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Abstract. Evolutionary algorithms and, in particular, Genetic Pro-
gramming (GP) are increasingly being applied to the problemof
evolving term-weighting schemes in Information Retrieval(IR). One
fundamental problem with the solutions generated by these stochas-
tic processes is that they are often difficult to analyse. A number of
questions regarding these evolved term-weighting schemesremain
unanswered. One interesting question is; do different runsof the GP
process bring us to similar points in the solution space?

This paper deals with determining a number of measures of the
distance between the ranked lists (phenotype) returned by differ-
ent term-weighting schemes. Using these distance measures, we de-
velop trees that show the phenotypic distance between theseterm-
weighting schemes. This framework gives us a representation of
where these evolved solutions lie in the solution space.

Finally, we evolve several global term-weighting schemes and
show that this framework is indeed useful for determining the rel-
ative closeness of these schemes and for determining the expected
performance on general test data.

1 INTRODUCTION

Information retrieval (IR) is concerned with the return of relevant
documents from a collection of unstructured documents given a user
need. It has been recognized that the effectiveness of vector space ap-
proaches to IR depend crucially on the term weighting applied to the
terms of the document vectors [15]. These term-weights are typically
calculated using term-weighting schemes that assign values to terms
based on how useful they are likely to be in determining the relevance
of a document. Documents are scored in relation to a query using one
of these term-weighting schemes and are returned in a rankedlist for-
mat.

Genetic Programming (GP) is a biologically inspired searchalgo-
rithm useful for searching large complex spaces. Inspired by the the-
ory of natural selection, the GP process creates a random population
of solutions. These solutions, encoded as trees, undergo generations
of selection, reproduction and mutation until suitable solutions are
found. As GP is a non-deterministic algorithm it cannot be expected
to produce a similar solution each time. Restart theory in GPsug-
gests that it is necessary to restart the GP a number of times in order
to achieve good solutions [9]. As a result, an important question re-
garding the solutions generated by the GP process is; do all the good
solutions behave similarly or is the GP bringing us to a different area
in the solution space each time?

Recently, IR fusion techniques, that use the rankings from several
retrieval systems to determine the final document ranking, have been
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shown to increase the performance of IR systems [16]. These tech-
niques only work when the ranked lists from the different retrieval
systems return different ranked lists. Thus, when new term-weighting
schemes are developed it is important, in many respects, to deter-
mine if these new schemes are similar to existing ones in terms of
the ranked lists produced, or if indeed they belong to a new family of
weighting scheme.

This paper presents a framework for evaluating the distance
between the ranked lists produced from different term-weighting
schemes in order to understand the relative closeness of these
schemes. We develop two different distance measures and show that
they are useful in determining how the term-weighting schemes are
expected to perform in a general environment. We use these dis-
tance measures to create trees visualizing the distances between the
weighting schemes.

Section 2 of this paper introduces term-weighting schemes useful
for determining the discrimination value of a term. Section3 intro-
duces the GP process and existing approaches using GP to evolve
term-weighting schemes are also discussed. Section 4 introduces our
framework and outlines two distance measures. Our experimental
setup is outlined in section 5 while section 6 discusses our results.
Finally, our conclusions and future work are summarised in section
7.

2 INFORMATION RETRIEVAL

2.1 Term-Weighting for vector models

Term-weighting schemes assign values to terms based on measures
of the term in both a global (collection-wide) and local (document-
specific) context. Yu and Salton [19] suggest that the best distinguish-
ing terms are those which occur with a high frequency in certain doc-
uments but whose overall frequency across a collection is low (low
document frequency). They conclude from this that a term weight-
ing function should vary directly with term frequency and inversely
with document frequency. Theidf scheme, first introduced by Sparck
Jones [17], gives a higher weight to terms that occur in fewerdocu-
ments. The originalidf measure is often calculated as follows:

idf = log(
N + 1

dft

) (1)

whereN is the number of documents in the collection anddft is
the number of documents containing termt. A modern weighting
scheme developed by Robertson et al. [13] is the BM25 weighting
scheme. The global part of this weighting scheme is a variation of
the traditionalidf measure and is calculated as follows:

idfrsj = log(
N − dft + 0.5

dft + 0.5
) (2)



The idf measure forms the basis of many modern term-weighting
schemes as it determines what initial weight a search term should
receive [12]. It is worth noting that documents are typically not re-
trieved byidf only, and are usually used in conjunction with local
measures to aid retrieval performance. However, if we can firstly find
out what initial weight a search term should be given, we can then
improve upon this by looking at the within-document characteristics
to further improve retrieval performance. Developing global weight-
ing schemes separately has been shown to benefit the performance
of IR systems [11, 4, 14] and is an important goal in developing
full weighting schemes which include local characteristics, like term-
frequency and document normalisation. Theseidf type schemes are
also used in many other domains within IR to weight features (e.g.
document classification).

3 GENETIC PROGRAMMING

Genetic Programming [8] is a stochastic searching algorithm, in-
spired by natural selection. In the GP process, a populationof solu-
tions is created randomly (although some approaches seed the initial
population with certain known solutions). The solutions are encoded
as trees and can be thought of as the genotypes of the individuals.
Each tree (genotype) contains nodes which are either functions (op-
erators) or terminals (operands). Each solution is rated based on how
it performs in its environment. This is achieved using a fitness func-
tion. Having assigned the fitness values, selection can occur. Individ-
uals are selected for reproduction based on their fitness value. Fitter
solutions will be selected more often.

Once selection has occurred, reproduction can start. Reproduc-
tion (recombination) can occur in variety of ways. Crossover is the
main reproductive mechanism in GP. When two solutions are se-
lected from the selection process, their genotypes are combined to
create a new individual. One point crossover is the norm for genetic
programming. This is where a single point is located in both parents
and the sub-trees are swapped at these points to create two new so-
lutions. Mutation (asexual reproduction) is the random change of the
value of a gene (or the change of a subtree) to create a new individual.

Selection and recombination occurs until the population isre-
placed by newly created individuals. Once the recombination process
is complete, each individual’s fitness in the new generationis evalu-
ated and the selection process starts again. The process usually ends
after a predefined number of generations. Bloat is a common phe-
nomenon in GP. Bloat is where solutions grow in size without acor-
responding increase in fitness.

3.1 Phenotype

The phenotype of the individual is often described as its behaviour.
Selection occurs based on the fitness only. Fitness is determined by
the phenotype which is in turn determined by the genotype. Asone
can imagine, different genotypes can map to the same phenotype, and
different phenotypes can have the same fitness. For most problems in
GP in an unchanging environment, identical genotypes will map to
identical phenotypes which will have the same fitness.

3.2 Previous Research

GP techniques have previously been adopted to evolve weighting
functions and are shown to outperform standard weighting schemes
in an adhoc framework [6, 10, 18, 4]. However, in many of theseap-
proaches a critical analysis of the solutions evolved is notpresented.

It is important to gain an understanding of the solutions obtained
from these evolutionary processes and have a means of ratingthe
differences between the schemes.

In [7], differences in retrieval systems are analysed usingthe
ranked lists returned from the various systems. The distance between
two ranked lists is measured using the number of out-of-order pairs.
Using the measure it can then be determined if two systems arein
essence the same (i.e. if they return the same ranked lists for a set of
queries). Spearman’s rank correlation and Kendall’s tau are two com-
mon correlations that measure the difference between ranked sets of
data. Both Spearman’s rank correlation and Kendall’s tau use all of
the ranked data in a pair of ranked lists.

4 FRAMEWORK

4.1 Phenotypic Distance Measures

Figure 1 shows how the GP paradigm is adopted to evolve term-
weighting schemes in IR. We use mean average precision (MAP)
as our fitness function as it is a commonly used metric to evaluate
the performance of IR systems and is known to be a stable measure
[1]. Furthermore, it has been used with success in previous research
evolving term-weighting schemes in IR [6, 18].
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Figure 1. GP for Information Retrieval

For our framework, we measure the phenotype of our solutionsby
examining the sets of ranked lists returned by the term-weighting so-
lution for a set of topics on a document collection (its environment).
Spearman’s rank correlation uses all available document ranks from
two ranked lists and not just the ranks of relevant documents. We
wish to develop distance measures for the parts of the rankedlists
which affect the MAP (fitness) of a solution. This is important as the
rank of relevant documents is the only direct contributing factor to
the fitness of individuals within the GP.

To compare two sets of ranked lists, we introduce a measure which
essentially measures the average difference between the ranks of rel-
evant documents in two sets of ranked lists. In this measure,we ig-
nore the ranks of non-relevant documents as they do not contribute
to the fitness although they do technically contribute to thepheno-
type of the individual. This measure will tell us if the same relevant
documents are being retrieved at, or close to, the same ranksand
will tell us if the weighting schemes are evolving towards solutions



that promote similar features of relevant documents. Thus,one of the
phenotypic distance measures (dist(a, b)), wherea and b are two
weighting schemes, is defined as follows:

1

R

∑

i∈R

{ |lim − ri(b)| if ri(a) > lim
|ri(a) − lim| if ri(b) > lim
|ri(a) − ri(b)| otherwise

whereR is the set of relevant documents in the collection for all
of the queries used andri(a) is the rank position of relevant docu-
ment i under weighting schemea. lim is the maximum rank posi-
tion available from a list and is usually 1000 (as this is the usually
the maximum rank for official TREC runs). As a result, relevant doc-
uments that are ranked outside the top 1000 are treated as being at
rank 1000. Thus, when comparing two schemes this measure will
tell us how many rank positions, on average, a relevant document is
expected to change from schemea to schemeb . Although different
parts of the phenotype will impact on the fitness in differentamounts
(i.e. changes of rank for relevant documents at positions near 1000
do not significantly effect the MAP) they are an important part in dis-
tinguishing the behaviour of the phenotype. The change in position
at high ranks can tell us about certain features of weightingscheme
and the behaviour at these ranks.

We also develop a second measure of the distance between two
ranked lists which takes into account the effect a change in rank has
on MAP. To measure the actual difference a change in rank could
make in terms of MAP, we modify thedist(a, b) measure so that the
change in rank of a relevant document is weighted on how it effects
MAP. This weighted distance measure (w dist(a, b)) is similar to
the measure described in [2] and is calculated as follows:

1

Q

∑

q∈Q

1

Rq
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i∈Rq
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whereQ is the number of queries andRq is the relevant documents
for a queryq. This measure tells us how a change in rank of a rele-
vant document will affect the MAP (i.e. changes of rank at positions
close to 1000 will not change the MAP significantly, while changes
of rank in the top 10 may change MAP considerably). Of course,it is
entirely possible that two ranked lists could be considerably different
yet have a similar MAP, as they may be promoting different relevant
documents.

4.2 Neighbour-joining trees

Neighbour-joining is a bottom-up clustering method often used for
the creation of phylogenetic trees. However, we use the method to
produce trees that represent solutions that are fromdifferent runs of
our GP. The algorithm requires knowledge of the distance between
entities that are to be represented in the tree. A distance matrix is cre-
ated for the set of entities using a distance measure and the tree can
then be produced from the resulting data. We use this clustering tech-
nique to visualize the phenotypic distance between the bestsolutions
output by our GP. For example, if we haveN entities or solutions,
we can create anN × N distance matrix using one of our distance
measures. Then, using this distance matrix, we can then create a tree
using a suitable drawing package [3] which represents the data and
can provide a visualisation into where our solutions lie in relation to
each other. This model is also well suited to our evolutionary para-
digm. We use this technique simply to visualise the distancebetween
our term-weighting solutions which are developed using GP.

5 EXPERIMENTAL SETUP

5.1 Approach Adopted

We evolve global term-weighting schemes in the following frame-
work:

score(d, q) =
∑

(gwt × qtf) (3)

wherescore(d, q) is the score a documentd recieves in relation to
a queryq, gwt is the global weighting andqtf is the frequency of the
term in the query. All documents in the collection are scoredin rela-
tion to the query and ranked accordingly. We are only evolving the
global (term-discrimination) part of the weighting schemeas an ex-
ample of our framework. However, the entirety of the term-weighting
scheme can be evolved and analysed in a similar manner.

5.2 Training and Test Collections

We use collections from TREC disks 4 and 5 as our test collections.
A different set of 50 TREC topics is used for each of the collections
(apart from the Federal Register collection (FR) for which we use
100 TREC topics). For each set of topics we create a medium length
query set (m), consisting of the title and description fields, and a
long query set (l) consisting of the title, description and narrative
fields. We also use documents from the OHSUMED collection as
a test collection for medium length queries (OH90-91). We only use
the topics in these sets that have relevant documents in the collection.

The TRAIN collection (used in training) consists of 35,412 docu-
ments from the OHSUMED collection and the 63 topics. The lengths
of these topics range from 2 to 9 terms. Standard stop-words from the
Brown Corpus2 are removed and remaining words are stemmed using
Porter’s algorithm. No additional words are removed from the narra-
tive fields as is the case in some approaches. Table 1 shows some
characteristics of the document collections used in this research.

Table 1. Document Collections

Collection #Docs #words/doc #Topics medium long
TRAIN 35,412 72.7 0-63 4.96 None
LATIMES 131,896 251.7 301-350 9.9 29.9
FBIS 130,471 249.9 351-400 7.9 21.9
FT91-93 138,668 221.8 401-450 6.5 18.7
FR 55,630 387.1 301-400 8.9 25.9
OH90-91 148,162 81.4 0-63 4.96 None

5.3 Terminal and Function Set

Tables 2 and 3 show the functions and terminals that are used in all
runs of the GP.

5.4 GP parameters

We use MAP as our fitness function. All tests are run for 50 gen-
erations with an initial random population of 100 solutionson the
training collection (TRAIN) detailed in Table 1. The tournament size
is set to 3. We restrict all trees to a depth of 6. As a result this has
the effect of reducing bloat, improving generalisation, reducing the
search space and increasing the speed of the GP. As our highest order
operator is binary, the longest individual we can have can contains 63

2 http://www.lextek.com/manuals/onix/stopwords1.html



Table 2. Function Set

Function Description

+, ×, /, - arithmetic functions
log the natural log
√ square-root function
sq square

Table 3. Terminal Set

Terminal Description

N no. of documents in the collection
df document frequency of a term
cf collection frequency of a term
V vocabulary of collection (no. of unique terms)
C size of collection (total number of terms)
0.5 the constant 0.5
1 the constant 1
10 the constant 10

genes(26 − 1). We believe that this is a large enough space in which
to find suitable term-weighting schemes. The creation type used is
the standard ramped half and half creation method used by Koza [8].
We use an elitist strategy where the best individual is automatically
transfered to the next generation. 4% mutation is used in ourexperi-
ments. Due to the stochastic nature of GP a number of runs is often
needed to allow the GP converge to a suitably good solution. We run
the GP seven times and choose the best solution from each of those
runs. This gives us seven evolved solutions and two benchmark solu-
tions (1) (2) to use with our document collections.

6 RESULTS

Table 4 shows the MAP of seven global evolved weighting schemes
(gw) on our training data in no particular order. We can see that all
the evolved schemes are better than our benchmarks (idf andidfrsj)
in terms of MAP.

Table 4. % MAP for all global weightings

Collection idf idfrsj gw1 gw2 gw3 gw4 gw5 gw6 gw7

TRAIN 19.83 19.98 22.05 21.98 21.60 21.69 20.11 20.11 20.75

Figure 2 shows the best and average of the population from the
two best runs of the GP (i.e.gw1 andgw2). It is worth noting that
the best individual from the seven randomly created populations (i.e.
generation 0) is not better than the best solution produced after the
50th generation from the worst of the seven runs.

Tables 5, 6 and 7 shows the distance matrices for all the global
weighting schemes for the training data using Spearman’s rank cor-
relation,dist(a, b) and w dist(a, b) measures respectively. Spear-
man’s rank correlation gives us values in the range of−1 to +1 and
uses all of the documents in the ranked list. As the Spearman corre-
lations of the ranked lists produced by the global weightingscheme
are all positively correlated, we simply use1− Spearman’s rank cor-
relation as a distance measure. This will give us1 if the lists are ran-
domly correlated and0 if they are identical. We use this correlation
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Figure 2. Best and Average Fitness for best two global runs

as a comparison to our distance measures that only look at distances
of relevant documents.

The values in Table 6 indicate the average number of rank posi-
tions a relevant document changes. While the values in Table7 in-
dicate the maximum possible percentage MAP difference between
two schemes. By looking at the difference between the rankedlists
of each global weighting we can get an idea of the landscape ofthe
solution space in the global domain.

Table 5. 1− spearman’s rank correlation between all global weightingson
TRAIN

Scheme idf idfrsj gw1 gw2 gw3 gw4 gw5 gw6 gw7

idf 00.00 0.014 0.524 0.501 0.503 0.396 0.007 0.007 0.078
idfrsj 00.00 0.531 0.507 0.507 0.400 0.020 0.020 0.089
gw1 00.00 0.059 0.186 0.174 0.523 0.523 0.451
gw2 00.00 0.210 0.136 0.499 0.499 0.425
gw3 00.00 0.170 0.501 0.501 0.435
gw4 00.00 0.393 0.393 0.324
gw5 00.00 00.00 0.076
gw6 00.00 0.076
gw7 00.00

Table 6. dist measure between all global weightings on TRAIN

Scheme idf idfrsj gw1 gw2 gw3 gw4 gw5 gw6 gw7

idf 00.00 01.27 36.50 35.07 32.81 30.31 03.65 03.65 11.15
idfrsj 00.00 35.94 34.32 31.90 29.42 04.52 04.52 12.01
gw1 00.00 05.07 21.26 18.46 35.34 35.34 28.13
gw2 00.00 20.60 15.96 34.15 34.15 27.08
gw3 00.00 06.62 30.48 30.48 24.66
gw4 00.00 28.37 28.37 22.15
gw5 00.00 00.00 09.16
gw6 00.00 09.16
gw7 00.00

Table 7. w dist % measure between all global weightings on TRAIN

Scheme idf idfrsj gw1 gw2 gw3 gw4 gw5 gw6 gw7

idf 00.00 00.21 04.30 04.17 04.10 03.91 00.99 00.99 01.78
idfrsj 00.00 04.20 04.15 04.26 04.01 01.10 01.10 01.86
gw1 00.00 01.33 02.73 03.16 04.23 04.23 04.25
gw2 00.00 02.50 02.16 04.09 04.09 04.03
gw3 00.00 02.64 03.96 03.96 03.95
gw4 00.00 03.48 03.48 03.38
gw5 00.00 00.00 01.18
gw6 00.00 01.18
gw7 00.00
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Figure 3. Neighbour-Joining trees for global weightings

Firstly, from Figure 3 we can see that the phenotypic distance
measures produce trees of a similar structure. The only difference
in form is thatgw3 andgw4 are clustered together directly using the
unweighteddist measure. It is important to note that the trees visu-
alize different aspects of the ranked lists. For example, the distance
between the top four performing schemes (gw1 to gw4) and the re-
maining schemes is greater in the tree created from Spearman’s rank
correlation than for the other two trees. This is because Spearman’s
rank correlation uses the ranks of non-relavant documents.Looking
at the tree produced by thedist(a, b) measure, we can see thatgw3

andgw4 are quite similar in terms of the actual ranks of relevant doc-
uments. However, when looking at the tree produced byw dist(a, b)
for these two schemes, we can see that some of these differences are
at low ranks as the possible difference in MAP is quite large.

In general, we can see thatidfrsj , idf , gw5 andgw6 are pheno-
typically close. Schemesgw5 andgw6 are actually phenotypically
equivalent (i.e. return the same ranked lists) but not genotypically
equivalent. The two versions ofidf are very close. Schemesgw1 and
gw2 are also phenotypically close whilegw3 andgw4 are somewhat

similar. An important point to note is that as we get phenotypically
further from the best solution (gw1) we see a relative drop in MAP
on our training collection. This indicates that the solutions are evolv-
ing towards the ranked lists (on the training set) that are produced by
gw1. Obviously, phenotypically close solutions will have a similar
fitness but it is not neccessarily true that solutions with a similar fit-
ness will have a similar phenotype (e.g. as one can imagine that there
exists many poor performing functions which return equallybad but
different ranked lists). It is worth noting that these treesshould be
produced from the training data as this is the environment where the
solutions were evolved. However, these trees can help us to predict
the behaviour of the schemes on general data (if our trainingdata is
a representative sample).

Tables 8 and 9 show the MAP of all schemes for unseen test data
on medium and long queries. Firstly, we can see that the differences
in MAP between the evolved weightings andidfrsj are all statisti-
cally significant (p < 0.05) using a two-tailed t-test. Both version
of idf perform similarly as expected. We can see thatgw1 is no
longer the best evolved weighting scheme, although it is still sig-
nificantly better thanidf . Schemesgw2, gw3 andgw4 are now the
best performing schemes on most of the collections. Schemesgw5

andgw6 still perform only slightly better thanidfrsj , whilegw7 still
performs slightly better than these again. It would seem that gw1 has
overtrained slightly on the training collection. It is alsoworth point-
ing out that our training set seems to be quite general as mostof the
schemes perform similarly on test data. If we look at the genotypes
of some of the schemes it leads us to a similar conclusion. We have
re-written the following formulas in a more intuitive manner to pro-
vide transparency to the process. As a result, the re-written formulas
may also be shorter (in depth) that those that were evolved originally.

gw1 =
V 2cf2√cf

C.df3
+

√

cf gw2 =
cf2√cf

df3

gw3 =

√

(log(
cf

df
))2 × N

df
× (

N2

df
+ 1)

gw4 =

√

cf3N

df4
gw5 =

√

√

0.5

df

gw6 =

√√
df

df
gw7 =

√

√

cf/N

df2

We can see thatgw1 is a more specific form ofgw2. Schemes
gw5 andgw6 are an example of two different genotypes producing
the same ranked lists.gw6 will produce a score that is always double
that of gw5. We are evolving towards a ranked list on the training
collection that is produced by the best two schemes (gw1 andgw2).
Thegw2 scheme is a more general form ofgw1 and performs con-
sistently better on our test data. Thegw3 scheme contains a problem-
atic log(cf/df) that will assign certain low frequency terms a zero
weight [5] and makes it a poor choice for weighting in a retrieval
context. This can be seen on the results for the FR collectionwhen
compared to one of its nearest neighboursgw4. When looking at the
individual queries for this collection (FR), we have determined that
the difference betweengw4 and the other top schemes (gw1 to gw3)
is only large for a very small number of queries. As a result itcan be



Table 8. % MAP for idf and global weightings for Medium Queries

Collection Topics idf idfrsj gw1 gw2 gw3 gw4 gw5 gw6 gw7

LATIMES 301-350 (m) 19.11 19.16 21.80 22.49 23.48 22.98 20.92 20.92 21.12
FBIS 351-400 (m) 10.30 10.41 15.16 15.68 14.55 14.33 11.61 11.61 11.72
FT91-93 401-450 (m) 27.38 28.15 27.52 27.86 27.56 27.92 27.04 27.04 27.10
FR 301-400 (m) 25.87 24.89 25.12 25.71 21.31 28.72 25.49 25.49 27.39
OH90-91 0-63 (m) 21.68 21.72 24.96 25.69 25.02 25.28 22.96 22.96 23.68
≈ p-value 241 Topics 0.272 - 0.004 0.0001 0.0001 0.0001 0.018 0.018 0.021

Table 9. % MAP for idf and global weightings for Long Queries

Collection Topics idf idfrsj gw1 gw2 gw3 gw4 gw5 gw6 gw7

LATIMES 301-350 (l) 13.57 13.79 21.60 24.27 24.78 24.30 16.37 16.37 16.63
FBIS 351-400 (l) 06.76 06.97 12.30 13.32 14.07 13.84 08.34 08.34 09.01
FT91-93 401-450 (l) 23.11 23.13 27.17 28.28 28.31 29.13 24.95 24.95 25.80
FR 301-400 (l) 16.23 16.95 22.78 22.75 20.86 27.83 19.84 19.84 19.92
≈ p-value 241 Topics 0.300 - 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

concluded thatgw4 promotes certain useful features that are different
than those of the rest of the schemes. These differences are notice-
able on the FR collection because of its makeup. Thegw4 scheme
seems to be a particularly robust global weighting scheme asshown
on the test data. The difference betweengw4 andgw3, for example,
is not statistically significant. However, we know thatgw4 has ad-
vantagous retrieval features (as seen on the FR collection)for certain
(albeit few) queries.

7 CONCLUSION

We have introduced two metrics that measure the distance between
the ranked lists returned by different term-weighting schemes. These
measures are useful for determining the closeness of term-weighting
schemes and for analysing the solutions without the need to analyse
the exact form (genotype) of a term-weighting scheme. This frame-
work can be used for all types of term-weighting schemes and also
fits well into the genetic programming paradigm.

The distance matrices produced from these distance measures can
be used to produce trees that aid visualization of the solution space.
The trees produced are also useful in determining the relative per-
formance of the solutions on general test data. We have also shown
that all the evolved global weighting schemes produced are evolving
to a area of the solution space that is different from the types of idf
currently being used to measure the discrimination value ofa term.
In future work, we intend to apply this framework to analyse entire
term-weighting schemes which have been evolved.
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