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Abstract Evolutionary computation techniques are increasingly being applied to problems
within Information Retrieval (IR). Genetic programming (GP) has previously been used with
some success to evolve term-weighting schemes in IR. However, one fundamental problem
with the solutions generated by this stochastic, non-deterministic process, is that they are often
difficult to analyse. In this paper, we introduce two different distance measures between the
phenotypes (ranked lists) of the solutions (term-weighting schemes) returned by a GP pro-
cess. Using these distance measures, we develop trees which show how different solutions
are clustered in the solution space. We show, using this framework, that our evolved solutions
lie in a different part of the solution space than two of the best benchmark term-weighting
schemes available.

Keywords Genetic programming · Information Retrieval · Term-weighting schemes

1 Introduction

A term-weighting scheme is essentially the document ranking function in an Information
Retrieval (IR) system. As such, they are a very crucial part of any IR system (Salton and
Buckley 1988) and improving upon them is a vibrant area of research within IR. These term-
weighting schemes assign values to search terms based on how useful they are likely to be in
determining the relevance of a document. Documents are scored in relation to a query using
one of these term-weighting schemes and are returned in a ranked list format.

Genetic Programming (GP) (Koza 1992) is a biologically-inspired search algorithm use-
ful for searching large complex spaces. As GP is a non-deterministic algorithm it cannot be
expected to produce the same solution each time. Restart theory in GP suggests that it is
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36 R. Cummins, C. O’Riordan

necessary to restart the GP a number of times in order to achieve good solutions (Luke 2001).
As a result, an important question regarding the solutions generated by the GP process is:
do all the good solutions behave similarly or is the GP bringing us to a different area in the
solution space each time?

This paper presents a framework for evaluating the distance between the ranked lists
produced from different term-weighting schemes in order to understand their relative close-
ness. These different term-weighting schemes are produced using a GP process. We intro-
duce two different distance measures and show that they are useful in determining how
term-weighting schemes are expected to perform in a general environment. We use the dis-
tance measures to show where the evolved term-weighting schemes lie in the solution space.
Indicating where the solutions lie in the solution space is only useful when a correspond-
ing increase in performance is seen. Thus, results for all of the term-weighting schemes
resultant from the GP are presented. This paper is an extension of previous work (Cummins
and O’Riordan 2006a). Further results and discussion are presented here for short and long
queries.

Section 2 of this paper introduces some GP terminology and some relevant research in
the area is discussed. Section 3 introduces the two distance measures developed. Our exper-
imental setup is outlined in Sect. 4, while Sect. 5 presents and discusses our results. Finally,
our conclusions are summarised in Sect. 6.

2 Genetic programming for term-weighting

Inspired by the theory of natural selection, the GP process usually starts with a population
of randomly-created solutions (although some approaches seed the initial population with
certain known solutions). These solutions, encoded as trees, undergo generations of selection,
reproduction and mutation until suitable solutions are found.

Each tree (genotype) contains nodes which are either functions or terminals. The pheno-
type of the individual is often described as its behaviour and is essentially the solution in its
environment. Selection occurs based on the fitness only. Fitness is determined by the pheno-
type, which is in turn determined by the genotype. As one can imagine, different genotypes
can produce the same phenotype, and different phenotypes can have the same fitness. For
many problems in GP in an unchanging environment, the same genotype will produce the
same phenotype which will have the same fitness. Bloat is a another common phenomenon
in GP; where solutions grow in size without a corresponding increase in fitness.

Figure 1 shows how terminology within the GP paradigm is mapped to that within IR.
Mean average precision (MAP) is used as the fitness function as it is a commonly used metric
to evaluate the performance of IR systems and is known to be a stable measure (Buckley and
Voorhees 2000). Furthermore, it has been used with success in previous research evolving
term-weighting schemes in IR (Fan et al. 2004; Trotman 2005; Cummins and O’Riordan
2006b).

2.1 Previous research

The search for term-weighting schemes that outperform traditional methods has been a vibrant
research area since the inception of IR. Many successful attempts have been made to formu-
late schemes using theoretical methods such as the vector space model (Salton et al. 1975),
the probabilistic model (Jones et al. 2000) and more recently various language models (Ponte
and Croft 1998). Other attempts have focused on combining existing parts of term-weighting

123



Evolved term-weighting schemes in information retrieval 37

Fig. 1 GP for Information Retrieval

schemes in an unguided sense (Zobel and Moffat 1998). While more recently a number of
attempts have focused on determining a set of constraints for which all good term weighting
schemes should satisfy (Fang and Zhai 2005). This approach has the benefit of reducing the
search space of weighting schemes to those that are known to have beneficial properties.

GP techniques have previously been adopted to evolve weighting functions and are shown
to outperform standard weighting schemes in an ad hoc framework (Fan et al. 2004; Oren
2002; Trotman 2005; Cummins and O’Riordan 2006b). However, in many of these approaches
a critical analysis of the solutions evolved is not presented. In previous work (Cummins and
O’Riordan 2006b), some analysis of the genotypes of term-weighting schemes and the termi-
nal set was conducted mainly for small collections. It was also concluded that local (within-
document) schemes should be evolved on larger TREC style collection. More importantly, an
analysis of the phenotypic space was not conducted. It is important to gain an understanding
of where in the solution space the best solutions lie as different term-weighting schemes can
lead to a better understanding of term-weighting in general. These can also lead to improved
retrieval in systems that use fusion techniques which use different ranked lists from different
IR systems.

Distance measure between ranked lists are currently used in IR. Spearman’s rank corre-
lation and Kendall tau correlation are two common correlations that measure the difference
between ranked sets of data. However, both Spearman’s rank correlation and Kendall’s tau
use all of the ranked data in a pair of ranked lists.

2.2 Parts of a term-weighting function

We separate the weighting scheme into three different parts and search each problem space
in turn. As a result, we evolve weighting schemes, which score a document d in relation to
a query Q, in the following structure:

score(d, Q) =
∑

t∈Q∩d

(gwt × nt f × qt f ) (1)

where gwt is a global weighting, nt f is a normalised term-frequency and qt f is the fre-
quency of the term in the query (which remains constant throughout all weighting schemes
in this paper). The global part of the scheme weights terms on their ability to discriminate
between documents. The normalised term-frequency consists of a term-frequency influence
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factor which promotes documents with more occurrences of a particular term. The aim of the
normalisation part of the term-frequency is to avoid over-weighting longer documents sim-
ply because they have more matching terms. It is worth noting that this function framework
may restrict the weighting scheme to certain forms. However, it should be noted that most
studies into term weighting assume, or can be reduced to, a similar structure. Indeed, both
benchmarks used in this research fit this model.

3 Phenotype distance measures

In our framework we measure the phenotype of our solutions by examining the sets of ranked
lists returned by a term-weighting solution for a set of topics on a document collection (its
environment). Two measures which were previously developed (Cummins and O’Riordan
2006c) and used for exploring the global space of term-weighting schemes are included here
for completeness.

The distance measures developed only measure the parts of the ranked lists which affect
the MAP (fitness) of a solution. This is important as the rank of relevant documents is the
only direct contributing factor to the fitness of individuals within the GP process. The first
metric measures the average difference between the ranks of relevant documents in two sets
of ranked lists. This measure will tell us if the same relevant documents are being retrieved
at, or close to, the same ranks and will tell us if the weighting schemes are evolving toward
solutions that produce similar phenotypes. Thus, the distance measure dist (a, b), where
a and b are two weighting schemes, is defined follows:

dist (a, b) = 1

|R|
∑

i∈R

⎧
⎨

⎩

|lim − ri (b)| if ri (a) > lim
|ri (a) − lim| if ri (b) > lim
|ri (a) − ri (b)| otherwise

where R is the set of relevant documents for all queries used and ri (a) is the rank position
of relevant document i under weighting scheme a. The maximum rank position available
from a list is denoted by lim and is usually 1000 (as this is the usually the maximum rank
for official TREC runs). Thus, when comparing two schemes this measure will tell us how
many rank positions, on average, a relevant document is expected to change from scheme a
to scheme b. Although different parts of the phenotype will impact on the fitness in different
amounts (i.e. changes of rank at positions close to 1,000 will not change MAP significantly,
while changes of rank in the top 10 may change MAP considerably) they are an important
part in distinguishing the behaviour of the phenotype. The change in position at high ranks
can tell us about certain features of the weighting scheme and the behaviour at these ranks.

To measure the difference a change in rank could make in terms of MAP, we modify the
dist (a, b) measure so that the change in rank of a relevant document is weighted similarly
to how MAP weights relevant documents in a ranked list. This weighted distance measure,
w_dist (a, b), is similar to the measure described in (Carterette and Allan 2005) and is
calculated as follows:

w_dist (a, b) = 1

|Q|
∑

q∈Q

1

|Rq |
∑

i∈Rq

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣∣ 1
lim − 1

ri (b)

∣∣∣ if ri (a) > lim∣∣∣ 1
ri (a)

− 1
lim

∣∣∣ if ri (b) > lim∣∣∣ 1
ri (a)

− 1
ri (b)

∣∣∣ otherwise
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Table 1 Document collections

Collection #Docs #Words/doc σ Doc length #Topics

G-TRAIN 35,412 72.7 59.24 1–63
L-TRAIN 32,059 251.7 259.79 301–350
LATIMES 131,896 251.7 251.90 301–350
FBIS 130,471 249.9 554.42 351–400
FT91-93 138,668 221.8 196.44 401–450
OH90-91 148,162 81.4 64.02 1–63

where Q is the set of queries and Rq is the set of relevant documents for a query q . This mea-
sure tells us how the change in rank of a relevant document might affect MAP. It is entirely
possible that two ranked lists could be considerably different yet have a similar MAP. This
distance measure is thus more important if we wish to determine how the difference in the
phenotype might affect fitness.

We use these distance measures to develop trees which show the distance between term-
weighting schemes in the solution space. These trees are constructed from a distance matrix
and a clustering algorithm (i.e. in our case the neighbour-joining method). For example, if
we have N entities (solutions), we can create an N × N distance matrix using one of our
distance measures. Then, using this distance matrix, we can then create a tree using a suitable
drawing package (Choi et al. 2000) which represents the data and provides a visualisation of
where our solutions lie in relation to each other.

Both Spearman’s rank correlation and Kendall’s tau are not technically suitable for measur-
ing the parts of the phenotype that contribute exclusively to fitness in a training environment.
For example, consider two ranked lists in which all the relevant documents for a query are
positioned at the same ranks. If some non-relevant documents are positioned at different
ranks, both of the aforementioned measures would indicate there is some difference in these
solutions in the training environment. However, this would not be the case as they have actu-
ally placed the same relevant documents in the exact same positions and the GP process has
actually identified the same solution.

4 Experimental setup

4.1 Document collections

The collections used in this research (Table 1) are subsets of the TREC collections used in
standard IR evaluations. We use three different query types (short, medium and long) with
these test collections. Short queries (s) use only the title field from the topics. Medium que-
ries (m) use title and description fields, while long queries (l) use the title, description and
narrative fields of the topics.

The G-TRAIN collection is used to evolve the global weighting scheme and the L-TRAIN
collection is used to evolve the term-frequency factor and the normalisation schemes. The
L-TRAIN collection has longer documents and the standard deviation (σ ) of the docu-
ment lengths is also greater, which provides a more varied environment in which to evolve
the term-frequency and normalisation parts of the weighting scheme. The G-TRAIN col-
lection consists of documents and topics (queries) from the OHSUMED collection while
the L-TRAIN collection consists of documents and topics from the LATIMES collection.
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Table 2 Terminals for each problem domain

Global terminals Description

N No. of documents in the collection
df Document frequency of a term
cf Collection frequency of a term
V Vocabulary of collection (no. of unique terms)
C Size of collection (total number of terms)
0.5, 1, 10 The constants, 0.5, 1 and 10
Parameters 7 Runs of a population of size 100 for 50 generations

Term-frequency Terminals
tf Raw term-frequency of a term
0.5, 1, 10 The constants, 0.5, 1 and 10
Parameters 7 Runs of a population of size 100 for 50 generations

Normalisation terminals
l Document vector length (unique terms)
lavg Average document vector length (unique terms)
ldev Standard deviation of document vector lengths (unique terms)
tl Total document length (all terms)
tlavg Average total document length (all terms)
tldev Standard deviation of total document lengths (all terms)
ql Query vector length (unique terms)
qtl Query total length (all terms)
0.5, 1, 10 The constants, 0.5, 1 and 10
Parameters 7 Runs of a population of size 200 for 25 generations

We previously used a subset of the OHSUMED collection to evolve global weighting
schemes with success. However, when attempting to evolve local parts of the term-weight-
ing scheme using this collection, we found the resultant schemes to be very specific to
this collection as the document lengths and term-frequencies were not representative of
most other TREC collections. It is also worth noting that for the normalisation problem we
used 12 short, 13 medium and 12 long topics as it has been suggested that query length
may have an impact on normalisation (HE and Ounis 2003). For the other weighting prob-
lems medium length queries were used. We conduct two-tailed t-tests on our test data to
see if our evolved schemes are indeed different from the standard benchmarks at each
stage.

4.2 GP terminal and function set

Table 2 shows the terminal set and some GP parameters for each of the three weighting
problems. The set of functions used for all experiments is F = {×,+,−, /, log, x2,

√
x},

where x is some function or terminal. We ran the GP seven times for each of the three
problems (global weighting, term-frequency and normalisation). Together with the two
benchmarks, this gives us nine solutions in total for each of the three problems. In pre-
liminary tests, we determined that the normalisation problem needs a larger population
in order to evolve good solutions. This is most likely due to the size of the terminal set
and problem domain. It is well known that document normalisation is a difficult
problem and there has been much research into automatic tuning for document
normalisation.
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Table 3 % MAP for all global weightings on training data

Collection id f id frs j gw1 gw2 gw3 gw4 gw5 gw6 gw7

G-TRAIN 19.83 19.98 22.05 21.98 21.60 21.69 20.11 20.11 20.75

5 Results

5.1 Global term-weighting

We use two benchmarks against which to evaluate our evolved global schemes. The first
scheme is the id f as found in the Pivoted Normalisation scheme, while the second scheme
is the id frs j as found in the BM25 scheme (Singhal 2001).

id f = log

(
N + 1

d ft

)
id frs j = log

(
N − d ft + 0.5

d ft + 0.5

)
(2)

Table 3 shows the seven global weighting schemes (gwi ) evolved on our training data. We
can see that all the evolved schemes are better than our benchmarks in terms of MAP on our
training set. Figure 2 shows the trees derived from the distances between all the weighting
schemes using both distance measures.

The better evolved schemes (gw1 to gw4) are clustered closer together. For example,
dist (id frs j , gw1) is 34.32 which means that a relevant document moves on average 34.32
rank positions between the schemes. w_dist (id frs j , gw1) is 0.0415 which is related to
the possible difference in MAP. Figure 2 seems to indicate that the solutions are evolving
to-wards ranked lists produced by gw1 as there is an increase in performance as we get closer
to the best solution. Obviously, phenotypically close solutions will have a similar fitness but
it is not necessarily true that solutions with a similar fitness will have a similar phenotype
(i.e. ranked list). On the test collections for all medium and long queries (Tables 5 and 6),
we can see that the differences in MAP between the evolved weightings and id frs j are all
statistically significant (p < 0.05) using a paired two-tailed t-test. It is worth noting that
short queries (Table 4) are less affected by a global weighting (which is redundant when
the query length is one) and thus perform similarly. However, an interesting point for short
queries is that id frs j is significantly different to the id f of the pivoted normalisation scheme,
although the actual difference in MAP is very small. This indicates differences between our
distance measures and statistical tests.

On the test data, we can see that gw1 to gw4 perform somewhat similarly. gw5 and gw6

still perform slightly better than id frs j , while gw7 still performs slightly better than these

idf-rsj

gw1

gw2

gw3
gw4

gw7

gw5gw6
idf idf-rsj

gw1

gw2

gw3

gw4

gw7

gw5gw6

idf

Fig. 2 Trees for global weightings using dist and w_dist respectively
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Table 4 % MAP for id f and global weightings on unseen data for short queries

Collection Topics id f id frs j gw1 gw2 gw3 gw4 gw5 gw6 gw7

LATIMES 301–350 (s) 17.83 17.91 17.60 18.12 18.90 18.85 18.68 18.68 18.82
FBIS 351–400 (s) 11.19 11.24 11.65 11.72 11.76 11.68 11.41 11.41 11.32
FT91-93 401–450 (s) 21.69 21.69 21.80 21.79 22.42 22.89 21.57 21.57 21.74
p-value ≈ 150 Topics 0.001 – 0.822 0.909 0.316 0.177 0.342 0.342 0.296

Table 5 % MAP for id f and global weightings on unseen data for medium queries

Collection Topics id f id frs j gw1 gw2 gw3 gw4 gw5 gw6 gw7

LATIMES 301–350 (m) 19.11 19.16 21.80 22.49 23.48 22.98 20.92 20.92 21.12
FBIS 351–400 (m) 10.30 10.41 15.16 15.68 14.55 14.33 11.61 11.61 11.72
FT91-93 401–450 (m) 27.38 28.15 27.52 27.86 27.56 27.92 27.04 27.04 27.10
OH90-91 1–63 (m) 21.68 21.72 24.96 25.69 25.02 25.28 22.96 22.96 23.68
p-value ≈ 213 Topics 0.272 – 0.004 0.0001 0.0001 0.0001 0.018 0.018 0.021

Table 6 % MAP for id f and global weightings on unseen data for long queries

Collection Topics id f id frs j gw1 gw2 gw3 gw4 gw5 gw6 gw7

LATIMES 301–350 (l) 13.57 13.79 21.60 24.27 24.78 24.30 16.37 16.37 16.63
FBIS 351–400 (l) 06.76 06.97 12.30 13.32 14.07 13.84 08.34 08.34 09.01
FT91-93 401–450 (l) 23.11 23.13 27.17 28.28 28.31 29.13 24.95 24.95 25.80
p-value ≈ 150 Topics 0.300 – 0.001 0.001 0.001 0.001 0.001 0.001 0.001

again. It should be noted that gw1 seems to have over-trained slightly as it does not perform
as well on some collections for longer queries, although it still performs much better than
the benchmarks.

As gw2 is very close to the best solution on the training set (gw1) and is elegant in form
(rewritten in (3)), we choose it to form part of the entire weighting scheme. Of course we
could choose any one of the better performing weighting schemes upon which to evolve the
remaining parts of the term-weighting scheme. It may also worth noting that we have since
determined that gw4 may be slightly better choice for weighting terms on certain collections
(Cummins and O’Riordan 2006c).

gw2 = c f 2√c f

d f 3 (3)

5.2 Term-frequency factor

To evolve the term-frequency influence factor, we assume an average length document (i.e.
no normalisation). We evolve the term-frequency factor while keeping the global weighting
constant (i.e. gw2). We compare our evolved weighting scheme against the Pivoted Docu-
ment Normalisation and the BM25 scheme assuming average length documents (i.e. s = 0
and b = 0 respectively).

Pivs=0 = log(1 + log(1 + t f )) · id f B M25b=0 = t f

1.2 + t f
· id frs j (4)
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Table 7 % MAP for benchmarks and gw2 · t fi influences on training data

Collection Pivs=0 B M25b=0 t f1 t f2 t f3 t f4 t f5 t f6 t f7

L-TRAIN 14.10 21.74 26.91 24.37 26.92 24.37 26.82 27.16 24.37

BM25 b=0

gw2
  gw2.tf5    gw2.tf1

     gw2.tf6
gw2.tf3

      Piv s=0

BM25 b=0

gw2 gw2.tf5       gw2.tf6
             gw2.tf1
         gw2.tf3

Piv s=0

Fig. 3 Trees for term-frequency weightings using dist and w_dist

Table 7 shows the MAP of the seven term-influence weighting functions evolved on the
training collection. It is important to note that all our evolved term-frequency factors (t fi )
are used in conjunction with gw2. We can see that Pivs=0 performs poorly compared to
B M25b=0 indicating that the term-frequency factor is poor for the pivoted normalisation
scheme. We can see that schemes t f1, t f3, t f5 and t f6 have a similar MAP. t f2, t f4 and
t f7 have the same MAP but actually produce a constant weighting for the term-frequency
part (i.e. no t f terminal was present in the solution) and thus perform as a binary weighting
(these three schemes are represented in Fig. 3 as gw2). When we look at the differences in
the phenotypes, we see that the best term-influence schemes (t f1, t f3, t f5 and t f6) behave
similarly on the training collection. We can also see that the difference between the bench-
marks and our weighting schemes is quite large. Taking the best term-frequency factor from
the training set (t f6), we can see that it can be simplified to show that it has characteristics
similar to in form to that of the term-frequency part of the B M25b=0 weighting. Examples
of the distances between solutions in the trees in Fig. 3 are: dist (B M25b=0, gw2 · t f6) is
84.41 and w_dist (B M25b=0, gw2 · t f6) is 0.0558.

t f6 = log

(
10√

(0.5/t f ) + 0.5

)
= log

(√
200 · t f

1 + t f

)
(5)

Our evolved schemes thus far (especially for medium and long queries) are considerably
better than the benchmarks at this point. As all of the best term-frequency schemes are very
similar in behaviour and MAP on both the training and test data (Tables 8–10), we choose
the best performing scheme on the training data (t f6) as a suitable term-frequency factor.
Again, any of the suitable term-frequency factor could have been used. Our term-weighting
formula now consists of gw2 · t f6.

123



44 R. Cummins, C. O’Riordan

Table 8 % MAP for benchmarks and gw2 · t fi on unseen data for short queries

Collection Topics Pivs=0 B M25b=0 t f1 t f3 t f5 t f6

LATIMES 301–350 (s) 20.95 24.75 24.58 24.47 24.49 24.89
FBIS 351–400 (s) 16.30 19.98 20.30 20.15 20.40 20.27
FT91-93 401–450 (s) 22.50 31.38 31.10 31.14 31.11 31.35
p-value ≈ 150 Topics 0.001 – 0.944 0.999 0.947 0.797

Table 9 % MAP for benchmarks and gw2 · t fi on unseen data for medium queries

Collection Topics Pivs=0 B M25b=0 t f1 t f3 t f5 t f6

LATIMES 301–350 (m) 13.80 20.55 24.31 24.35 24.30 24.38
FBIS 351–400 (m) 13.40 13.47 19.44 18.96 19.50 19.06
FT91-93 401–450 (m) 23.62 33.03 32.35 33.36 32.97 32.37
OH90-91 1–63 (m) 18.40 25.36 28.79 28.66 28.64 28.80
p-value ≈ 213 Topics 0.001 – 0.001 0.001 0.001 0.001

Table 10 % MAP for benchmarks and gw2 · t fi on unseen data for long queries

Collection Topics Pivs=0 B M25b=0 t f1 t f3 t f5 t f6

LATIMES 301–350 (l) 10.94 13.98 25.86 26.02 25.92 25.87
FBIS 351–400 (l) 08.45 08.35 16.32 16.62 16.52 16.25
FT91-93 401–450 (l) 19.36 26.59 30.65 30.82 30.50 30.72
p-value ≈ 150 Topics 0.001 – 0.001 0.001 0.001 0.001

5.3 Normalisation

To evolve the normalisation scheme, we assume a normalised term-frequency similar to
the BM25 model. We compare our full evolved weighting scheme against the full Pivoted
Document Normalisation and BM25 schemes (Singhal 2001).

Piv = log(1 + log(1 + t f )) · id f

(1 − s) + s · tl
tlavg

B M25 = t f · id frs j

t f + (k1.((1 − b) + b. tl
tlavg

))
(6)

We set s = 0.2 for the pivoted normalisation scheme and set b = 0.75 and k1 = 1.2 for the
BM25 scheme as these are the default values (Jones et al. 2000). We evolve the normalisation
factor ni in the following formula:

gw2 · ni t f6 = gw2 · log

⎛

⎝

√√√√200 · t f
ni

1 + t f
ni

⎞

⎠ (7)

As a naming convention, we will call the complete scheme gw2 · ni t f6 when ni is the
normalisation factor chosen. Table 11 shows the MAP of the seven evolved normalisation
functions on the training data. We can see that n4 is the best normalisation scheme on the
training data and from Fig. 4 we can see that n6 is one of its closest neighbours. n7 performs
quite well on the training data but seems to lie in a different part of the solution space to n4 and
n6. Another point to notice is that, on the training collection and the unseen test collections,
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Table 11 % MAP for benchmarks and gw2 · ni t f6 on training data

Collection Piv B M25 n1 n2 n3 n4 n5 n6 n7

LOCAL-T 26.12 28.02 29.97 30.59 29.44 31.31 30.08 31.01 31.15

BM25

gw2.n4 tf6

gw2.n6 tf6
gw2.n1 tf6

gw2.n5 tf6
gw2.n2 tf6

gw2.n7 tf6

gw2.n3 tf6

Piv
BM25

gw2.n2 tf6

gw2.n3 tf6

gw2.n7 tf6

gw2.n1 tf6
gw2.n5 tf6

gw2.n6 tf6

gw2.n4 tf6

Piv

Fig. 4 Trees for normalisation weightings using dist and w_dist

Table 12 % MAP for benchmarks and gw2 · ni t f6 on unseen data for short queries

Collection Topics Piv B M25 n1 n2 n3 n4 n5 n6 n7

LATIMES 301–350 (s) 24.26 24.17 22.76 23.38 23.32 23.86 22.80 23.87 24.44
FBIS 351–400 (s) 15.90 17.55 17.58 18.86 18.49 19.56 17.46 19.89 18.94
FT91-93 401–450 (s) 30.38 31.27 30.69 33.36 33.35 33.82 30.57 33.98 34.07
p-value ≈ 150 Topics 0.195 – 0.310 0.503 0.557 0.167 0.290 0.127 0.106

normalisation considerably aids both benchmarks bringing them closer in terms of MAP to
our weighting schemes.

On the unseen test data for short queries (Table 12), we can see that the three best schemes
on the training data (n6, n7 and n4) are still the best performing although none are significantly
different to the BM25 scheme using a two-tailed t-test. For medium length queries (Table 13)
we can see that n4 and n6 perform similarly and are both significantly different to the best
benchmark (B M25) for medium length queries. On longer queries, n4 is the only scheme
that is significantly different than BM25. n7 does not perform as well as n4 or n6 on medium
and long queries (Table 14) and seems to have evolved to an area of the search space that
contains useful features for shorter queries.

We can see from both trees that n2 is phenotypically close to n7. These two schemes are
also comparable in terms of MAP on most of the unseen test data (especially medium and
long queries). n1 and n5 are also phenotypically close and perform similarly on most of the
unseen data for all query lengths. As an example of the distances between solutions in the
trees in Fig. 4 dist (B M25, gw2 ·n4t f6) is 71.42 and w_dist (B M25, gw2 ·n4t f6) is 0.0947.
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Table 13 % MAP for benchmarks and gw2 · ni t f6 on unseen data for medium queries

Collection Topics Piv B M25 n1 n2 n3 n4 n5 n6 n7

LATIMES 301–350 (m) 25.48 25.61 27.21 28.03 26.89 28.42 26.99 28.64 27.69
FBIS 351–400 (m) 17.92 19.53 19.99 21.20 21.12 23.00 22.07 24.26 21.13
FT91-93 401–450 (m) 34.47 35.33 35.40 36.31 36.12 36.23 35.36 36.57 36.33
OH90-91 1–63 (m) 26.76 28.08 28.07 29.77 29.70 29.66 28.13 29.84 30.08
p-value ≈ 213 Topics 0.006 – 0.613 0.090 0.206 0.043 0.455 0.011 0.070

Table 14 % MAP for benchmarks and gw2 · ni t f6 on unseen data for long queries

Collection Topics Piv B M25 n1 n2 n3 n4 n5 n6 n7

LATIMES 301–350 (s) 25.79 26.77 31.98 30.67 28.84 31.58 31.33 30.80 30.71
FBIS 351–400 (s) 17.59 20.03 21.48 21.83 18.99 24.60 21.51 24.21 21.63
FT91-93 401–450 (s) 34.49 35.35 35.73 36.32 35.20 37.08 35.80 36.86 36.62
p-value ≈ 150 Topics 0.025 – 0.121 0.152 0.810 0.041 0.182 0.055 0.190

n4 = l × qtl

10 · lavg
n6 =

√
log(qtl) × log(qtl) × l

lavg
n7 = tl

tldev + l
qtl

(8)

The results obtained from these normalisation schemes are somewhat inconclusive as
only two of the better schemes lie in a similar area (n4 and n6). We can however indicate
that schemes close to n4 and n6 seems to perform well on a wide variety of collections for
varying query lengths. Although, on two collections using short queries and one collection
using medium length queries n7 is the best performing scheme.

6 Conclusion

We have introduced two metrics that measure the distance between the ranked lists returned
by different term-weighting schemes. These measures are useful for determining the close-
ness of term-weighting schemes and for analysing the solutions without the need to analyse
the exact form (genotype) of a term-weighting scheme (although a number of schemes are
shown to aid clarity). This framework can be used for all types of term-weighting schemes
and also fits well with the GP paradigm.

The distance matrices produced from these distance measures can be used to produce
trees. The two measures outlined are quite similar as the trees produced have a similar form
indicating that they provide similar information about relative distances between phenotypes.
The trees produced are also useful in determining the relative performance of the solutions
on general test data. We have also shown that the best evolved weighting schemes lie in a
different area of the solution space than current benchmarks schemes.

However, the normalisation schemes evolved are somewhat specific to certain query types
and collections. Normalisation is known to be a difficult problem in IR and we intend to further
our study into normalisation schemes using GP. The normalisation schemes in this research
were evolved on one single training collection. It is known that normalisation can be tuned
in a collection specific way (Chowdhury et al. 2002). We intend to use our GP framework to
evolve normalisation schemes over multiple varied collections in order to find a more general
normalisation scheme.
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We also intend analysing our schemes in a more formal axiomatic framework. It is hoped
that this work will motivate the use of these schemes. We hope to show that our weighting
schemes satisfy a number of constraints to which all good term-weighting schemes should
adhere.
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