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Abstract. Evolutionary algorithms and Genetic Programming (GP) in
particular are increasingly being applied to the problem of evolving term-
weighting schemes in Information Retrieval (IR). One fundamental prob-
lem with the solutions generated by this stochastic, non-deterministic
process is that they are often difficult to analyse.
We develop a number of different distance measures between the pheno-
types (ranked lists) of the solutions (term-weighting schemes) returned
by a GP process. Using these distance measures, we develop trees which
show how different solutions are clustered in the solution space. Using
this framework we show that our evolved solutions lie in a different part
of the solution space than two of the best benchmark term-weighting
schemes available.

1 Introduction

Information retrieval (IR) is becoming increasingly more important as more and more
information is becoming available on-line in unstructured formats. Term-weighting
schemes are a crucial part of IR systems as they assign values to search terms based
on how useful they are likely to be in determining the relevance of a document. The
effectiveness of many approaches to IR depends crucially on the term weighting applied
to the terms of the document vectors [11]. Documents are scored in relation to a query
using one of these term-weighting schemes and are returned in a ranked list format.

Genetic Programming (GP) [8] is a biologically-inspired search algorithm useful for
searching large complex spaces. As GP is a non-deterministic algorithm it cannot be
expected to produce the same solution each time. Restart theory in GP suggests that
it is necessary to restart the GP a number of times in order to achieve good solutions
[9]. As a result, an important question regarding the solutions generated by the GP
process is: do all the good solutions behave similarly or is the GP bringing us to a
different area in the solution space each time?

This paper presents a framework for evaluating the distance between the ranked
lists produced from different term-weighting schemes in order to understand their rela-
tive closeness. These different term-weighting schemes are produced using a GP process.
We develop two different distance measures and show that they are useful in determin-
ing how term-weighting schemes are expected to perform in a general environment.



Section 2 of this paper introduces some GP terminology and existing approaches
using GP to evolve term-weighting schemes in IR. Section 3 introduces the two distance
measures developed. Our experimental setup is outlined in section 4, while section 5
discusses our results. Finally, our conclusions are summarised in section 6.

2 Genetic Programming for Term-weighting

Inspired by the theory of natural selection, the GP process usually starts with a pop-
ulation of randomly-created solutions (although some approaches seed the initial pop-
ulation with certain known solutions). These solutions, encoded as trees, undergo gen-
erations of selection, reproduction and mutation until suitable solutions are found.

Each tree (genotype) contains nodes which are either functions or terminals. The
phenotype of the individual is often described as its behaviour and is essentially the
solution in its environment. Selection occurs based on the fitness only. Fitness is de-
termined by the phenotype, which is in turn determined by the genotype. As one can
imagine, different genotypes can produce the same phenotype, and different phenotypes
can have the same fitness. For many problems in GP in an unchanging environment,
the same genotype will produce the same phenotype which will have the same fitness.
Bloat is a another common phenomenon in GP; where solutions grow in size without
a corresponding increase in fitness. Figure 1 shows how the GP paradigm is used to
evolve term-weighting schemes in IR. Mean average precision (MAP) is used as the
fitness function as it is a commonly used metric to evaluate the performance of IR
systems and is known to be a stable measure [1]. Furthermore, it has been used with
success in previous research evolving term-weighting schemes in IR [6, 13, 5].

Fig. 1. GP for Information Retrieval

2.1 Previous Research

GP techniques have previously been adopted to evolve weighting functions and are
shown to outperform standard weighting schemes in an ad hoc framework [6, 10, 13, 4].



However, in many of these approaches a critical analysis of the solutions evolved is not
presented. It is important to gain an understanding of where in the solution space the
best solutions lie.

In [7], differences in retrieval systems are analysed using the ranked lists returned
from the various systems. The distance between two ranked lists is measured using
the number of out-of-order pairs. Using this measure, it can be determined if two
systems are in essence the same (i.e. if they return the same ranked lists for a set of
queries). Spearman’s rank correlation and Kendall’s tau are two common correlations
that measure the difference between ranked sets of data. However, both Spearman’s
rank correlation and Kendall’s tau use all of the ranked data in a pair of ranked lists.

2.2 Parts of a Term-weighting Function

We separate the weighting scheme into three different parts and search each problem
space in turn. As a result, we evolve weighting schemes, which score a document d in
relation to a query Q, in the following structure:

score(d, Q) =
∑

t∈Q∩d

(gwt × ntf × qtf) (1)

where gwt is a global weighting, ntf is a normalised term-frequency and qtf is
the frequency of the term in the query. The global part weights terms on their abil-
ity to discriminate between documents. The normalised term-frequency consists of a
term-frequency influence factor which promotes documents with more occurrences of
a particular term. The aim of the normalisation part of the term-frequency is to avoid
over-weighting longer documents simply because they have more terms. Both bench-
marks used in this research fit this model as do most term-weighting schemes in IR.

3 Phenotype Distance Measures

In our framework, we measure the phenotype of our solutions by examining the sets
of ranked lists returned by a term-weighting solution for a set of topics on a document
collection (its environment). We develop distance measures for only the parts of the
ranked lists which affect the MAP (fitness) of a solution. This is important as the rank
of relevant documents is the only direct contributing factor to the fitness of individuals
within the GP process.

We introduce a measure which measures the average difference between the ranks
of relevant documents in two sets of ranked lists. This measure will tell us if the same
relevant documents are being retrieved at, or close to, the same ranks and will tell us if
the weighting schemes are evolving toward solutions that produce similar phenotypes.
Thus, the distance measure dist(a, b), where a and b are two weighting schemes, is
defined follows:

1

|R|

∑

i∈R

{ |lim − ri(b)| if ri(a) > lim
|ri(a) − lim| if ri(b) > lim
|ri(a) − ri(b)| otherwise

where R is the set of relevant documents for all queries used and ri(a) is the
rank position of relevant document i under weighting scheme a. The maximum rank
position available from a list is denoted by lim and is usually 1000 (as this is the



usually the maximum rank for official TREC runs). Thus, when comparing two schemes
this measure will tell us how many rank positions, on average, a relevant document
is expected to change from scheme a to scheme b. Although different parts of the
phenotype will impact on the fitness in different amounts (i.e. changes of rank at
positions close to 1000 will not change MAP significantly, while changes of rank in the
top 10 may change MAP considerably) they are an important part in distinguishing
the behaviour of the phenotype. The change in position at high ranks can tell us about
certain features of the weighting scheme and the behaviour at these ranks.

To measure the actual difference a change in rank could make in terms of MAP,
we modify the dist(a, b) measure so that the change in rank of a relevant document
is weighted on how it effects MAP. This weighted distance measure, w dist(a, b), is
similar to the measure described in [2] and is calculated as follows:

1

Q

∑

q∈Q

1

Rq

∑

i∈Rq
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where Q is the number of queries and Rq is the relevant documents for a query q.
This measure tells us how the change in rank of a relevant document will affect MAP.
It is entirely possible that two ranked lists could be considerably different yet have a
similar MAP.

We use these distance measures to develop trees which show the distance between
term-weighting schemes in the solution space. These trees are constructed from a dis-
tance matrix and a clustering algorithm (i.e. in our case the neighbour-joining method).
For example, if we have N entities or solutions, we can create an N×N distance matrix
using one of our distance measures. Then, using this distance matrix, we can then cre-
ate a tree using a suitable drawing package [3] which represents the data and provides
a visualisation of where our solutions lie in relation to each other.

4 Experimental Setup

4.1 Document Collections

The collections used in this research (Table 1) are subsets of the TREC collections
used in standard IR evaluations. The G-TRAIN collection is used to evolve the global
weighting scheme and the L-TRAIN collection is used to evolve the term-frequency
factor and the normalisation schemes. The L-TRAIN collection has longer documents
and the standard deviation (σ) of the document lengths is also greater, which provides
a more varied environment in which to evolve the term-frequency and normalisation
parts of the weighting scheme. The G-TRAIN collection consists of documents and
topics (queries) from the OHSUMED collection while the L-TRAIN collection consists
of documents and topics from the LATIMES collection.

4.2 GP Terminal and Function Set

The set of functions used for all experiments is F = {×, +,−, /, log, square, square-root}.
We ran the GP seven times for each of the three problems (global weighting, term-



Table 1. Document Collections

Collection #Docs #words/doc σ doc length #Topics #words/topic

G-TRAIN 35,412 72.7 59.24 1-63 4.96
L-TRAIN 32,059 251.7 259.79 301-350 9.9

LATIMES 131,896 251.7 251.90 301-350 9.9
FBIS 130,471 249.9 554.42 351-400 7.9
FT91-93 138,668 221.8 196.44 401-450 6.5
OH90-91 148,162 81.4 64.02 1-63 4.96

frequency and normalisation). Along with the two benchmarks, this gives us nine so-
lutions in total for each of the three problems. Tables 2, 3 and 4 show the terminal set
and some GP parameters for each of the three weighting problems.

Table 2. Global Weighting Terminals

Terminal Description

N no. of documents in the collection
df document frequency of a term
cf collection frequency of a term
V vocabulary of collection (no. of unique terms)
C size of collection (total number of terms)
0.5, 1, 10 the constants, 0.5, 1 and 10

Parameters 7 runs of a Population of size 100 for 50 generations

Table 3. Term-Frequency Weighting Terminals

Terminal Description

tf raw term-frequency of a term
0.5, 1, 10 the constants, 0.5, 1 and 10

Parameters 7 runs of a Population of size 100 for 50 generations

Table 4. Normalisation Weighting Terminals

Terminal Description

l document length (unique terms)
lavg average document length (unique terms)
ldev standard deviation of document lengths (unique terms)
tl total document length (all terms)
tlavg average total document length (all terms)
tldev standard deviation of total document lengths (all terms)
ql query length (unique terms)
qtl query total length (all terms)
0.5, 1, 10 the constants, 0.5, 1 and 10

Parameters 7 runs of a Population of size 200 for 25 generations

5 Results

5.1 Global Term-Weighting

We use two benchmarks against which to evaluate our evolved global schemes. The
first scheme is the idf as found in the Pivoted Normalisation scheme [12]. The second
scheme is the idfrsj as found in the BM25 scheme [12].



idf = log(
N + 1

dft

) idfrsj = log(
N − dft + 0.5

dft + 0.5
)

Table 5 shows the seven global weighting schemes (gwi) evolved on our training
data. We can see that all the evolved schemes are better than our benchmarks in
terms of MAP on our training set. Figure 2 shows the trees derived from the distances
between all the weighting schemes using both distance measures.

Table 5. % MAP for all global weightings on training data

Collection idf idfrsj gw1 gw2 gw3 gw4 gw5 gw6 gw7

G-TRAIN 19.83 19.98 22.05 21.98 21.60 21.69 20.11 20.11 20.75

idf-rsj

gw1

gw2

gw3
gw4

gw7

gw5gw6
idf idf-rsj

gw1

gw2

gw3

gw4

gw7

gw5gw6

idf

Fig. 2. Trees for global weightings using dist and w dist respectively

The better evolved schemes (gw1 to gw4) are clustered closer together. For exam-
ple, dist(idfrsj , gw1) is 34.32 which means that a relevant document moves on average
34.32 rank positions between the schemes. w dist(idfrsj , gw1) is 0.0415 which means
that the difference in terms of MAP could be as high as 4.15% MAP. Figure 2 seems to
indicate that the solutions are evolving towards ranked lists produced by gw1. Obvi-
ously, phenotypically close solutions will have a similar fitness but it is not neccessarily
true that solutions with a similar fitness will have a similar phenotype (i.e. ranked list).
On the test collections (Table 6), we can see that the differences in MAP between the
evolved weightings and both types of idf (which return very similar ranked lists) are
all statistically significant (p < 0.05) using a two-tailed t-test.

Table 6. % MAP for idf and global weightings on test data

Collection Topics idf idfrsj gw1 gw2 gw3 gw4 gw5 gw6 gw7

LATIMES 301-350 19.11 19.16 21.80 22.49 23.48 22.98 20.92 20.92 21.12
FBIS 351-400 10.30 10.41 15.16 15.68 14.55 14.33 11.61 11.61 11.72
FT91-93 401-450 27.38 28.15 27.52 27.86 27.56 27.92 27.04 27.04 27.10
OH90-91 1-63 21.68 21.72 24.96 25.69 25.02 25.28 22.96 22.96 23.68

p-value ≈ 213 Topics 0.272 - 0.004 0.0001 0.0001 0.0001 0.018 0.018 0.021



On the test data, we can see that gw1 to gw4 perform similarly. gw5 and gw6 still
perform slightly better than idfrsj , while gw7 still performs slightly better than these
again. As gw2 is very close to the our best solution (gw1) and is elegant in form, we
choose it to form part of the entire weighting scheme.

gw2 =
cf2

√
cf

df3
(2)

5.2 Term-Frequency Factor

To evolve the term-frequency influence factor we assume an average length document
(i.e. no normalisation). We evolve the term-frequency factor while keeping the global
weighting constant (i.e. gw2). We compare our evolved weighting scheme against the
Pivoted Document Normalisation and the BM25 scheme assuming average length doc-
uments (i.e. s = 0 and b = 0 respectively).

Pivs=0 = log(1 + log(1 + tf)).idf BM25b=0 =
tf

1.2 + tf
.idfrsj

Table 7 shows the MAP of the seven term-influence weighting function evolved on
the training collection. It is important to note that all our evolved functions are used
in conjunction with gw2.

Table 7. % MAP for benchmarks and gw2.tfi influences on training data

Collection Pivs=0 BM25b=0 tf1 tf2 tf3 tf4 tf5 tf6 tf7

L-TRAIN 14.10 21.74 26.91 24.37 26.92 24.37 26.82 27.16 24.37

Firstly, we can see that Pivs=0 performs poorly compared to BM25b=0. Also, we
can see that tf1, tf3, tf5 and tf6 have a similar MAP. tf2, tf4 and tf7 have the same
MAP but actually produce a constant weighting for the term-frequency part (i.e. no tf
terminal was present in the solution) and thus perform as a binary weighting. When we
look at the differences of the ranked lists produced, we see that the best term-influence
schemes (tf1, tf3, tf5 and tf6) behave similarly on the training collection. We can also
see that the difference between the benchmarks and our best evolved weighting scheme
is quite large at this stage. Taking the best term-frequency factor from the training
set (tf6), we can see that it can be simplified to show that it is basically a flattened
form of the term-frequency part of the BM25b=0 weighting. As an example of the
distances between solutions in the trees in Figure 3, dist(BM25b=0, tf6) is 84.41 and
w dist(BM25b=0, tf6) is 5.58%.

tf6 = log(
10

√

(0.5/tf) + 0.5
) = log(

√

200.tf

1 + tf
) (3)

As all of the best term-frequency schemes are very similar in behaviour and MAP
on both the training and test data (Table 8), we choose the best performing scheme
on the training data (tf6). Our term-weighting formula now consists of gw2.tf6.
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Fig. 3. Trees for term-frequency weightings using dist and w dist

Table 8. % MAP for benchmarks and gw2.tfi on test data

Collection Topics Pivs=0 BM25b=0 tf1 tf3 tf5 tf6

LATIMES 301-350 (m) 13.80 20.55 24.31 24.35 24.30 24.38
FBIS 351-400 (m) 13.40 13.47 19.44 18.96 19.50 19.06
FT91-93 401-450 (m) 23.62 33.03 32.35 33.36 32.97 32.37
OH90-91 1-63 (m) 18.40 25.36 28.79 28.66 28.64 28.80

p-value ≈ 213 Topics 0.001 - 0.001 0.001 0.001 0.001

5.3 Normalisation

To evolve the normalisation scheme we assume a normalised term-frequency. We com-
pare our full evolved weighting scheme against the full Pivoted Document Normalisa-
tion and BM25 schemes [12].

Piv =
log(1 + log(1 + tf))

(1 − s) + s. tl
tlavg

.idf BM25 =
tf

tf + (k1.((1 − b) + b. tl
tlavg

))
.idfrsj

We set s = 0.2 for the Pivoted Normalisation scheme and set b = 0.75 and k1 =
1.2 for the BM25 scheme as these are the default values. As the term-frequency is
normalised similar to the BM25 model, we evolve the normalisation factor ni in the
following formula:

gw2.nitf6 = gw2.log(

√

200. tf

ni

1 + tf

ni

) (4)

As a naming convention, we will call the complete scheme gw2.nitf6 where ni is the
normalisation factor chosen. Table 9 shows the MAP of the seven evolved normalisation
functions on the training data. We can see that n4 is the best normalisation scheme on
the training data and from Figure 4 we can see that n6 is one of its closest neighbours.

From the test data (Table 10) we can see that n4 and n6 perform similarly well
and are both significantly better than the best benchmark (BM25). Although, n7 has
a similar MAP on the training set we can see that it lies nearer some of the poorer
forming solutions. n7 performs only slightly better than n4 on two of the collections
as it has different features. We can see from both trees that n2 is phenotypically close



Table 9. % MAP for benchmarks and gw2.nitf6 on training data

Collection Piv BM25 n1 n2 n3 n4 n5 n6 n7

LOCAL-T 26.12 28.02 29.97 30.59 29.44 31.31 30.08 31.01 31.15

BM25

n4

n6
n1

n5
n2

n7

n3

Piv
BM25

n2

n3

n7

n1 n5

n6

n4

Piv

Fig. 4. Trees for normalisation weightings using dist and w dist

to n7. These two schemes are also comparable in terms of MAP on the test data. On
the test data, we can see that n7’s increase over BM25 is not statistically significant
(p < 0.05). As an example of the distances between solutions in the trees in Figure 4
dist(BM25, n4) is 71.42 and w dist(BM25, n4) is 9.47%. The p−values for the t-tests
also confirm much of these findings.

n4 =
l

lavg

× qtl

10
n6 =

√

log(qtl) × log(qtl) × l

lavg

n7 =
tl

tldev + l
qtl

(5)

Table 10. % MAP for benchmarks and gw2.nitf6 on test data

Collection Topics Piv BM25 n1 n2 n3 n4 n5 n6 n7

LATIMES 301-350 (m) 25.48 25.61 27.21 28.03 26.89 28.42 26.99 28.64 27.69
FBIS 351-400 (m) 17.92 19.53 19.99 21.20 21.12 23.00 22.07 24.26 21.13
FT91-93 401-450 (m) 34.47 35.33 35.40 36.31 36.12 36.23 35.36 36.57 36.33
OH90-91 1-63 (m) 26.76 28.08 28.07 29.77 29.70 29.66 28.13 29.84 30.08

p-value ≈ 213 Topics 0.006 - 0.613 0.090 0.206 0.043 0.455 0.011 0.070

6 Conclusion

We have introduced two metrics that measure the distance between the ranked lists
returned by different term-weighting schemes. These measures are useful for determin-
ing the closeness of term-weighting schemes and for analysing the solutions without



the need to analyse the exact form (genotype) of a term-weighting scheme. This frame-
work can be used for all types of term-weighting schemes and also fits well with the
GP paradigm.

The distance matrices produced from these distance measures can be used to pro-
duce trees. The two measures outlined are quite similar as the trees produced have a
similar form indicating that they provide similar information about relative distances
between phenotypes. The trees produced are also useful in determining the relative
performance of the solutions on general test data. We have also shown that the best
evolved weighting schemes lie in an area of the solution space that is different current
benchmarks schemes.

7 Acknowledgments

This work is being carried out with the support of IRCSET (the Irish Research Council
for Science, Engineering and Technology) under the Embark Initiative. The authors
would also like to thank the reviewers for their useful comments.

References

1. Chris Buckley and Ellen M. Voorhees. Evaluating evaluation measure stability. In
SIGIR ’00: Proceedings of the 23rd annual international ACM SIGIR conference
on Research and development in information retrieval, pages 33–40, New York,
NY, USA, 2000. ACM Press.

2. Ben Carterette and James Allan. Incremental test collections. In CIKM ’05: Pro-
ceedings of the 14th ACM international conference on Information and knowledge
management, pages 680–687, New York, NY, USA, 2005. ACM Press.

3. Jeong-Hyeon Choi, Ho-Youl Jung, Hye-Sun Kim, and Hwan-Gue Cho. Phylodraw:
a phylogenetic tree drawing system. Bioinformatics, 16(11):1056–1058, 2000.

4. Ronan Cummins and Colm O’Riordan. An evaluation of evolved term-weighting
schemes in information retrieval. In CIKM, pages 305–306, 2005.

5. Ronan Cummins and Colm O’Riordan. Evolving local and global weighting
schemes in information retrieval. Information Retrieval, 9(3):311–330, June 2006.

6. Weiguo Fan, Michael D. Gordon, and Praveen Pathak. A generic ranking function
discovery framework by genetic programming for information retrieval. Informa-
tion Processing & Management, 2004.

7. P. Kantor, K. Ng, and D. Hull. Comparison of system using pairs-out-of-order.
Technical report, Computer Systems Laboratory, National Institute of Standards
and Technology. Gaithersbury, M.D, 1998.

8. John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

9. Sean Luke. When short runs beat long runs. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2001), pages 74–80, San Fran-
cisco, California, USA, 7-11 2001. Morgan Kaufmann.

10. N. Oren. Re-examining tf.idf based information retrieval with genetic program-
ming. Proceedings of SAICSIT, 2002.

11. Gerard Salton and Chris Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing & Management, 24(5):513–523, 1988.

12. A. Singhal. Modern information retrieval: A brief overview. Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 24(4):35–43, 2001.

13. Andrew Trotman. Learning to rank. Information Retrieval, 8:359 – 381, 2005.


