the success of this approach over similar approaches adopted
in the past [11], it is worth noting that the main reason for the increase in
performance is due to the inclusion of the collection frequency terminal. Future
work will include experiments on larger document collections.

References

1. Darwin, C.: Chapter 4, The Origin of the Species by means of Natural Selection,
or The Preservation of Favoured Races in the Struggle for Life. First Edition
(1859)



2. Fan, W., Gordon, M. D. and Pathak, P.: A generic ranking function discov-
ery framework by genetic programming for information retrieval. Information
Processing and Management, in press (2004)

3. Goldberg, D. E.: Genetic Algorithms in Search, Optimisation and Machine learn-
ing. (1989)

4. Gordon, M.: Probabilistic and genetic algorithms for document retrieval. Com-
munications of the ACM, 31(10): 1208-1218 (1988)

5. Greiff, W.R.: A theory of term weighting based on exploratory data analysis.
In Proceedings of the 21st International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’98), Melbourne, Australia,
August 24-28 (1998)

6. Horng, J.T. and Yeh, C.C: Applying genetic algorithms to query optimization in
document retrieval. Information Processing and Management: an International
Journal, v.36 n.5 (2000) 737–759

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

8. Kuscu, I.: Generalisation and domain specific functions in Genetic Program-
ming. Proceedings of the 2000 Congress on Evolutionary Computation CEC00,
IEEE Press (2000) 1393–1400

9. Lewis, David D.: Feature Selection and Feature Extraction for Text Categoriza-
tion. Proceedings of Speech and Natural Language Workshop (1992) 212–217

10. Luhn, H.P.: The automatic creation of literature abstracts. IBM Journal of
Research and Development (1958) 159–165

11. Oren, N.: Re-examining tf.idf based information retrieval with Genetic Program-
ming. Proceedings of SAICSIT (2002)

12. Porter, M.F.: An algorithm for suffix stripping. (1980)
13. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.

Information Processing & Management, 24(5) (1988) 513–523
14. Salton, G., Wong, A. and Yang, C.S.: A vector space model for automatic in-

dexing. Communications of the ACM, 18:613, 620 (1975)
15. Schultz, C.K.: H.P. Luhn: Pioneer of Information Science - Selected Works.

Macmillan, London (1968)
16. Sparck-Jones, K.: A statistical interpretation of term specificity and its appli-

cation in retrieval. Journal of Documentation, 28 (1972) 11–21
17. Yu, C. T., Salton, G.: Precision weighting - An effective automatic indexing

method. Journal of the ACM, 23(1) (1976) 76–88
18. Zipf, G. K.: Human Behaviour and the Principle of Least Effort. Addison-Wesley,

Cambridge, Massachusetts (1949)


