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ABSTRACT

Aggregating search results from a variety of diverse verti-
cals such as news, images, videos and Wikipedia into a sin-
gle interface is a popular web search presentation paradigm.
Although several aggregated search (AS) metrics have been
proposed to evaluate AS result pages, their properties re-
main poorly understood. In this paper, we compare the
properties of existing AS metrics under the assumptions that
(1) queries may have multiple preferred verticals; (2) the
likelihood of each vertical preference is available; and (3) the
topical relevance assessments of results returned from each
vertical is available. We compare a wide range of AS metrics
on two test collections. Our main criteria of comparison are
(1) discriminative power, which represents the reliability of
a metric in comparing the performance of systems, and (2)
intuitiveness, which represents how well a metric captures
the various key aspects to be measured (i.e. various aspects
of a user’s perception of AS result pages). Our study shows
that the AS metrics that capture key AS components (e.g.,
vertical selection) have several advantages over other met-
rics. This work sheds new lights on the further developments
and applications of AS metrics.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]
Keywords: aggregated search; evaluation; metric; diver-
sity; reliability; discriminative power; intuitiveness

1. INTRODUCTION
Search engines operating verticals dedicated to specific

media types or genres (e.g. news, image, blogs) commonly
present results from several verticals dispersed throughout
the standard “general web” results, for example by adding
image results to the ten blue links for the query “car”. This
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search paradigm, known as aggregated search [4], has three
main challenges: vertical selection (VS), item selection (IS)
and result presentation (RP). Vertical selection deals with
deciding which verticals are implicitly intended by a query.
Item selection deals with selecting a subset of items from
each vertical to present on the aggregated page. Result pre-
sentation deals with organising and embedding the various
types of results on the result page. The most common pre-
sentation strategy is to merge the results into one ranked
list of blocks, and is now the ‘de facto’ standard.

Evaluating aggregated search (AS) is challenging as there
are a variety of compounding factors. Consider the query
“yoga poses” which suggests that a visual element in the re-
sult page would be interesting to many users. Some users
may prefer an AS page because they prefer a specific ver-
tical (e.g. image). Other users may desire results that are
vertically diverse (VD) (e.g. items from image, blog and
discussion). These two scenarios relate to VS performance
in AS. Users may prefer result sets that are composed mostly
of topically relevant items; this relates to IS performance.
Finally, users may prefer to see relevant items from selected
verticals towards the top of the result page; this is dealt
with by RP. Any combination of those factors (and the cor-
responding components of AS) can influence a user’s per-
ceived quality of the AS result page.

Although various approaches and metrics have been pro-
posed to evaluate AS systems, either each component in
isolation [4, 3] or as a whole [15, 27], no work exists that
aims to comprehensively understand them. In particular, in
[27], a series of AS metrics were proposed, studied, and ap-
plied to a number of AS approaches. The aim therein was to
model all, or a subset, of the four AS compounding factors
discussed above, VS, IS, RP and VD. The main differences
between these metrics are the way they model each factor
and combine them. However, how well the metrics capture
and combine those factors remain poorly understood. In
other words, how these metrics behave, i.e. their reliability
and intuitiveness, when evaluating AS performance has not
been studied. This is the aim of this paper.

We investigate the reliability and the intuitiveness of AS
metrics. We focus on how the metrics reflect the four AS
compounding factors, VS, IS, RP and VD. By reliability,
we mean the ability of a metric to detect “actual” perfor-
mance differences as opposed to those observed by chance,



and by intuitiveness, we mean the ability to capture any
property deemed important in a metric. In this paper, reli-
ability is measured using discriminative power [17]. We use
the randomised Tukey’s Honestly Significant Differences test
[7] because, as shown by [21], this test is less likely to find
significant differences that are not “actual”. For intuitive-
ness, we quantitatively measure the preference agreements
using the concordance [21] of a given AS metric with a “ba-
sic” single-component metric for each of the four AS factors.
Finally, to gain further understanding, we examine AS met-
rics’ ability to capture the combination of key components.

The contribution of our work is three-fold: (a) Our work is
the first endeavour to study the reliability and intuitiveness
of AS metrics; (b) We present an examination of an exten-
sive set of metrics, including a comprehensive set of adapted
diversity metrics; and (c) We use two AS test collections to
carry out our investigation.

Section 2 discusses previous work. We describe the met-
rics investigated in this study in Section 3, which also con-
tains the description of our “meta-evaluation”methodology.
Details of the test collections and experimental setup are
provided in Section 4. Section 5 reports our experimental
results. We conclude and discuss future work in Section 6.

2. PREVIOUS WORK
Section 2.1 reviews both traditional and diversity metrics

used in IR. Section 2.2 provides an overview of existing work
on evaluating AS, either by measuring the performance of
key components in isolation or as a whole. Finally, Section
2.3 summarises methodologies that have been used to com-
pare metrics.

2.1 IR Metrics

2.1.1 Traditional Metrics

Traditional IR evaluation is based on topical relevance,
qrel(q, d), between a query q and a document d. Traditional
IR metrics ignore the document type (e.g. vertical) and mea-
sure the quality of a ranked list l by modelling the gain G@l
of a user reading all documents in that list l. For instance,
P@k assumes that after reading the top k results in l, a
user’s gain G@k solely depends on the number of relevant
documents within the top k results.

Although this metric is simple and widely used, it does not
take into account the ranking position, and furthermore, as-
sumes that relevance is a binary judgement. To incorporate
graded relevance and to take a more fine-grained user model
into account, nDCG@l was proposed [11]. By diminishing
the impact of lower ranked relevant documents, nDCG@l
measures the performance of l by cumulating the dimin-
ished gain for each position r. A function g(r) is defined to
measure the gain of reading a document. The more relevant
the document is, the higher the gain to the user. Finally,
the metric score is normalized by an ideal ranked list l∗,
obtained by ranking all relevant documents in descending
order of their relevance.

nDCG@l =

∑l

r=1 g(r)/ log(r + 1)
∑l∗

r=1 g
∗(r)/ log(r + 1)

(1)

Other metrics have been proposed (e.g. RBP [13], ERR
[8]); the major difference between nDCG and them is the
assumed user model and how g(r) is defined.

2.1.2 Diversity Metrics

To consider rewarding topical diversity in ranked lists, a
set of diversity metrics have been proposed recently; these
include α-nDCG [9], IA-nDCG [1] and D#-nDCG [16]. α-
nDCG extends nDCG to account for diversity by discount-
ing the gains that accrue according to the intent (subtopic)
previously encountered in the ranked list. The novelty-
biased gain NG(r) is defined as:

NG(r) =
∑

i

Ji(r)(1− α)Ci(r−1) (2)

where Ji(r) = 1 if a document at rank r is relevant to the ith

intent and 0 otherwise; Ci(r) =
∑r

k=1 Ji(k) is the number of
documents observed within the top r results that contained
the ith intent. The strength of the novelty-biased discount
is controlled by α.

Agrawal et al. [1] apply a traditional measure to each
subtopic independently and then combined each value to
give the expected value of the measure across all intents.
This assumes that for a query q with several intents i, the
probability of each intent P (i|q) is available. For example,
nDCG for a given intent i (nDCGi) is computed first, and
then the intent-aware IA-nDCG is computed as:

IA-nDCG@l =
∑

i

P (i|q)nDCGi@l (3)

D-nDCG [16], by analogy to g(r) within nDCG, calcu-
lates a global gain GG(r) at rank r given various intents:

GG(r) =
∑

i

P (i|q)gi(r) (4)

gi(r) is the gain value for a document at rank r for intent i.
Intent recall I-rec [24], i.e. number of intents covered by a
ranked list, can be boosted with the following measure:

D#-nDCG@l = γI-rec+ (1− γ)D-nDCG@l (5)

γ controls the trade-off between relevance and diversity.
These metrics were proposed to evaluate the diversity of

ranked lists over subtopics, and have been recently adapted
to measure AS performance [27]. We discuss these adapta-
tions next.

2.2 AS Metrics
Current AS metrics measure either each AS component

(VS, IS, RP) in isolation or as a whole. An AS page P
is composed of a set of blocks {B1, B2, ...Bn}, where each
block Bi consists of a set of items {Ii1, Ii2, ...Iim}. An item
can be a “general web” page or a vertical result.

Vertical selection (VS) has been studied in [4, 12, 26, 28],
where the aim is to measure the quality of the set of se-
lected verticals, compared with an annotated set obtained
by collecting manual labels from assessors [4, 26, 28] or de-
rived from user interaction data [12]. The quality is mostly
evaluated with standard measures of precision, recall and f-
measure [4, 26] using a binary annotated set. Recently, risk
has also been incorporated into risk-aware VS metrics [28].

Recent attempts to evaluate the utility of the whole AS
page [3, 15, 27] consider the four key factors VS, VD, IS,
RP together. For example, [15] evaluate the utility of a
page based on a user engagement metric (CTR) when user
interaction data is available. Others [5] evaluate the utility
of the page by asking annotators to make assessments based



on a number of criteria (relevance, diversity) for each page.
Although those works comprehensively evaluate AS pages,
it remains costly to gather assessments for all AS pages.

Arguello et al. [3] collected pairwise preferences on verti-
cal block-pairs from users, and then measured the AS page
quality by calculating the distance between the page in ques-
tion and the ideal (reference) page; the shorter the distance,
the better the page. The ideal reference page is obtained
by using a voting method for aggregating all pairwise block
preference data into a single ranking.

Zhou et al. [27] followed the Cranfield paradigm and pro-
posed an evaluation framework for measuring AS page qual-
ity using two types of assessments, item topical-relevance
and vertical-orientation, gathered independently. Topical-
relevance assessment qrel(q, d) specifies the topical relevance
between a document and a query, whereas vertical-orientation
orient(vi, q) is the fraction of users that prefer a page to
contain items from the vertical vi rather than “general web”
results for a query q. An example is ASDCG(P ), a metric
defined as the expected gain G(Bi) of reading each block
Bi on page P divided by the expected effort E(Bi) spent,
normalized by the score ASDCG(P

∗) of an ideal page P ∗:

ASDCG(P ) =
(
∑|P |

i=1 1/ log(Bi)G(Bi))/(
∑|P |

j=1 1/ log(Bj)E(Bj))

(
∑|P∗|

i=1 1/ log(Bi)G(Bi))/(
∑|P∗|

j=1 1/ log(Bj)E(Bj))

(6)

The gain G(Bi) combines vertical-orientation orient(vi, q)
and topical-relevance qrel(q, Iik), relating the quality of the
block in an independent manner:

G(Bi) = g(orient(vi, q), α)×

|Bi|∑

k=1

qrel(q, Iik) (7)

where the function g() is used so that the relative gain of
the vertical can be altered using a tuning parameter α. The
effort of examining a block E(Bi) is defined as the accu-
mulative effort of reading all the items within it, that is

E(Bi) =
∑|Bi|

k=1 E(Iik) where the effort E(Iik) is assumed to
depend on the media type of the item.

Several existing diversity metrics were adapted to evaluate
AS in [27] by treating subtopics as verticals and subtopic
importance as vertical-orientation as follows: (i) replacing
subtopic importance with orient(vi, q); (ii) substituting the
user model for ranks to a model that applies to blocks; and
finally (iii) normalising according to the ideal AS page.

All AS metrics model and combine factors of AS (VS,
VD, IS, RP) differently. In this paper, we use a subset of
them for in-depth analysis of their properties.

2.3 Comparing Metrics
To date, and to our knowledge, no existing studies com-

paring the reliability and usefulness of metrics in the con-
text of AS have been reported. However, this current study
is similar to the work by Sakai et al. [16, 21] and Clarke et
al. [10] that compare diversity metrics. We therefore follow
a similar methodology. For example, we also use discrim-
inative power [7] to evaluate AS metrics. The novelty of
our contribution lies in the insight that our study brings to
the AS area, rather than the more usual linear ranked-list
approach. Furthermore, the comprehensive examination on
how AS metrics capture and measure the different AS com-
ponents is both novel and timely.

Discriminative power is not the only way to evaluate an
evaluation metric. Indeed, highly discriminative metrics,
while desirable, may not necessarily measure everything that
we may want measured. Recently, Sakai [21] proposed the
intuitiveness test1 for this exact purpose. The intuitiveness
test compares a metric of interest with a simple golden stan-
dard metric that captures the most important properties
that the metric should satisfy. In our study, we apply the
intuitiveness test within the context of AS and define four
golden standard metrics, respectively, for the four AS fac-
tors VS, VD, IS, RP. This allows us to investigate how AS
metrics capture the key desirable properties of AS.

We should add that other approaches, especially those re-
lying on human subjects (for instance to assess a metric’s
predictive power), are important. For example, by employ-
ing Mechanical Turk users, Zhou et al. [27] and Sanderson
et al. [19], respectively, examined the predictive power of AS
metrics and IR metrics. For example, if a metric prefers one
AS page or ranked list over another, does the user also prefer
the same page/list? One finding in both works was that AS
metrics and IR metrics agree reasonably well with human
preferences. Although informative from a user perspective,
compared to our study, these studies do not give us much
insight into how reliable metrics are at ranking systems, or
how well the metrics capture key AS components.

3. EVALUATING EVALUATION METRICS
We first summarize the AS metrics tested in this study in

Section 3.1. Sections 3.2 and 3.3 describe the two methods
comparing the “goodness” of AS metrics, using discrimina-
tive power and an intuitiveness test, respectively.

3.1 AS Metrics
As discussed in Section 2, various AS metrics have been

proposed to evaluate key components of AS systems, either
in isolation or as a whole. We select a subset of existing AS
metrics, listed in Table 1. Some metrics incorporate all four
factors (VS, IS, RP, VD) (e.g. ASDCG) whereas others re-
late to a subset (e.g. α-nDCG). For metrics concerned with
the same subset of factors, the way these factors are incor-
porated can vary. For example, ASDCG and ASRBP mainly
vary on their assumed user browsing model so that they give
different diminishing returns for documents at later ranks.
We also include simple metrics that capture one AS fac-
tor (detailed in Section 3.3). The selected metrics allow us
to investigate all four factors, both individually and when
combined, as well as the various categories (traditional IR
metrics, adapted diversity metrics, AS metrics and simple
single-component metrics) to which they belong. Some met-
rics possess parameters that can be tuned to (de)emphasize
a factor (e.g. α in α-nDCG rewards VD differently). In
this work, we leave the tuning of these parameters as future
work and use standard parameter settings for each metric
(we follow settings from previous work [27]).

We briefly explain the differences between the selected
metrics (Section 2 has full details). In short, both nDCG
and P@10 ignore the vertical type and only consider IS
(and RP for nDCG). Without considering the intent like-
lihood P (i|q), α-nDCG rewards VD by diminishing redun-
dant relevant documents. Although incorporating P (i|q),
IA-nDCG considers each intent independently, and was shown

1This was later renamed as the concordance test [18].



Table 1: Metrics Tested in this Paper.
Metric VS IS RP VD Category

nDCG[11] X X Traditional
P@10 X

α-nDCG [9] X X X Adapted
IA-nDCG [1] X X X X Diversity

D#-nDCG [16] X X X X

ASDCG [27] X X X X

ASRBP [27] X X X X AS
ASERR [27] X X X X

precv [26] X

mean-prec [27] X Single
Spearman-corr X component

recv [26] X

to be biased in rewarding relevant documents with high in-
tent (with a lower emphasis on VD) [10]. Comparatively
speaking, for each rank, D-nDCG and D#-nDCG accumu-
late the global gain for all intents, and have been proven
to reward VD more. The differences between them is that
D#-nDCG explicitly boosts VD by linearly combining D-
nDCG with I-rec. ASDCG, ASRBP , ASERR reward all four
components of AS, but differ in the assumed user browsing
model (which affects RP).

3.2 Discriminative Power
Given a test collection and a set of runs, the discriminative

power of a metric is measured by conducting a statistical sig-
nificance test for every pair of runs, and then counting the
number of significant differences. In this paper, we use the
randomised version of Tukey’s Honestly Significant Differ-
ences (HSD) test [7]. This test takes the entire set of runs
into account when judging the significance of each run pair.
This test is more conservative (compared to e.g. bootstrap
test [17]), and hence less likely to lead to significant differ-
ences that are not “real”. We choose this test because of its
reliance on modern computational power instead of statisti-
cal assumptions.

The main idea behind Tukey’s HSD is that if the largest
mean difference observed is not significant, then none of the
other differences should be significant either. Given a set
of runs, the null hypothesis H0 is “there is no difference be-
tween any of the systems”. We perform randomised Tukey’s
HSD as shown in Algorithm 1 (taken from [7]). From a given
matrix X whose element at (row i, column j) represents the
performance of the jth run for the ith topic, we create B new
matrices Xb by permuting each row at random; then, for ev-
ery run pair, we compare the performance δ of this run pair
with the largest performance δ observed within Xb. Finally,
for each run pair, we obtain the Achieved Significance Level
(ASL or p-value), which represents how likely this would
be under H0 (null hypothesis). As in any other significance
test, H0 is rejected if ASL < α.

Using the results of the randomised Tukey’s HSD test,
we also estimate the performance δ required to achieve a
statistical significance at α for a given topic set size as shown
in Algorithm 2: we take the smallest observed δ from all the
run pairs that were found to be significantly different.

3.3 Intuitiveness
We now discuss the concordance test that examine the in-

tuitiveness of metrics. AS metrics aim to balance four key
AS factors (VS, IS, RP and VD) when assessing perfor-

foreach pair of runs (r1, r2) do count(r1, r2) = 0;
for b = 1 to B do

create matrix X∗b whose row t is a permutation of
row t of X for every t ∈ T ;

max∗b = maxix̄
∗b
i ; min∗b = minix̄

∗b
i where

x∗b
i is the mean of i-th column vector of X∗b;

foreach pair of runs (r1, r2) do
if max∗b −min∗b > |x̄(r1)− x̄(r2)| then where
x̄(ri) is the mean of column vector for ri in X

count(r1, r2) + +;

foreach pair of runs (r1, r2) do
ASL(r1, r2) = count(r1, r2)/B;

Algorithm 1: Obtaining the Achieved Significance
Level with the two-sided, randomised Tukey’s HSD
given a performance value matrix X whose rows
represent topics and columns represent runs.

foreach pair of runs (r1, r2) with a significant
difference at α do

δα(r1, r2) = |mean(r1)−mean(r2)| ;
δα = mini,jδα(r1, r2) ;

Algorithm 2: Estimating the performance δ re-
quired for obtaining a significant difference at α
with the randomised Tukey’s HSD test.

mance. Inevitably, they tend to be complex, making it par-
ticularly difficult to determine if a metric is “measuring what
we want to measure”. To address this, Sakai [21] proposed a
method for quantifying“which metric is more intuitive”, and
this has been applied to measuring intuitiveness for diversity
IR metrics. We now apply his approach to AS.

The concordance test algorithm [21] is shown in Algo-
rithm 3. The algorithm computes relative concordance scores
for a pair of metrics M1 and M2 and a gold standard metric
MGS . The latter represents a basic property that a candi-
date metric should satisfy. For our study, we consider four
simple metrics as our gold standards, one for each AS fac-
tor. Note that these gold standards are simple and some of
them (e.g. VS, VD, IS) are set retrieval metrics based on
binary relevance. Since different AS metrics employ differ-
ent position-based discounting and different ways to define
graded topical relevance, the gold standards should be as
agnostic to these differences as possible. Their purpose is to
separate out and test the important properties of the more
complex AS metrics. The four gold standard metrics are:

• Simple VS metric: vertical precision precv.

• Simple VD metric: vertical recall recv.

• Simple IS metric: mean precision mean-prec of verti-
cal result items.

• Simple RP metric: Spearman’s rank correlation corr
with “perfect” AS reference page.

For a vertical vi and query q, we consider the vertical to be
relevant if orient(vi, q) is greater than 0.5.2 Note that the

2We set the threshold to 0.5, as an assessor majority prefer-
ence of 50% is a suitable percentage since the assessments are
neither too noisy (25%) or stringent (100%). In addition, the
relevant vertical set obtained from this simple thresholding
approach is similar to that obtained from Arguello et al.’s
voting approach [3] (where more relevance assessments are
needed).



Disagreements = 0; Correct1 = 0; Correct2 = 0;
foreach pair of runs (r1, r2) do

foreach topic t do
δM1 = M1(t, r1)−M1(t, r2);
δM2 = M2(t, r1)−M2(t, r2);
δMGS = MGS(t, r1)−MGS(t, r2);
if (δM1×δM2)< 0 then // M1 and M2 disagree

Disagreements++;
v if δM1×δMGS ≥ 0 then // M1 and MGS

agree

Correct1 ++;
if δM2×δMGS ≥ 0 then // M2 and MGS agree

Correct2 ++;

Intuitive(M1|M2,M
GS) = Correct1/Disagreements;

Intuitive(M2|M1,M
GS) = Correct2/Disagreements;

Algorithm 3: Computing the concordance of met-
rics M1 and M2 based on preference agreement with
golden standard metric MGS.

vertical recall recv can also be referred to as I-rec (intent
recall). Moreover, the simple RP metric corr is similar to
Arguello et al. voting approach [3]. However, rather than
assigning a higher weight to higher positions in the page,
corr calculates the correlation by weighting each position
equally.

The steps conducting the concordance test are as follows:
We first obtain all pairs of AS systems/pages for which M1

and M2 disagree with each other. Then, out of these dis-
agreements, we count how often each metric agrees with the
gold standard metric. In this way, we can discuss which
of the two metrics is the most “intuitive”. Moreover, we
can argue that an ideal metric should be consistent with all
four gold standards; we therefore add one additional step by
counting how often the metric agrees with a subset of or all
four gold standards.

4. DATA AND SYSTEM RUNS
To provide findings not tailored to one data set, and hence

generalisable, our experiments are conducted on the two test
collections described in Section 4.1. The methodology em-
ployed to simulate AS systems is presented in Section 4.2.

4.1 Test collections
An AS test collection consists of a number of verticals,

each populated by items of that vertical type, a set of topics
expressing information needs relating to one or more verti-
cals, and assessments indicating both the topical-relevance
of the items and the perceived user-oriented usefulness of
their associated verticals to each of the topics.

The first test collection is an AS test collection [25] cre-
ated by reusing an existing web collection, ClueWeb09. The
verticals were created either by classifying items in the web
collections into different genres (e.g. blog, news) or by adding
items from existing multimedia collections (e.g. image, video).
The topics and topical-relevance assessments of the items
across the verticals were obtained by reusing the assessments
developed in two TREC evaluation tasks (TREC Web Track
and Million-Query Track). The verticals used are listed in
Table 2, and correspond to real-world usage of verticals by
commercial search engines.

The second AS test collection [14] is a new dataset used

Table 2: Verticals Used in this Paper.
Vertical Document Type

Image online images media
Video online videos
Recipe recipe page genre
News news articles
Books book review page
Blog blog articles
Answer answers to questions
Shopping product shopping page
Discussion discussion thread from forums
Scholar research technical report
Reference/Wiki encyclopedic entries
General web standard web pages

in the TREC FedWeb track 2013.3 The collection contains
search result pages from 108 web search engines (e.g. Google,
Yahoo!, YouTube and Wikipedia). For each engine, several
query-based samplings were provided for vertical selection.
Relevance judgements were collected by judging both the
snippet created by the engine, and the actual document con-
tent for the results returned by the engines for a set of queries
(reused TREC Web Track 2010 queries). To use the same
verticals listed in Table 2, we manually mapped the 108
search engines into them. This was straightforward since
the engine categories used were similar to those in Table 2.

The vertical-orientation information of each topic from
the first test collection was obtained by providing the ver-
tical names (with a description of their characteristics) and
asking a set of assessors to make pairwise preference as-
sessments, comparing each vertical in turn to the reference
“general web” vertical (“is adding results from this verti-
cal likely to improve the quality of the ten blue links?”)
[26]. Note that since the two test collections contain the
same set of topics (reused from TREC Web Track 2010),
the vertical-orientation information from the first collection
could be used for the second collection. Some details and
statistics of the two test collections are shown in Table 3.

4.2 Simulating AS System Runs
For each topic, we simulate a set of aggregated search

pages/systems. We assume that a page consists of ten “gen-
eral web” blocks (one “general web” page is a block) and
up to three vertical blocks dispersed throughout those ten
blocks (where each vertical block consists of a fixed number
of three items). Recall that there are three key components
of an aggregated search system that can be varied: (i) Ver-
tical Selection (VS) (ii) Item Selection (IS) and (iii) Result
Presentation (RP). We generate pages by simulating an AS
system in which the three components vary in quality.

We simulate four different state-of-the-art VS strategies,
namely ReDDE [23], CRCS(e) [22], click-through [2] and
vertical-intent [2]. Deriving from sampled vertical represen-
tation, ReDDE and CRCS(e) model each verticals average
document score in a full-dataset retrieval (all sources to-
gether). By contrast, click-through and vertical-intent use,
respectively, users’ click-through data and issued queries
from a search engine log (AOL-log). Similar to [2], we model
VS as a classification task and, for each single VS approach
(e.g. ReDDE), the output is n independent prediction prob-
ability scores (one per vertical, n is the number of verticals).

Assuming four vertical positions (ToP, MoP, BoP, None)

3https://sites.google.com/site/trecfedweb/



Table 3: Test Collection Information.
(a) classified ClueWeb09 Category B (“VertWeb11”) [25] (b) TREC 2013 FedWeb Track Data (“FedWeb13”) [14]

Documents ClueWeb09 Cat B (approximately 50 million documents) Documents sampled from 108 heterogeneous search engines
Topics a subset of 56 topics (pertaining various vertical intents) is

used in our experiments, selected from 320 topics (reused
TREC 2009-2010 Web Track and TREC 2008-2009 Million-
Query Track topics)

50 topics (TREC 2010 Web Track) that cover multi-
interpretations or multiple facets.

Intents 12 vertical intents (with an average of 1.83 relevant verticals
per topic)

12 vertical intents manually classified for 108 search engines

Runs 36 simulated AS systems 36 simulated AS systems

on the page, each candidate vertical prediction is compared
with three threshold parameters γ1−3 (one for each posi-
tion) to assign the corresponding embedding position. A
given vertical is assigned to the highest position for which
the vertical prediction probability is greater than or equal
to all thresholds below it, and the verticals within the same
position are ordered by descending order of prediction proba-
bility. Using similar techniques in [3], we obtained a separate
development set to tune the three threshold parameters.

For IS we simulate three potentially different levels of
relevance. These are Perfect, BM25, and TF. Perfect selects
all items in the vertical that are topically relevant. BM25
and TF select the top three ranked items from the rankings
provided by the BM25 and a simple TF (term-frequency)
weighting, respectively, with the PageRank score as a prior
for both BM25 and TF.

For RP, we simulate three different result presentation
approaches: Perfect, Random and Bad. Perfect places the
vertical blocks on the page so that gain could potentially be
maximised, i.e. all the relevant items are placed before non-
relevant items. However, if these items are part of a vertical,
we position the highest orientated vertical first. Random
randomly disperses the vertical blocks on the page while
maintaining the position of the “general web” blocks. Bad
reverses the perfectly presented page.

By varying the quality of each of the three key compo-
nents, we can vary the quality of the result pages created
by an aggregated search system in a more controlled way.
For each topic, we can create 36 (4 × 3 × 3) system runs.4

Therefore, for the discriminative power test, we have C2
36

(630) system pairs. Using this approach we can create a
near ideal aggregated page for a query by using Perfect VS,
Perfect IS, and Perfect RP. This is a greedy approach to
the problem and is used as our method of normalisation.

5. EXPERIMENTS
We experiment with both the discriminative power (Sec-

tion 5.1) and the intuitiveness (Section 5.2) of AS metrics.

5.1 Disciminative Power
Using the two AS test collections (VertWeb11 and Fed-

Web13), we evaluated two sets of metrics in terms of their
discriminative power. The first set consists of metrics that
evaluate only a subset of the AS components, namely, nDCG,
P@10 (Traditional Metrics), precv, recv, mean-prec and
corr (Single-Component Metrics as described in Section 3.3).
The second set includes the (recently proposed) AS metrics
[27] ASDCG, ASRBP , ASERR and adapted diversity met-
rics α-nDCG, IA-nDCG and D#-nDCG. Note that we

4Certain combinations of VS, IS, and RP do not create
unique simulated pages.

used the standard parameter settings (e.g. setting α = 0.5
for α-nDCG, etc.). We leave the appropriate tuning of the
metrics’ parameters for future work.

Figures 1 and 2 show the ASL (Achieved Significance
Level) curves of some selected AS metrics, using the ran-
domised Tukey’s HSD on FedWeb13 and VertWeb11 col-
lections, respectively. Part (a) in each figure (higher part)
shows the results with the first set of metrics (traditional IR
and AS component-based metrics). Part (b) (lower part)
shows the results for the second set of metrics (AS and
adapted diversity metrics). The most discriminative met-
rics are those closer to the origin in the figures. Table 4 cuts
those two figures in half vertically at α = 0.05 to quantify
the discriminative power and the performance δ required to
achieve statistical significance for a given number of topics
(56 for VertWeb11 and 50 for FedWeb13). For example, the
left side of Table 4 (a) shows that the discriminative power
of the component-based metrics mean-prec according to the
Tukey’s HSD test at α = 0.05 is 125/630 = 19.8% (125 sig-
nificantly different run pairs were found) and the δ required
for achieving statistical significance is around 0.12.

Let “M1 ∈ M2” denotes the relationship “M2 outperforms
M1 in terms of discriminative power.” First, by comparing
the different component-based metrics in terms of discrimi-
native power as shown in Part (a) (higher) of Figures 1 and
2, and the left side of Table 4 (a) and (b), the following
trends can be observed: precv ∈ recv ∈ (mean-prec, P@10)
∈ (nDCG, corr). We summarise our findings below:

• Single-component metrics perform comparatively well
in discriminating AS systems. The RP metric corr ap-
pears to be the most consistently discriminative met-
rics of all the single-component metrics for our data
sets, achieving a discriminative power comparable to
traditional IR metrics (e.g. P@10 or nDCG).

• The VS metric precv is the least discriminative single-
component metric for evaluating AS pages. After a
close examination, we found that since most of AS
pages only present a few verticals (mostly 1 or 2), the
possible values of precv are quite limited across pages
and therefore cannot discriminative.

• For the traditional IR metrics, nDCG performs consis-
tently better than P@10 and other single-component
metrics. It is not surprising that nDCG performs bet-
ter than P@10 since it incorporates both ranking po-
sition and graded relevance assessments. However, it
is interesting to observe that, without considering the
rank-based discount, corr is able to discriminate AS
systems comparably to nDCG in the VertWeb11 col-
lection.



Table 4: Discriminative power / performance δ of metrics (single-component and AS metrics) based on the
randomised Tukey’s HSD test at α = 0.05 on the FedWeb13 and VertWeb11 collections.

(a) FedWeb13 (b) VertWeb11
precv 0.0% N/A α-nDCG 15.9% 0.08 precv 0.0% N/A α-nDCG 14.5% 0.08
recv 8.3% 0.09 IA-nDCG 0.0% N/A recv 7.9% 0.10 IA-nDCG 0.0% N/A

mean-prec 19.8% 0.12 D#-nDCG 12.5% 0.07 mean-prec 13.0% 0.12 D#-nDCG 12.1% 0.07
corr 20.8% 0.11 ASDCG 22.4% 0.10 corr 20.4% 0.10 ASDCG 23.8% 0.12

nDCG 24.1% 0.10 ASRBP 15.9% 0.05 nDCG 20.5% 0.13 ASRBP 15.3% 0.05
P@10 8.6% 0.13 ASERR 28.1% 0.09 P@10 14.9% 0.10 ASERR 27.7% 0.09

Figure 1: FedWeb13 Discriminative Power Evalua-
tion: ASL curves based on the randomised Tukey’s
HSD. y-axis: ASL (i.e., p-value); x-axis: run pairs
sorted by ASL.

Next, as shown in Part (b) (lower) in Figures 1 and 2,
and the right side of Table 4 (a) and (b), we compare the
different AS metrics in terms of their discriminative power.
We see that IA-nDCG ∈ D#-nDCG ∈ (ASRBP , α-nDCG)
∈ ASDCG ∈ ASERR. Our findings are summarised below:

• AS-metrics (e.g. ASERR) are generally more discrim-
inative than other adapted diversity metrics. This is
not surprising since AS-metrics incorporates effort of
reading different types of items and hence might be
more powerful/discriminative in controlling the reward
trade-off between vertical orientation and topical rele-
vance.

• ASERR outperforms ASDCG and ASRBP in terms of
discriminative power. When considering graded rel-
evance assessments, this might suggest that metrics
considering inter-dependency of relevance among doc-
uments can be more discriminating than those that
only discounted over positions.

• IA-nDCG and D#-nDCG are the least discrimina-

Figure 2: VertWeb11 Discriminative Power Evalua-
tion: ASL curves based on the randomised Tukey’s
HSD. y-axis: ASL (i.e., p-value); x-axis: run pairs
sorted by ASL.

tive, and this can be observed for both datasets. IA-
nDCG’s failure might be explained by its top-heavy
characteristic (it heavily rewards highly oriented verti-
cal results), whereasD#-nDCG’s discrimination might
be affected by the less discriminating recv that it in-
corporates.

• Generally, different AS metrics are more discrimina-
tive than both single-component metrics and tradi-
tional IR metrics, although with the exception of corr
and nDCG being more discriminative than e.g. D#-
nDCG.

5.2 Intuitiveness
Highly discriminative metrics, while desirable, may not

necessarily measure what we expect them to measure. The
aim of this section is to answer the question: how do the dif-
ferent AS metrics differ from one another, and which ones
are more intuitive than others for the purpose of evaluat-
ing search result aggregation? We answer this question by
conducting a concordance test.



Table 5 shows the “intuitiveness” scores for a variety of
AS metrics, computed using the preference agreement algo-
rithm shown in Algorithm 3. As specified in Table 1, our
tested AS metrics include a variety of adapted diversity met-
rics, existing AS metrics and a set of single-component AS
metrics. We select a subset of them (α-nDCG, IA-nDCG,
ASDCG, D#-nDCG) representing different frameworks in
modelling AS evaluation. In addition, to provide insights on
the effectiveness of different user models (e.g. position-based
discount model, cascade model) that are used for AS eval-
uation, we also include ASDCG, ASRBP and ASERR and
investigate their ability to capture different key AS compo-
nents. Due to space limitation, we only show results in Table
5 for the FedWeb13 collection as the results are similar for
both test collections. Note that as we have 36 ∗ 35/2 = 630
run pairs, we have 50 ∗ 630 = 31500 pairs of aggregated
search pages for the tests.

As we are testing intuitiveness with respect to four AS
factors (VS, IS, RP and VD), Part (a) of Table 5 uses the
precision of returned vertical set precv as the gold-standard,
representing how the AS metrics favour aggregated pages
that select majority-preferred (relevant) verticals. Part (b)
uses the recall of verticals recv as the gold-standard, repre-
senting how AS metrics favour search results with a more
diverse sets of verticals. Part (c) computes the intuitiveness
scores by showing how AS metrics favour a returned set con-
taining a large number of relevant documents, as measured
by the mean of precision for each vertical results. Finally,
Part (d) measures the “goodness” of AS systems embedding
vertical results into “general web” results, where we use the
Spearman Rank Correlation between the AS page of interest
and the reference AS page (“perfect” page) as the measure.
For example, Table 5 (a) shows that if we compare α-nDCG
and IA-nDCG in terms of the component VS (the ability to
select relevant verticals), there are 10222 disagreements, and
that whereas the intuitive score for α-nDCG is only 0.742,
that for IA-nDCG is 0.792. This means that, given a pair of
AS pages for which α-nDCG and IA-nDCG disagree with
each other, IA-nDCG is more likely to agree with precv on
the vertical preference than α-nDCG.

Let “M1 > M2” denotes the relationship “M1 statistically
significantly outperforms M2 in terms of concordance with
a given gold-standard metric.” As we assume that the sim-
ple single-component metrics discussed here can properly
reflect the performance of each component, when compar-
ing different frameworks (α-nDCG, IA-nDCG, D#-nDCG
and ASDCG) for capturing individual key AS component,
several trends can be observed from Table 5:5

• Concordance with precv (pure vertical orientation):
IA-nDCG > ASRBP > ASDCG > D#-nDCG
> ASERR, α-nDCG;

• Concordance with recv (pure vertical diversity):
D#-nDCG > IA-nDCG > ASDCG, ASRBP , ASERR

> α-nDCG;

• Concordance with mean-prec (pure item topical rele-
vance): ASRBP , D#-nDCG > ASDCG > IA-nDCG
> ASERR > α-nDCG;

5In general, note that pairwise statistical significance is not
transitive. However, it turns out that our results do not
violate transitivity.

• Concordance with corr (presentation):
α-nDCG >ASERR >ASDCG >ASRBP >D#-nDCG
> IA-nDCG.

The above translate to the following observations. The
intent-aware (IA) metric [1] and recently proposed AS-metric
evaluation framework [27] work best for rewarding selecting
relevant verticals based on the intuitiveness score. The D#
and IA frameworks favour rewarding vertical diversity (pro-
moting diverse set of results from different verticals). It is
not surprising that the D# framework behaves similarly to
recv since D# boosts diversity by incorporating I-rec into
it. The D# and AS metrics tend to reward result page with
more topically relevant items whereas ASRBP works best,
compared to other user models. The α-nDCG and ASERR

metrics consistently perform worst with respect to vertical
orientation (VS), vertical diversity (VD) and topical rele-
vance (IS). Finally, the α-nDCG and ASERR metrics are
better correlated with result presentation (RP) evaluation.
A closer examination shows that this can be explained by
the fact that the cascade model can better discriminate the
small relevance “exchanges” (differences) at the top or bot-
tom of the search result page.

To investigate how the above metrics accurately combine
the various AS components, we conduct a further concor-
dance test to answer the following question: how often does
a given metric agree with a set of components at the same
time? For space limitation, we only report results (Part (e)
to (g) in Table 5) relating to the component combinations
capturing the most crucial aspects of AS, namely VS+IS
(orientation and relevance), VS+IS+VD (orientation, rele-
vance and diversity) and VS+IS+RP+VD (ultimate utility).
Our findings are as follows:

• Concordance with precv AND mean-prec (vertical ori-
entation and topical relevance): ASRBP > D#-nDCG
> ASDCG, IA-nDCG > ASERR > α-nDCG;

• Concordance with precv AND recv AND mean-prec
(vertical orientation, topical relevance and diversity):
D#-nDCG >ASRBP , IA-nDCG>ASDCG >ASERR

> α-nDCG;

• Concordance with all: ASRBP >D#-nDCG >ASDCG,
IA-nDCG > ASERR > α-nDCG.

We therefore find that D#-nDCG and ASRBP performs
best when combining components whereas the D# metric
captures better vertical diversity (VD) and ASRBP models
better vertical orientation and relevance (VS, IS). Moreover,
we quantitatively show the advantages of metrics that cap-
ture key components of AS (e.g. VS) over those that do not
(e.g. α-nDCG). Further investigations are needed to bet-
ter understand why certain combination approaches work
better than others.

6. CONCLUSIONS
In this paper, we measured the performance of AS metrics

based on both their discriminative power and intuitiveness.
To our knowledge, this is the first study to extensively ex-
amine properties of metrics in the context of AS. We used an
extensive set of existing AS metrics and adapted diversity
metrics and test them across two AS test collections. Our
main findings are:



• In terms of discriminative power, for the four AS com-
ponents, RP (corr) is the most discriminative feature
(metric) for evaluation, followed by IS (mean-prec),
VD (recv) and VS (precv). In addition, the AS-metrics
(e.g. ASERR, ASDCG) and α-nDCG are the most dis-
criminative metrics, and superior to D#-nDCG and
IA-nDCG.

• In terms of intuitiveness for single AS factor (concor-
dance with single-component metric), we observe that
IA-nDCG is superior to other AS metrics and there-
fore may be the most intuitive metric for vertical ori-
entation (VS). In addition, D#-nDCG is superior to
other AS metrics in terms of vertical diversity (VD)
and may therefore be the most intuitive metric for that
feature of aggregation. Furthermore, ASRBP and D#-
nDCG are the most intuitive metrics for vertical top-
ical relevance (IS). Finally, α-nDCG is the most intu-
itive metric for result presentation (RP).

• In terms of intuitiveness for the combination of factors
(concordance with multiple single-component metrics),
we find that ASRBP is the most intuitive metric to
emphasise both vertical orientation and vertical topi-
cal relevance (VS+IS). In addition, D#-nDCG is the
most intuitive metric for vertical orientation, vertical
topical relevance and vertical diversity (VS+IS+VD).
Finally, ASRBP is the most intuitive metric to empha-
sise all AS components (VS+IS+VD+RP).

In terms of both discriminative power and intuitiveness, we
demonstrated that the AS-metrics (especially ASRBP ) are
the most powerful metrics to evaluate aggregated search. In
addition, our work presents a framework to conduct a meta-
evaluation for aggregated search using test collections. This
is relatively inexpensive to conduct, compared with previous
work involving human subjects for annotating preference of
large amount of AS page pairs [27].

Our results have several implications: (1) compared with
homogeneous federated search, aggregation over heteroge-
neous sources might require more refined evaluation mea-
sures that not only capture item topical relevance, but also
vertical orientation, in order to better model and discrimi-
nate system performances; (2) a more principled framework
to incorporate and combine key factors (VS, VD, IS, RP)
of AS could provide better insights in understanding evalu-
ation results.

Future work will include a thorough testing of AS met-
rics by tuning parameters within various metrics to (de)-
emphasise some of the key factors, and a comparison with
meta-evaluation results from human subjects to test the re-
liability of our approach and results.
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Table 5: Concordance test results with the TREC FedWeb13 Track data (50 topics; 36 simulated runs).
Statistically significant differences with the sign test are indicated by △(α = 0.05) and N(α = 0.01).

(a). (VS) gold standard: vertical selection precision (precv)
IA-nDCG D#-nDCG ASDCG ASRBP ASERR

α-nDCG 0.742/0.792△ 0.755/0.783△ 0.763/0.784△ 0.758/0.788△ 0.769/0.783
(10222) (9882) (8857) (9155) (10586)

IA-nDCG - 0.798/0.713N 0.797/0.696N 0.775/0.715N 0.802/0.715N
(6105) (6521) (7595) (8764)

D#-nDCG - - 0.747/0.770△ 0.751/0.759 0.781/0.754△
(5664) (6262) (8453)

ASDCG - - - 0.728/0.784△ 0.771/0.754
(3230) (5351)

ASRBP - - - - 0.775/0.742△
(8309)

(b). (VD) gold standard: vertical recall (recv)
IA-nDCG D#-nDCG ASDCG ASRBP ASERR

α-nDCG 0.616/0.875N 0.605/0.881N 0.660/0.831N 0.664/0.831N 0.653/0.828N
(10222) (9882) (8857) (9155) (10586)

IA-nDCG - 0.672/0.747N 0.871/0.531N 0.863/0.571N 0.847/0.605N
(6105) (6521) (7595) (8764)

D#-nDCG - - 0.917/0.442N 0.920/0.493N 0.874/0.568N
(5664) (6262) (8453)

ASDCG - - - 0.726/0.735 0.742/0.761
(3230) (5351)

ASRBP - - - - 0.732/0.741
(8309)

(c). (IS) gold standard: mean precision of vertical retrieved items (mean-prec)
IA-nDCG D#-nDCG ASDCG ASRBP ASERR

α-nDCG 0.358/0.838N 0.314/0.883N 0.331/0.867N 0.312/0.892N 0.408/0.791N
(10222) (9882) (8857) (9155) (10586)

IA-nDCG - 0.430/0.779N 0.526/0.665N 0.466/0.750N 0.738/0.454N
(6105) (6521) (7595) (8764)

D#-nDCG - - 0.686/0.470N 0.598/0.603 0.843/0.292N
(5664) (6262) (8453)

ASDCG - - - 0.412/0.801N 0.897/0.255N
(3230) (5351)

ASRBP - - - - 0.857/0.293N
(8309)

(d). (RP) gold standard: Spearman Correlation with “perfect” AS page (corr)
IA-nDCG D#-nDCG ASDCG ASRBP ASERR

α-nDCG 0.640/0.504N 0.625/0.527N 0.618/0.537N 0.620/0.535N 0.601/0.544△
(10222) (9882) (8857) (9155) (10586)

IA-nDCG - 0.469/0.640N 0.438/0.657N 0.466/0.640N 0.463/0.673N
(6105) (6521) (7595) (8764)

D#-nDCG - - 0.511/0.587N 0.538/0.585△ 0.515/0.617N
(5664) (6262) (8453)

ASDCG - - - 0.585/0.543△ 0.553/0.632N
(3230) (5351)

ASRBP - - - - 0.544/0.611N
(8309)

(e). (VS+IS) gold standard: vertical selection precision AND vertical item mean precision (precv+mean-prec)
IA-nDCG D#-nDCG ASDCG ASRBP ASERR

α-nDCG 0.253/0.656N 0.237/0.689N 0.256/0.677N 0.236/0.701N 0.317/0.616N
(10222) (9882) (8857) (9155) (10586)

IA-nDCG - 0.351/0.541N 0.424/0.443 0.352/0.524N 0.598/0.301N
(6105) (6521) (7595) (8764)

D#-nDCG - - 0.531/0.348N 0.431/0.454△ 0.661/0.213N
(5664) (6262) (8453)

ASDCG - - - 0.267/0.632N 0.700/0.188N
(3230) (5351)

ASRBP - - - - 0.672/0.200N
(8309)

(f). (VS+IS+VD) gold standard: vertical selection precision AND vertical item mean precision
AND vertical recall (precv+mean-prec+recv)

IA-nDCG D#-nDCG ASDCG ASRBP ASERR

α-nDCG 0.195/0.593N 0.180/0.619N 0.218/0.594N 0.203/0.612N 0.267/0.545N
(10222) (9882) (8857) (9155) (10586)

IA-nDCG - 0.257/0.421N 0.392/0.271N 0.327/0.347 0.541/0.205N
(6105) (6521) (7595) (8764)

D#-nDCG - - 0.495/0.179N 0.410/0.273N 0.596/0.128N
(5664) (6262) (8453)

ASDCG - - - 0.237/0.527N 0.576/0.172N
(3230) (5351)

ASRBP - - - - 0.552/0.179N
(8309)

(g). (VS+IS+RP+VD) golden standard: ALL single-component metrics (precv+mean-prec+recv+corr)
IA-nDCG D#-nDCG ASDCG ASRBP ASERR

α-nDCG 0.131/0.350N 0.117/0.368N 0.139/0.361N 0.128/0.369N 0.164/0.332N
(10222) (9882) (8857) (9155) (10586)

IA-nDCG - 0.128/0.263N 0.194/0.183 0.166/0.235N 0.287/0.137N
(6105) (6521) (7595) (8764)

D#-nDCG - - 0.248/0.090N 0.162/0.211△ 0.324/0.071N
(5664) (6262) (8453)

ASDCG - - - 0.131/0.315N 0.345/0.113N
(3230) (5351)

ASRBP - - - - 0.326/0.104N
(8309)


