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Abstract. Term-weighting schemes are vital to the performance of Information
Retrieval models that use term frequency characteristics to determine the relevance of
a document. The vector space model is one such model in which the weights assigned
to the document terms are of crucial importance to the accuracy of the retrieval
system. This paper describes a genetic programming framework used to automati-
cally determine term-weighting schemes that achieve a high average precision. These
schemes are tested on standard test collections and are shown to perform as well as,
and often better than, the modern BM25 weighting scheme. We present an analysis
of the schemes evolved to explain the increase in performance. Furthermore, we show
that the global (collection wide) part of the evolved weighting schemes also increases
average precision over idf on larger TREC data. These global weighting schemes are
shown to adhere to Luhn’s resolving power as middle frequency terms are assigned
the highest weight. However, the complete weighting schemes evolved on small collec-
tions do not perform as well on large collections. We conclude that in order to evolve
improved local (within-document) weighting schemes it is necessary to evolve these on
large collections.
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1. Introduction

Information Retrieval (IR) deals with the retrieval of information
according to specification by subject. IR stems from traditional data
retrieval and deals with retrieving information from semi-structured or
unstructured information sets using natural language queries. With the
advent of the World Wide Web and the vast increase in the quantity
of information available, the need to retrieve information based on a
user’s query has become increasingly important. IR systems attempt to
return only documents that are relevant to a given information need.
However, the use of natural language in both queries and document
sets leads to difficulties in retrieving accurate information for the user.
An IR system must make an effort to interpret the semantic content
of a document and rank the documents in relation to the user’s query.
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The vector space model (Salton et al., 1975) is one of the most
widely known and studied IR models. This is mainly due to its sim-
plicity, its efficiency over large document collections and the fact that
it is intuitively appealing. The effectiveness of vector based models
depends crucially on the term-weighting applied to the terms of the
document vectors (Salton and Buckley, 1988). These term-weights are
typically calculated using measures of the terms in the documents and
across the collection.

Founded in the early 1990s, the Genetic Programming (GP) area
(Koza, 1992) has grown quickly and helped solve problems in a wide
variety of areas including robotic control, pattern recognition, music
and synthesis of artificial neural networks. GP is inspired by Dar-
winian theory of natural selection (1859), where individuals that have
a higher fitness will survive and thus produce offspring. These off-
spring will inherit characteristics similar to those of their parents and,
through successive generations, beneficial characteristics will survive.
GP can be viewed as an artificial way of selective breeding.

This paper describes a Genetic Programming framework that arti-
ficially breeds term weighting schemes for the vector space model.
This paper extends previous work (Cummins and O’Riordan, 2004a)
where similar evolved schemes are compared against the traditional
tf-idf scheme (Salton and Buckley, 1988). We compare evolved schemes
against more modern weighting schemes and tests are conducted on
larger TREC data. Section 2 introduces some background material in
Information Retrieval. A background to Genetic Programming and
some past approaches of evolutionary computation techniques applied
to IR are reviewed in Section 3. Section 4 describes the system and
experimental design. Results and analysis are discussed in detail in
Section 5. Finally, our conclusions are discussed in Section 6.

2. Information Retrieval

2.1. Early advances in IR

Zipf (1949) showed that the frequency of terms in a collection when
placed in rank order approximately follows a log curve. Luhn pro-
posed that the resolving power of significant words, by which he
meant the ability of words to discriminate content, reached a peak at
a rank order position half way between the two cut-offs, and from the
peak fell off in either direction reducing to almost zero at the cut-off
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points (Van Rijsbergen, 1979). In Figure 1, the bell-shaped curve of
the graph relates the frequency of terms to their distinguishing (resolv-
ing) power (Luhn, 1958).

Salton et al. (1975) validate much of Luhn’s work with empirical
analysis by what they call the discrimination value of a term. They
devise a scheme which weights terms on their ability to render the
document space as dissimilar as possible. Thus, terms which decrease
the similarity among documents in a collection (i.e. terms which push
documents further apart in the vector space) receive a high weight.
They come to similar conclusions to that of Luhn; that middle fre-
quency terms are the most useful in terms of retrieval. Low frequency
terms have, on average, a poor discrimination value while high fre-
quency terms are the least useful (Salton and Yang, 1973; Salton
et al., 1975).

2.2. Vector space model

The classic vector space model represents each document in the col-
lection as a vector of terms with weights associated to each term. The
weight of each term in a document vector is based on the frequency
of the term within that document and across the document collec-
tion. The query is also modeled as a vector and a matching function
is used to compare each document vector to the query vector. Once
the documents are compared, they are sorted into a ranked list and
returned to the user. One of the most common matching functions of

Figure 1. Zipf’s law and Luhn’s proposed cut-off points.
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the vector space model is the inner-product measure which is calcu-
lated as follows:

sim(di, q)=
t∑

k=1

(wik ×qk) (1)

where q is the query, di is the ith document in the document set, t is
the number of terms in the document, wik is the weight of term k in
the ith document and qk is the weight of term k in the query.

The tf-idf family of weighting schemes is the most popular form of
weighting scheme used in modern retrieval systems. The tf (term-fre-
quency) part of the weighting scheme is a normalised local (within-
document) measure that assigns a higher weight to terms that occur
more often within a document. The frequency is normalised as longer
documents tend to have more terms and higher term frequencies. Due
to the nature of IR algorithms, this would result in long documents
being ranked as more relevant than short documents, when in fact
this may not be true. The idf (inverse document frequency) part of the
weighting scheme is a global (collection wide) measure that assigns a
higher weight to terms which are rarer across the collection. The main
heuristic behind the idf factor, is that a term that occurs infrequently
is good at discriminating documents. However, it can be seen that
idf is inconsistent with Luhn’s theory of resolving power (1958) and
Salton’s discrimination value model (1975) at low frequency levels.

2.3. Probabilistic models

Probabilistic models weight the relevance of a term in a document
on the probability that a term appears in a relevant document and
the probability that it appears in a non-relevant document. The
Binary Independence Model, developed by Robertson and Sparck
Jones (1976), calculates the optimal weights for terms based on a set
of relevant documents. There are two main assumptions behind this
model. The term occurrences are assumed independent of one another
and a binary weighting is assigned to the term frequency. However,
at an initial retrieval stage there is little or no relevance information
available. Thus, the effectiveness of this model depends on the avail-
ability of existing relevance information. This is usually supplied by
relevance feedback techniques. The BM25 weighting scheme, devel-
oped by Robertson et al. (1995), is a weighting scheme based on the
probabilistic model. The local (within-document) part of this scheme
is called Okapi-tf and is calculated as follows:
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Okapi-tf = rtf

rtf +k1

(
(1−b)+b dl

dlavg

) (2)

where rtf is the raw term frequency and dl and dlavg are the length
and average length of the documents, respectively. k1 and b are tun-
ing parameters which influence the term-frequency and document nor-
malisation, respectively. The idf of a term as determined in the BM25
formula is as follows:

idft = log
(

N −dft +0.5
dft +0.5

)
(3)

where dft is the document frequency of term t and N is the num-
ber of documents in the collection. The weight assigned to a term in
the BM25 scheme is a product of Okapi-tf and idf. The ranking score
given to a document can then be calculated as follows:

∑

t∈q∩d

(Okapi-tf × idft ×qrtf ) (4)

where qrtf is the raw term-frequency of the term in the query.
Although developed for the probabilistic model, the BM25 weights
are often used in vector based IR systems. The BM25 scheme is cur-
rently one of the best performing weighting schemes in IR. However,
it has been indicated that the probability of a term occurring in a rele-
vant document tends to zero as the frequency of the term occurring in
the collection tends to zero (Robertson and Walker, 1997). This would
indicate probabilistically that terms with a low document frequency
should initially be assigned a lower weight than that assigned by the
idf measure. Greiff (1998) has also predicted that a flattening of the idf
measure at low frequencies would lead to an increase in performance.

3. Genetic Programming

Inspired by the successes in traditional Genetic Algorithms, John
Koza developed Genetic Programming (GP) in the early 1990s (1992).
The GP approach has helped solve problems in a wide variety of
areas. GP is inspired by Darwinian theory of natural selection (1859),
where individuals that have a higher fitness will survive longer and
thus produce more offspring. These offspring will inherit charac-
teristics similar to those of their parents and through successive
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generations, the useful characteristics will survive. GP can be viewed
as an artificial way of selective breeding. In GP, solutions are encoded
as trees with operators (functions) on internal nodes and operands
(terminals) on the leaf nodes. These nodes are often referred to as
genes and their values as alleles. The coded version of a solution
is called its genotype, as it can be thought of as the genome of
the individual, while the solution in its environment is called its
phenotype. The fitness is evaluated on the phenotype of a candi-
date solution while reproduction and crossover are performed on the
genotype.

The basic flow of a GP is shown in Figure 2. Initially, a ran-
dom population of solutions is created. These solutions are encoded
as trees. Each solution is rated based on how it performs in its envi-
ronment. This is achieved using a fitness function. Having assigned
the fitness values, selection can occur. Goldberg (1989) uses the rou-
lette wheel example where each solution is represented by a segment
on a roulette wheel proportionately equal to the fitness of the solution
to explain how selection occurs. Thus, solutions with a higher fitness
will produce more offspring. Tournament selection is one of the most
common selection method used. In tournament selection, a number of
solutions are chosen at random and these solutions compete with each
other. The fittest solution is then chosen as a parent. The number
of solutions chosen to compete in the tournament is the tournament
size and this can be increased or decreased to increase or decrease the
speed of convergence.

Once selection has occurred, reproduction can start. Reproduction
(recombination) can occur in a variety of ways. The most common
form is sexual reproduction, where two different individuals (parents)
are selected and two separate children are created by combining the
genotypes of both parents. An example of crossover can be seen
in Figure 3. Mutation (asexual reproduction) is the random change
of the allele of a gene to create a new individual. Selection and
recombination occurs until the population is replaced by newly cre-
ated individuals. Usually the number of solutions from generation to
generation remains constant. Once the recombination process is com-
plete, each individual’s fitness in the new generation is evaluated and
the selection process starts again. The process usually ends after a
predefined number of generations, or when convergence of the pop-
ulation is achieved or after an individual is found with an acceptable
fitness.
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Figure 2. Flow of a basic GP.

Figure 3. Example of crossover in GP.
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3.1. Existing evolutionary approaches to IR

In recent years, there have been several approaches applying ideas
from evolutionary computation to the domain of IR. Related work
where a genetic programming technique is used to evolve weighting
functions which outperform the traditional tf-idf weighting schemes
has previously been conducted (Oren, 2002). Fan et al. (2004) also
adopt a genetic programming framework to search for weighting func-
tions and test them on large collections and against more modern
weighting functions. Trotman (2004) also adopts this approach to
evolve a general purpose ranking function and provides some anal-
ysis of the performance of individual queries. While most of these
approaches have shown some increase in average precision over stan-
dard techniques, they lack a detailed analysis of any of the weighting
schemes presented.

A genetic algorithm approach to modifying document representa-
tions (a set of keywords) based on user interaction has also been
adopted (Gordon, 1988). By evolving sets of weights for the document
(i.e. evolving the representation), better descriptions for the document
in the collection can be found. Vrajitoru (2000) models the whole doc-
ument collection as the genome of an individual and evolves a better
representation for the whole collection.

Term-oriented models focus on finding the best discriminatory
terms for improved document retrieval. For term-oriented approaches,
a query is evolved so that the optimal document set is returned for
a query. Horng and Yeh (2000) use this approach to extract key-
words from a subset of relevant documents to construct this query
and then adapt the weights to best suit the relevant documents. This
approach is useful in building user profiles so that the system can
learn a set of optimal terms that best describe the user’s needs. Yang
and Korfhage (1993) adopt a genetic algorithm approach to mod-
ify document representations by altering the weights associated with
keywords.

Query expansion and adaptation techniques have been developed
through evolutionary computation techniques. Vrajitoru (1998) uses
genetic algorithms to evolve queries and introduces a modified cross-
over operator to create new queries. In information retrieval, poten-
tially useful information is available from document tags in collections
of semi-structured (e.g. html) documents. Several information retrieval
systems exist which pay more attention to content associated with cer-
tain tags (e.g. title, author, keywords). Kim and Zhang (2001) attempt
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to learn the optimal set of tags, and their associated weights, using a
genetic algorithm and demonstrate an improvement in retrieval perfor-
mance.

4. Design and Experimental Setup

This section describes the experimental setup used. The terminal and
function sets are defined. Benchmark weighting schemes and query
weighting schemes are defined for use in the experiments. The GP
approach adopted in this work evolves the weighting scheme over a
number of generations. An initial population is created randomly by
combining a set of primitive measures (e.g. dft , rtf,N ) using a set of
operators (e.g. +,−,×, /).

4.1. Document test collections

The three small document collections used in this research are the
Medline, CISI and Cranfield collections.1 These small collections are
used for testing and training. The NPL collection is a medium sized
collection available from the same source. The two larger document
collections used are subsets of the TREC-9 filtering track (OH-
SUMED collection (Hersh et al., 1994).2 The collection consists of
abstracts from the Medline database from 1988 to 1991. The first sub-
set we used consists of 70,825 documents from 1988 (OHSU88). The
second collection consists of the documents from 1989 (OHSU89).
Each collection consists of 63 queries although two queries have no
relevant documents from 1988. We ignore queries that have no rele-
vant documents associated with them. The relevance assessments for
the OHSUMED collection are graded as definitely or possibly rele-
vant. We make no distinction between definitely and possibly relevant
documents in our tests and regard both grades as relevant. All docu-
ments and queries are pre-processed by removing standard stop-words
from the Brown corpus3 and are stemmed using Porter’s stemming
algorithm (1980). Table 1 shows some characteristics of the test col-
lections used in this research.

4.2. Terminal and function set

Tables 2 and 3 show the terminal and function sets used in this
research. The terminal set was chosen so that the GP could avail of
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Table 1. Characteristics of document collections

Collection Docs Terms Avg. len Qrys Terms Avg. len

Medline 1033 10,975 56.8 30 249 11
Cranfield 1400 9014 59.6 225 639 8.8
CISI 1460 8342 47.8 76 1024 26.8
NPL 11,429 7759 18.78 93 331 6.78
OSHU88 70,825 175,021 49.40 61 195 5.05
OSHU89 74,869 185,304 50.45 63 197 4.97

Table 2. Terminal set

Terminal Description Domain

1 The constant 1 Both
rtf Raw term frequency within a document Local
l Document length (number of unique words Local

in a document)
max f req Frequency of the most common term Local

in a document
dl Total document length (number of words Local

in a document)
df Number of documents a term appears in Global
N Number of documents in a collection Global
V Number of unique terms in the collection Global
C Collection size (number of words in the collection) Global
cf Collection frequency (number of times a term Global

appears in the collection)
max c f req Frequency of the most common term in the collection Global

Table 3. Function set

Function Description

+,×, /,− Addition, multiplication, division and subtraction functions
log The natural log
sin, tan Trigonometric functions
√ Square-root function

sq Square
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as many primitive features of a term, document and collection which
could possibly be related to determining the relevancy of a docu-
ment. We kept the terminals primitive (atomic) so that domain spe-
cific information, and as a result bias, would be kept to a minimum
(Kuscu, 2000). For each terminal in Table 2 we indicate whether the
terminal is a local (within-document) measure or a global (collection
wide) measure. This distinction is made by determining if the terminal
value will change from document to document or remains constant
throughout the collection. The constant 1 is an exception as it does
not explicitly belong to either domain and so can be used in both a
local and global context.

4.3. GP parameters

All experiments are run for 50 generations with an initial population
of 1000. It was seen in our prior tests that when using the full termi-
nal and function set, the population converges before 50 generations.
Tournament selection is used and the tournament size is set to 10. The
solutions are trained on an entire collection and tested for generality
on the collections that are not included in training. The depth of the
solution trees is limited to 6 (unless otherwise specified) to improve
the generality of the solutions because shorter solutions are usually
more general (Kuscu, 2000). This depth allows a large enough solu-
tion space to be searched in order to obtain high quality solutions.
The creation type used is the standard ramped half and half creation
method used by Koza (1992). No mutation is used in these experi-
ments. Due to the stochastic nature of GP, a number of runs is often
needed to show that the GP is converging to its best solution. We run
each test 4 times and choose the best solution. We use an elitist strat-
egy, i.e. the best individual is copied into next generation automati-
cally.

4.4. Training times

Due to the nature of the GP approach, efficiency is of prime concern.
For the GP, thousands of weighting schemes need to be evaluated
over a document collection for many queries. For example, consider
using the smallest document collection (Medline) as the training set,
and choosing an initial population of 1000 solutions running for 50
generations. In this case, 50,000 weighting schemes need to be evalu-
ated. Each evaluation requires the processing of 30 queries over 1033
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separate documents. Thus, the system will process 1.5 million que-
ries on the collection of 1033 documents. This requires searching and
determining the relevance of over 1.5 billion documents. This test typ-
ically takes 6 h on the Medline collection using a standard desktop
PC with a 2.0 GHz processor and 500 Mbs of RAM. Tree depth and
query length also contribute to the training time as longer solutions
and queries take longer to evaluate.

4.5. Fitness function

The average precision (AP), used as the fitness function, is calculated
for each scheme by comparing the ranked list returned by the system
against the human determined relevant documents for each query.
Average precision is calculated using precision values for all points of
recall. This is frequently used as a performance measure in IR sys-
tems.

4.6. Benchmark term-weighting schemes

We test our evolved scheme against the BM25 scheme introduced ear-
lier (Equations (2) and (3)). We use the default tuning parameters of
b = 0.75 and k1 = 1.2. We also tested the BM25 with a value of 2.0
for k1 as this is another commonly used value and found the value
of 1.2 to be the best performing value on the collections used in this
research.

4.7. Matching function and query term weighting

The matching function used in all experiments is the inner-product
matching function. The weighting scheme applied to the query terms
is a simple actual term frequency weighting scheme. This query
weighting is applied to all weighting schemes used in this paper.

5. Results and Analysis

The first experiment aims to show that weighting schemes that achieve
a high average precision can be evolved for the vector space model.
We also show that these schemes are generalisable as they also achieve
a high average precision on the collections which are not included
in training. In the second experiment we present schemes evolved in
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a global (collection wide) context and show why they increase aver-
age precision over the idf measure. The third experiment shows some
results from tests on larger collections.

5.1. Evolving weighting schemes

This first experiment uses all of the terminals and functions in Table
2 and Table 3. Solutions are evolved on each of the document sets to
compare the generality of the solutions. The following is a typical fit
solution found and it represents the best solution evolved on the Med-
line collection from 4 runs of the GP:

wt =
cf

df
×

(
log(rtf )+ cf

df

)

2df + l + rtf
(5)

Table 4 shows the differences in average precision for the best solu-
tion when evolved on each document collection and tested on the
other collections.

Firstly, it can be seen that the evolved weighting schemes show
a significant improvement in average precision over the BM25 solu-
tion on the Medline collection. It can also be seen that the solutions
achieve an average precision, on the collections on which they were
not trained, which is within 2.2% of the best solution found on the
collection on which they were trained (bold). This shows that the solu-
tions evolved are quite general and exploit general natural language
characteristics. The cf/df combination is seen to occur consistently in
the fitter solutions evolved on all three collections as it does in the
scheme presented (Equation (5)). It is interesting that the cf (collec-
tion frequency) measure is not used in traditional tf-idf type schemes
or in the more modern BM25 scheme.

Table 4. AP for best solutions found on each collection

Training set

Collection Docs Qrys BM25 CISI Medline Cranfield
(%) (%) (%) (%)

CISI 1460 76 22.67 25.47 24.86 24.03
Medline 1033 30 53.47 56.74 58.85 56.69
Cranfield 1400 225 42.08 41.33 41.85 43.04
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Figure 4 shows the increase in average precision for the best indi-
vidual and average of the population over the 50 generations for a
population of 1000 for a typical run of the GP on the Medline col-
lection. In all four tests conducted on the Medline collection the AP
of the best solution from the randomly created population (0th gener-
ation) does not exceed 50% average precision and is more often well
below this. Population sizes of 200 and 500 can often produce sim-
ilar solutions. However, to maximise the quality of the best solution
obtained from a single run it is often beneficial to use a large popula-
tion. Due to the fact that our collection sizes are small we can often
increase the population size and still evolve a solution in a reasonable
time. However, for larger TREC style collections smaller population
sizes will have to be used in order to evolve a solution in an reason-
able time.

5.2. Evolving global schemes

In this experiment we only use the global measures from the termi-
nal set shown in Table 2. The global part of the weighting scheme
is evolved separately to investigate the properties of the cf measure
as this appears consistently in our fittest evolved solutions and is

Figure 4. Fitness of Best and Average solutions over 50 generations.
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not included in the terminal set in previous similar research by Oren
(2002) or Fan et al. (2004) or in the BM25 scheme. The terminals
used in this experiment are limited to cf, df, 1 and N. We eliminated
the terminals max c f req, C and V from the terminal set as they did
not appear in any of the fitter schemes from the first experiment. A
detailed analysis of the results arising from the experiment are detailed
after the results are presented. The benchmark scheme used in this
experiment is the idf measure (Equation (3)) as this is the global part
of the BM25 scheme.

5.2.1. Results
The following is the best solution evolved on the CISI collection using
only these global measures for 4 runs of the GP:

gwt = log(N/df )√
df

× log
(

cf

df

)
× log(df ) (6)

Table 5 shows the average precision for the CISI training collec-
tion and the collections that were not included in training. It is under-
standable that the average precision of these global schemes is lower
than those in the previous experiment as we have no within-document
knowledge of term-frequencies or document lengths. However, we see
that the precision of the gwt global scheme is consistently higher than
that of the idf measure.

5.2.2. Analysis
Figure 5 shows the idf weight of the terms in the CISI collection
when placed in rank order. The horizontal lines indicate terms of the
same document frequency. The weight of these terms do not change
for varying collection frequencies. When the terms in the collection are
placed in rank order, as shown in Figure 6, the gwt weight of these
terms is similar to that which Luhn predicted would lead to identify-
ing terms with a high resolving power. More recently, it has also been

Table 5. AP for idf and gwt

Collection Docs Qrys idf (%) gwt (%)

CISI 1460 76 18.85 22.25
Medline 1033 30 46.63 54.09
Cranfield 1400 225 33.41 37.06
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Figure 5. idf for terms placed in rank order for the CISI collection.

Figure 6. gwt for terms placed in rank order for the CISI collection.
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predicted that a flattening of the idf measure at low frequencies would
result in increased precision (Greiff, 1998). This flattening typically
takes place at a low collection frequency level as in Figure 6. Cer-
tain low document frequency terms are assigned a high weight while
most are assigned a low weight. The reason for the flattening of the
curve at low frequency levels is due to the presence of the cf measure.
This weighting scheme completely eliminates terms of all frequencies
that are totally concentrated in one document (i.e. have a document
frequency of 1). It also eliminates terms that occur exactly once in
every document and thus whose concentration is very low. This has
the effect of considerably reducing the size of the vocabulary of the
collection as words that appear once or twice represent about 65% of
the vocabulary of a corpus. It is interesting that these characteristics
are identified by evolutionary techniques as a variation of these are
used in some feature extraction techniques (Yang and Pedersen, 1997).
The traditional idf measure also appears in the evolved global weight-
ing scheme, reinforcing its value in global weighting schemes. The idf

weight performs well because it assigns a suitable weight for terms
that appear in the majority of the documents in a collection. It can
be seen that the general shape of the evolved scheme is idf in nature
but in certain cases (particularly lower frequency terms) a term with a
higher document frequency can be assigned a higher weight depend-
ing on its collection frequency. It should also be noted that the cf/df

measure becomes a more accurate reflection of the actual term fre-
quency at low document frequency levels. However, the cf measure
contains weighting information that neither rtf nor df contain and
can lead to re-ordering of documents. It has been shown that schemes
that include the cf measure can achieve a higher average precision
than those without this measure on certain document collections
(Cummins and O’Riordan, 2004b). Of the 8342 terms in the CISI col-
lection only 1782 (around 21%) are assigned a non-zero weight under
the evolved scheme. The remaining 6560 are assigned a weight of zero
and are effectively removed from the collection. Typically, these terms
are low document frequency terms because the probability that they
have a low concentration (i.e. cf = df ) is higher at low frequencies.
The fact that many low frequency terms are completely eliminated by
our evolved global scheme is not advocated in particular and is rather
an observation of the evolved schemes. However, it is again confirmed,
by evolutionary techniques, that the usefulness of such terms is low
for general queries. Table 6 shows the 20 highest weighted terms using
the gwt evolved scheme in the CISI collection and their frequency
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characteristics. It is worth noting that the document frequency is quite
varied for many of the top 20 weighted terms.

Figure 7 shows the average weight assigned to terms of the same
document frequency for the CISI collection. The diagram simply
shows the terms in the CISI collection placed in bins according to
their document frequency. The idf values are scaled in Figure 7 for
viewing purposes. We show only the 10 lowest document frequencies
as our aim is to show that on average the weights assigned to terms
by the gwt scheme is low for many low document frequency values.
This is in contrast to the idf measure also shown for the 10 lowest
document frequencies. The average weight assigned to terms using the
gwt scheme is simply the sum of the weights of terms for a particular
document frequency divided by the number of terms in that document
frequency bin. The 10 lowest document frequencies in the CISI repre-
sent over 86% (7,187) of the terms in the CISI collection.

5.3. Testing schemes on larger collections

This section introduces results on larger collections. Table 7 shows
the average precision for the scheme found on the Medline collec-
tion (Equation (5)) tested on the 3 larger collections identified earlier.
We see that this scheme performs considerably poorer than the BM25
scheme on all 3 larger collections.

Table 6. Top 20 terms in CISI

No. cf df gwt No. cf df gwt

1 31 5 7.45 11 17 5 5.00
2 14 2 6.29 12 9 2 4.86
3 13 2 6.05 13 9 2 4.86
4 11 2 5.51 14 9 2 4.86
5 12 3 5.44 15 13 4 4.82
6 15 4 5.41 16 8 2 4.48
7 14 4 5.12 17 8 2 4.48
8 11 3 5.10 18 14 5 4.21
9 11 3 5.10 19 20 7 4.12

10 17 5 5.00 20 7 2 4.05
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Figure 7. Average weight for terms with the 10 lowest document frequencies.

Table 7. AP for BM25 and wt (5)

Collection Docs Qrys BM25 (%) wt(5) (%)

NPL 11,429 93 28.02 21.94
OHSU88 70,825 61 32.49 25.77
OHSU89 74,869 63 30.51 24.10

Table 8 shows the average precision of the gwt scheme (Equa-
tion (6)) tested on the NPL, OHSU88 and OHSU89 collections. It is
promising that the average precision of the gwt scheme is higher than
idf on all larger collections.

Table 8. AP for idf and gwt

Collection Docs Qrys idf (%) gwt (%)

NPL 11,429 93 25.66 28.89
OHSU88 70,825 61 25.75 27.83
OHSU89 74,869 63 26.06 27.70
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As the performance of the gwt scheme is higher than the wt

evolved weighting (Equation (5)) on all 3 larger collections, it is
logical to assume that the local (within-document) part of the wt solu-
tion (Equation (5)), which was evolved on the smaller Medline col-
lection, cannot be applied directly to the larger collections. We can
conclude that the global (collection-wide) characteristics that leads to
an increase in average precision on small collections also leads to an
increase in average precision on large collections. However, the local
(within-document) relevance characteristics of the smaller collections
are different than those of larger collections. Thus, in order to develop
a complete weighting scheme which will increase average precision on
large collections it will be neccessary to evolved the local (within-doc-
ument) part of the weighting scheme on larger collections so that it
can interact correctly with the gwt scheme.

In the OHSU88 collection, only 32,774 of 175,021 terms recieve a
non-zero weight using the gwt weighting. Thus, less than 20% of the
terms in the corpus are used after preprocessing and an increase in
average precision is still observed. We can see that the gwt scheme is
particularly good at correctly weighting terms that have good retrieval
properties. This characteristic may be of benefit in certain feature
extraction techniques that use a reduced feature space. Table 9 shows
the top 20 weighted terms in the OHSU88 collection and their fre-
quency characteristics. It is interesting to see some middle document
frequency terms (e.g. df = 10) being assigned a very high weight in
this larger collection.

6. Conclusion

Weighting schemes can be evolved for small test collections that
achieve a higher average precision than that of the BM25 scheme.
The cf measure is an integal part of these weighting schemes. The
global part of the evolved schemes have characteristsics similar to
Luhn’s resolving power. The global scheme evolved separately on the
smaller collection is also shown to increase average precision over
idf on large collections. This global scheme is also shown to use a
limited number of indexing terms. The complete schemes evolved on
the smaller collections (e.g. Equation (5)) do not increase the aver-
age precision over the BM25 scheme on larger collections. The local
part of the evolved weighting is specific to the small collections. For
future work, local schemes will be evolved on larger collections depen-
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Table 9. Top 20 Terms in OHSU88

No. cf df gwt No. cf df gwt

1 38 4 15.26 11 25 3 13.54
2 35 4 14.71 12 25 3 13.54
3 35 4 14.71 13 43 6 13.51
4 29 3 14.49 14 29 4 13.43
5 33 4 14.31 15 35 5 13.39
6 28 3 14.27 16 24 3 13.28
7 88 10 14.04 17 24 3 13.28
8 87 10 13.96 18 28 4 13.19
9 30 4 13.66 19 28 4 13.19

10 25 3 13.54 20 34 5 13.18

dent on the evolved global schemes that achieve a higher average pre-
cision than idf . In supplying more evidence about the actual docu-
ments (within-document measures) to the GP, it is likely that the aver-
age precision of these schemes will be increased on larger collections.

Eliminating certain terms in a collection may harm the recall of
the system. By assigning at least some weight to these terms, the aver-
age precision of the scheme may be increased for certain queries. This
issue will be investigated in future work.
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Notes

1. ftp://ftp.cs.cornell.edu/pub/smart
2. http://trec.nist.gov/data/t9 filtering.html
3. http://www.lextek.com/manuals/onix/stopwords1.html
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