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Abstract.
plied to problems in the domain of information retrieval aext min-
ing. In this paper we present an application of evolutior@mnpu-
tation to the area of expert search. Expert search in theexpof
enterprise information systems deals with the problem difigand
ranking candidate experts given an information need (Quérgliffi-

cult problem in the area of expert search is finding relevafiorina-
tion given an information need and associating that infaionavith
a potential expert.

Machine learning techniques are increasingly being ap-simplistic approach has been shown to be more effective dttzer

approaches for the expert search task for a wide varietytoéval
functions and parameter settings.

In this paper, we adopt a genetic programming approach ta lea

functions that can best aggregate the on-topic informatiodoc-
uments. The number of documents to aggregate and the weigghti
for these documents is very important to the overall perforoe of
the model. We show that the optimal number of documents toeagg
gate differs for individual queries. The contributions liktpaper are

We attempt to improve the effectiveness of a benchmark éxperthree-fold:

search approach by adopting a learning model (genetic gmogr
ming) that learns how to aggregate the documents/infoonatsso-
ciated with each expert. In particular, we perform an anslgsthe
aggregation of document information and show that differem-
bers of documents should be aggregated for different cuigrierder
to achieve optimal performance.

We then attempt to learn a function that optimises the effect
ness of an expert search system by aggregating differenbensm
of documents for different queries. Furthermore, we ales@nt ex-
periments for an approach that aims to learn the best waydeag
gate documents for individual experts. We find that subgthim-
provements in performance can be achieved, over standalytiaal
benchmarks, by the latter of these approaches.

1 Introduction

In large modern organisations, employees have often adetmau
unique expertise in specific topic areas. People are a atats of
information in a topic of expertise, as they can explain atpef a
topic of interest that may otherwise be unavailable. Autiicady
identifying experts in a certain area, given a specific tojsithere-
fore a useful goal in modern information systems. Thus, thread
an expert search system is to find and rank experts in a large<o
of semi-structured or unstructured documents given a usanmyq

There are several reasons why one may wish to identify peopl

with relevant expertise in a topic rather than documentenices of
information. These reasons include: a lack of access tordented
forms of information, a lack of individual ability to formate a solu-
tion to the problem being addressed, a need for explanatiogiro
terpretation of a certain topic and a human need for sodiatastion
[15].

The best performing approach to the expert search task testhe
stage document centric model. In this approach, all therdeots in
a corpus are scored and ranked using a state of the art rafiukiog

tion (e.g.BM25). Then, the topV document scores associated with

a candidate expert are aggregated in order to rank the exféris

1 University of Glasgow, Scotland, email: ronanc@dcs.glala
2 University of Glasgow, Scotland, email: mounia@acm.org
3 National University of Ireland, Galway, Ireland

e We show that the number of documents to aggregate is an impor-

tant factor in the effectiveness of an expert search systegtion
3.2).

e We investigate a number of features to determine if they seéuli
in predicting the optimal number of documents to aggregete f
the expert search task (sections 3.3 and 3.4).

e We present results from two approaches using genetic progra
ming that aim to learn how to combine features for use in &ffec
document aggregation functions for the expert search sasition
5).

The remainder of the paper is organised as follows: Sectimut-2
lines some background and related research in the theorpraice
tice of expert search. Section 3 presents a preliminaryaisabf the
problem that further motivates our subsequent experim&etgion 4
outlines the framework in which we attempt to learn expeatcie ag-
gregation functions. Section 5 presents the experimemntsesults.
Finally, Section 6 comprises our conclusions and futurekwor

2 Related Research

The expert search task of the enterprise track of TREC [3h24]
been run since 2005 and provides a corpus, topics and atesbrai
evant experts to enable researchers to develop technigagsanc-

'T:hg the area of expert search. The evaluation metrics usiisitask

are similar to those used in the standard IR (informatiorienl)
document retrieval task except that the metric measuregane can-
didate experts rather than relevant documents.

One of the first steps in an expert search system is to ides#ify
didate (or potential) experts in the corpus. This is typycdbne by
extracting the email address and/or names innfelto:’ tags within
a document. In large semi-structured document collectitisshec-
essary to gather email addresses and other features (stqdine
and surname) that may uniquely identify a possible experdiciate.
This is not a trivial problem and is callédamed entity recognition’
in the domain of information extraction but is beyond thepscof
this paper.

Associating candidates to the information in the corpusdiss

been studied and although proximity has been shown to be-a use



ful heuristic [13], candidates are usually deemed to becdssal  of topics. TREC 2007 and 2008 use the CSIRO collection and two
with documents to some degree if a candidate identifier appea  sets of topics. Table 1 shows some of the characteristicseofetst

the document. Various models of expert search have beerafigrm collections.

studied [2] and it is concluded that the document-centrigragch

outperforms other approaches to expert search for mostngaeas Tablel. TREC Test Collections

settings and performance metrics. The document-centpimaph to
expert search first ranks the documents in the collection regpect

to the Fopic using a standard term-weighting scheme (lé][zj.25)_. ¥VF§I(E:C SOOBTREC 20015 $I§IIERCOZOO' ~REC 2004
Then, it aggregates thecoreof the documents that are associated [z ofpocuments 297110 |297110 |370.716 |370.716

with a candidate to produce a final ranking of candidateseRtae- # of Candidates 1,092 1,092 2,910 2,910

search [11, 12] has modelled this approach as a voting proatel # of Docs with Candidatd403,291 {103,291 [108,159 108,159
researched various strategies of aggregating the stiengthiotes # of Topics 50 49 50 55

of documents for specific candidates. Many fusion techriduae

been experimented with that deal with the aggregation ofinhent For all the analysis and experiments in this paper, we usefie
scores in order to promote a candidate. known BM?25 function as the initial ranking function. Therefore,

Using notation similar to that previously used [18](Q) denotes  all of the aggregation functions, ranks and scores are basete
a ranked list of documents returned with respect to a q@eand ~ BM 25 function. Furthermore, we useto denote statistical signifi-
D(xz;) denotes the set of documents associated with a candidate egance at the 0.05 level ard to denote statistical significance at the
pert z;. In this approach, scores from a single ranked list of doc-0.01 level (two-tailed t-test). The MAP (mean average [siea) of
uments are aggregated to score a candidate expert. Thevifudlo relevant experts is used as the main measure of performaritésa
fusion (or aggregation) technique combines the scoresaiments ~ a standard retrieval metric that is stable and well-knowthéarea.
associated with a candidate when matched against a spegific t

Performance for Varying Number of Documents

N e AV
combSUM(Q,zi, N) = Y (S(Q,d)) (1) w 1
d; €R(Q)ND(z;) s

where z; is candidate expert, d; is documentj, @ is a query
(topic), D(z;) is the set of documents associated with R(Q)

is the ranking of documents (i.e. an ordered set) when givemyg
Q and S(Q, d;) is the score of document; given queryQ@. Thus,

TREC2005 ——
TREC2006 --*-- |
TREC2007 ---%---
TREC2008 &

Mean Average Precision
o
2

combSU M is a summation of the tofy document scores associated oata BB

with the candidate:;. This two-stage approach has consistently out- L T e ]
performed other approaches (e.g. Model | [2]) on TREC data the e e s ST
years. Itis trivial to show that by changing the number ofraggted ®Ty T 6 s w12 u w1 »

Number of Documents

documents, one can easily change the ranking of candidpgatex
We can also surmise that¥ is large, it will tend to promote experts
who are associated with a larger number of documents, asali-d Figurel. Performance (MAP) for varyingV on different collections
ments with a non-zero score will be aggregated to increassdbre
of the candidate. This may not be desirable in certain cases.
Traditional genetic algorithms (GAs) have been adopteddoyes
to learn term-weights that are useful for retrieval for acsfie col-

Performance for three topics on TREC 2005

lection [6]. A genetic programming (GP) approach to evajvierm- 065
weighting schemes in IR has previously been adopted in a aumb osh
of works [5, 4]. These GP approaches are a useful form ofird-| oss [
learning as they can often produce formulae that outperfarman- os| |

designed solutions. Furthermore, they produce a symbegtiesen-
tation of the solution that is useful for future analysis.wéver, no
work to date has attempted to learn functions for the expEich

Topic #1 —+—
Topic #46 ~--- -
Topic #48 ---¥---

Mean Average Precision
o
2

problem using evolutionary computation. o .
-
3 Préiminary Analysis ]
RS O
In this section, we perform a preliminary analysis to shoat tif- e s s w2 1w x %

Number of Documents

ferent aggregation methods are optimal for different qagefiVe also
perform an analysis of query-based and expert-based ésaituior-
der to determine if certain features are correlated with il Figure2. Performance (MAP) for varyingv on different topics
aggregation strategy.

31 Data& Experimental Setup As described in section 2, the aggregation function (equoati
The data used in this work are the TREC collections from 2@05 t for the expert search model is used to combine informatiom fdif-
2008. TREC 2005 and 2006 use the W3C collection and two setferent documents. We wish to determine how the effectivermds



the expert search task changes as we change the number of doauish to predict the besV for a particular query, we must look at fea-
ments (V) to use in the aggregation process. Figure 1 shows the MARures which vary across different queries. A number of quryed
(Mean Average Precision) of the aggregation functi@nm{bSU M) feature have previously been developed to predict the pedioce
for different values ofV on the four TREC collections. We can see of individual queries [8, 7]. A number of these have been shtov
that the performance varies quite significantly for varidisUsing  be correlated with query performance.
N =1 (i.e. only using the top associated document to rank the can- We now look at these query-based features to see if they ame-co
didates) penalises experts that may have a number of dotsitheh  lated with the optimal value aV for each query. Table 3 shows the
are highly related to the topic. For all of the collectioneposing  Spearman correlation of a number of query-based featurtbsthe
an N greater than 1 (i.e. the top ranked document) improves perfo optimal value of N used in the aggregation function for each query.
mance. However, ifV is increased beyond a certain point, perfor- Firstly, none of the measures are strongly correlated@i®- 1.0)
mance decreases for all collections. with the optimal value ofV per query and secondly, only a few of
Varying the number of documents to be aggregated has not begahe measures are weakly correlated (i.e. 0.0 - 0.5) with aimap
widely studied, although it has been noted by some researthat  value of NV to a significant degree.
performance differs a®" changes on a specific collection [9]. The It would seem from this analysis that the features chosennogy
bestmeanMAP across all the TREC collections is whéh= 5 and in general, be able to predict the optimal number of docusienag-
indeed, it is optimal on two of the four collections. This isigeful ~ gregate for each query. However, it may be possible thaticembn-
benchmark function for later experiments and it is worthingothat ~ linear combinations of such features can be discovered bgraihg
it has been found only after an exhaustive search. approach that may, in turn, be correlated with an optimateggion
Furthermore, Figure 2 shows that the optimal valuéVofs also  strategy for each query. We return to this problem in sectidn
very different for various topics within the same colleatidVe show
a sample of three topics for the TREC 2005 dataset. We carnaee t ..
for these topics, the performance varies substantiallhasntimber 3.3 Individual Expert Features
of documents used in the aggregatior) changes. Therefore, if the  preyiously, we have shown that different queries have mdiffeopti-
most optimal value ofV for individual queries for a specific collec- a1 document aggregation functions. Aggregating differembers
tion could be predicted, we could substantially improve fieefor- ¢ gocuments for different candidate experts may also leaitht
mance of the expert search system. This phenomenon hasemt beyoyed performance. This would essentially mean choositiffex-
reported before. Table 2 shows the performance improvemhant  ent v for each expert. However, an exhaustive search for the aptim
could be achieved if we could predict the beétto use for each  \gjyes of NV (i.e. the number of documents to include in the aggrega-
query for each of the four collections. The optimal stratég¥a-  tjon) for a set of experts is extremely costly as there are athou-
belled N = opt(Q). The optimal strategy (i.eN = opt(Q)) IS gand experts in each corpus and the experts are ranked gitbateo
found using an exhaustive search fgrfor values from 1 to 20 for  o5ch other. This creates a huge number of possible comtisaind

each query on each collection therefore an optimal strategy is extremely difficult to fimdtffough
an optimal must exist).
Table2. MAP for different aggregation functions on TREC data Following this argument, we now chose a number of experedhas

features (i.e. features that change from expert to expé#t)anal-
yse these expert-based features by examining them witlecesp

W3C [CSIRO relevant and non-relevant experts on a number of topics.f@&e
N TREC 2009 TREC 2004 TREC 2007 TREC 2008 A . ‘
N =1 02949 04896 02382 |0.3062 tures chosen relate to individual experts and to the lisobotichents
N=5 0.2392 0.5531 [0.3133  [0.2969 that can possibly be aggregated for each experttahexp_rank.,
N = opt(Q)]0.281%x ||0.6038++ |0.3776+x |0.381%x feature is the rank of the highest ranked associated dodufimiea

specific expertz;. The no_docs., feature is the maximum number

Another observation is that the performance of topics on CRE of documents that could possibly be aggregated for a spesifiert
2006 is substantially greater than any of the other years.optimal  and thetop_exp_score,, feature is the score of the highest ranked
value forN (IV = 15) on this data (TREC 2006) is also substantially associated document for an expert.
larger than the other collections. This may suggest thapéréor- To analyse these simple features, we take the top 50 experts f
mance of the topic is related to the optimal number of docusien  each topic (ranked using the baseline approashbSUM where
aggregate. The intuition is that for easy queries (i.e.dhbat have N = 5) and analyse their associated documents. Table 4 shows the
a high performance in terms of MAP) there are more relevaotido three expert related features used, wheiis the set of relevant can-
ment in the high ranks. Therefore, by including more docusién  didate experts andv R is the set of non-relevant candidates. The
the aggregation process (i.e. choosing a higher valué)ofmore of % column shows the consistency of the relationsRip< N R for
theserelevantdocuments will be included in the aggregation processthe features across the topics in the data set. For exanupléhed
for each expert. It is ultimately the aggregationr@levantinforma- top_exp_score,, feature on TREC 2008, the % of topics where a rel-

tion that is crucial in determining the relevance of an ekper evant candidate’s top document score Iswaer than a non-relevant
candidate’s top document score, is o#f.
3.2 Individual Query Features The table shows that for all of the collections, relevantdian

) _ date experts are associated with a higher ranked docunsnhtn-
We have shown in the previous section that the performancéf-of  relevant candidate expertgop_exp_rank.,). We can also see that
ferent queries are optimal for different valuesMéf Therefore, if we  the score of the highest ranked document associated withdidzae
4 Although we only report results fronBM 25, we can also confirm that expert is greater for relevant candidate expetipexp-scores, ).

other ranking functions tested behave similarly and hatenapvalues of ~ HOwever, more interestingly, it can be noticed that relécandidate
N that are highly correlated with those found usiB@/25. experts are associated with less documentsdocs.,) on average




Table3. Spearman correlation of Query-Based Features with thenapfV

W3C [[CSIRO
Feature Description TREC 2005 TREC 2006| TREC 2007| TREC 2008
idfmin min ¢df query term -0.20 -0.02 -0.32* 0.16
idfmax maxidf query term -0.26 -0.01 -0.33* -0.05
idfdew std dev ofidf of query termg| 0.06 0.04 -0.07 -0.10
SCS query clarity score -0.27* -0.09 -0.36* 0.04
ql query length 0.15 0.05 -0.02 -0.02
top_score score of top ranked doc -0.08 0.17 -0.23 -0.01
query-scope | fraction of docs returned 0.07 -0.04 0.31* -0.09

for three of the four test collections. For the TREC 2006depit can
be seen that relevant experts are associated with more @éntsinon
average, than non-relevant ones (for 58% of the topics anciii
lection). This explains why a high value 8f increases performance

for this data set only (TREC 2006) as aggregating more dontsne

will promote candidates that are associated with many decisn

(see end of section 3.2). Now that we have outlined a number of

expert-based features, we can attempt to incorporate thtman
aggregation function.

4 Learning Framework

In this section we outline the framework in which we automeity
learn aggregation functions for our expert search apprdagiartic-
ular, we can now outline two separate approaches. Our fipsbaph
aims to learn the optimal number of document to aggregate $pe-
cific query (query-based aggregation). Our second appraiacs to
learn the optimal number of documents to aggregate for gaetifc
expert (expert-based aggregation).

4.1 Learning Query-Based Aggregation Functions

We can view the learning of an aggregation function that aimns

Example of Continuous Learned Function

weight

Learning Framework
Discrete Cut-off ---—--—
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Number of Documents

Figure3. Weighting Documents Using a Continuous Function

we use genetic programming (GP) [10]. Genetic programming i
a population-based learning paradigm that can automigtidefine
functions given parameters and functions as inputs. Itapés for a
particular performance metric (i.e. MAP for the expert shaprob-
lem) on sample of training data usingarvival of the fittesapproach
and produces a symbolic representation of the function. ¥éeall

learn the beslV as a weighting problem. Figure 3 shows an exampleof the features outlined in Table 3 (first column) and the deent

of how such a function may look compared to a discrete fundtiat
either includes the document in the aggregation [).er ignores the

document (i.e0). The x-axis shows the rank of each document for a

query, while the y-axis shows the weighting (i.e. 1 to ineltide doc-
ument and 0 if we ignore the document). A continuous funcfam
shown in Figure 3) is more suitable for a number of reasonst (&
more expressive as it allows different weightings to be iapto the
ranked document scores and (2) it is more informative forwisie
a supervised learning approach. In our approach, we allewtap
30 documents associated with each candidate expert to lghtedi
accordingly for the learning approach. The top 30 documueiiits
afford the learning approach ample information to weight aggre-
gate these documents correctly.
Our learning approach will learn the bestight(Q, d) in the fol-

lowing framework:

N

>

deR(Q)ND (=)

combSUM (Q, z;, N) = (weight(Q,d) - S(Q,d))
&)
whereweight(Q, d) is the weighting given to a documedtwith
regard to certain features @fandS(Q, d) is the score of a document
d with regard to the querg).
In order to learn this function shape for individual quer{es.
a different function for each query-based on the query feaju

rank as inputs to our learning process. We also use the fioigpw
functions:{ x, ./, /, +, —, exp(), log(), sq() } as inputs to the GP.

4.2 Learning Expert-Based Aggregation Functions

Similarly to section 4.1, we can view the learning of an aggt®n
function that aims to learn the besat for individual experts as a
weighting problem and model it as follows:

N

>

deR(Q)ND(z;)

combSUM (Q, z;, N) = (weight(zi, d) - S(Q, d))
3
whereweight(z;, d) is the weighting given to a documeditvith re-
gard to certain features of (i.e. thei'" candidate expert). Again, we
allow the learning approach to use the top 30 documents iassdc
with each expert to be weighted accordingly. The inputsed3P for
this approach are the expert features outlined in Table 4tendur-
rent document rankK). We also use the following functiong: x,
Vo /v = exp(), log(), sq() } as inputs to the GP. This variation
of the problem can be viewed similarly to a normalisationbpem
for each candidate expert (as different candidate expeaxts Hiffer-
ent numbers of associated documents). Recent work [1] Hasied
that a simple inverse document frequen&yf) type feature for the



Table4. Expert-Based Features correlation with Relavant (R) ant-Relevant Experts (NR)

W3C [[CSIRO
Features TREC 2005 TREC 2006 TREC 2007 TREC 2008

R [NR [% [R NR [% |[R [NR [% [R [NR [%
top-exprank,, ||43.9|79.6 [87%|66.2 |104.3 [91%]18.5]122.9] 94%] 40.7 [143.3[98%
no-docsa, 1106] 1602| 74%] 1508.5| 1277.8{ 42%] 59.0( 479.6] 90%| 362.2] 911.2 94%
top-ewp-score,, || 6.375.94[20%|6.42 [5.71 [7% |8.82[6.38 [5% |7.51 |5.58 [4%

candidate expert has been useful way of normalising exgeres
on some TREC collections.

5 Experiments

In this section, we will present the results of the two leagnap-
proaches to aggregating documents. We use the TREC cofiecti
from 2005 as the training collection and the remaining dathatest
data. As a result, we are likely to see improvements for thmiag
approach on TREC 2005. However, more important are thetsesul
on the unseen test data (TREC 2006-2008). We also repoisjaec
at 10 (P@10) experts in parenthesis in the tables in thisoseds
benchmark aggregation approaches, wecuseb SU M (equation 1)

Table6. MAP (P@10) for learned expert-based functions on TREC
training and test data

W3C CSIRO
ScheméTREC 2005 TREC 2006 |TREC 2007 |TREC 2008
N = 10.2249 (0.292) |||0.4896 (0.585)0.2382 (0.112) |0.3062 (0.289)
N = 5/0.2392 (0.33) |||0.5531 (0.642)0.3133 (0.132)|0.2969 (0.303)
idfs; |0.2021 (0.298) |||0.3373 (0.367)0.2815 (0.108)|0.3299x (0.301)
GP, [0.2821x (0.386)][0.5466 (0.604)0.3546 (0.130)]0.3634+ (0.345)
GP; |0.2843+x (0.38) |[[0.5185 (0.589)0.3426 (0.132)|0.3697+ (0.361)

5.2 Results: Expert-Based Aggregation

Table 6 shows the results of the best two runs of the GP fonghere
based aggregation approach. Firstly, we can see that tfermpance

whenN = 1 andN = 5. Statistical significance is measured againstincreases significantly on the training data. FurthermoneTREC

the best benchmark\{ = 5). We also use the best normalisation
approach (i.e. andf normalisation approach) outlined in recent re-
search [1]. For each of the two approaches undertaken imitris
(query-based and expert-based), we report the resultstfierbest
two runs (out of four) of the GP. All GP runs use a populatio2@d0
randomly generated individuals run for 50 generations githsed
for MAP.

5.1 Results: Query-Based Aggregation

Table5. MAP (P@10) for query-based functions on TREC training and

test data
W3C [[CSIRO

SchemeTREC 2005 TREC 2006 |TREC 2007 [TREC 2008

N = 1[0.2249(0.292) |[[0.4896 (0.585)0.2382 (0.112)0.3062 (0.289)
N =50.2392 (0.33) 0.5531 (0.642)0.3133 (0.132)0.2969 (0.303)
idfz; |0.2021 (0.298) 0.3373 (0.367)0.2815 (0.108)0.3299« (0.301)
QG P, [0.2659 (0.354) |[[0.5449 (0.646)0.2570 (0.114)0.3127 (0.327)
QGP;, |0.2652«x (0.348)||[0.5457 (0.630)0.2578 (0.122)0.3023 (0.298)

Table 5 shows the results of the best two GP rup& . and

2007 and 2008 test data, performance also increases sigrtific
We can see that for TREC 2006 (which achieves an exceptjonall
high MAP overall) the performance decreases slightly. imegal for

the expert-based approach, the learned aggregationdnsdgnd to
improve performance over a good benchmark functi¥n= 5). In-
terestingly, thedf approach, which normalises the experts based on
the number of documents in which an experoccurs go_docse,),

is poor on all but one collection.

5.2.1 Robustness

As we have seen, choosing the most optimaldocument to ag-
gregate significantly improves performance. We have aleo feat
choosing the besV is not a trivial problem. Therefore, a robust (or
at least predictable) aggregation function conveys mangradges.
In this section, we analyse the performance of the expestdag-
gregation functions for vastly different values it

Figures 4 and 5 show the robustness of the learned schemes for
varying numbers of documentsV(. We can see that for nearly all
of the collections the performance of the learned sched@és énd
G Ps) increase asV increases. Both learned schemes have a poor
performance afiv = 1 but as more documents are included the per-
formance increases and is quite predicable and stablea(smgle
high value of N can be used with these learned schemes for good

QGP,) for the query-based aggregation approach. We can see thatable performance). This is most likely because theseeggtion

there is a significant improvement on the training data (TRBQ5)
for the learned functions. However, this does not generabsun-
seen data. Although all learned functions improve perforceaover
a poor baseline aggregation function (i.e. whgn= 1), they are
not better than the best benchmark & 5). This seems to confirm
the previous analysis (section 3.3) that showed that theyehesed
features were not strongly correlated to the optimal vatué\f. Fur-
thermore, it suggests that any combination (even non4ljr&fahe
query-based features is not likely to bring about an impmoset in
performance. Therefore, although different queries h#ferent op-
timal numbers of documents for aggregation, it cannot bdipied
on a per-query basis by the features we have examined.

functions were learned wheN was high (Vv = 30), and therefore
learned how to properly weight documents at these lowersradén-
versely, we can see that if one aggregates documents usitgse-
line approach (denoteft M/ 25), the performance tends to peak early
and then degrades.

Another interesting observation is that the learned sckeape
proach the performance of the best benchmark on the TREC 2006
data as the number of documents increases. Indeed, we head\al
indicated (section 3.4) that for this collection (TREC 2J)0¢an-
didate experts with more associated documents are moneantle
However, it is also interesting that there is only a smalpdiibany)
in performance on all the other TREC collections when usitayge



number of documents for the aggregation (e.g.®0y From inspec-  search task. We used a learning approach to find suitablegafgmn

tion of our learned formula (shown &&P), it can be shown that the functions for both approaches. We have shown that there imno
no_docs., feature (i.e. the number of documents associated with grovement when using query performance predictors to agtim
expert) is used to normalise the scores for each expert.préignts  suitable aggregation function for individual queries.

experts, that are associated with many documents, beiagyrgro- However, we have shown that genetic programming can find use-
moted. The learning approach adopted has learned to cortiiiria ful aggregation functions on a per expert basis. These ifamaciut-

a way so that documents are weighted correctly at lower rémks  perform other analyticaldf normalisation expert search approaches
30, 40, 50 and 60 etc). This is also achieved using the r&hkfthe outlined in the literature. We have also shown that the aggien
document. functions produced from this learning approach are robir&naus-

ing larger numbers of documents in the aggregation process.
1/\/2/no_docsz%/(\/(10/R)+R) @
GP, = 4
* = Jea00/R) F 1 o0/t VR0 7 ACKNOWLEDGEMENTS
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