
Choreography Projection and
Contract Refinement

Mario Bravetti
http://cs.unibo.it/~bravetti

Department of Computer Science
University of Bologna

INRIA research team FOCUS

Joint work with:

Ivan Lanese, Gianluigi Zavattaro

Plan of the

� Global and Local Choreography

� Contract-based service discovery

� A dynamic update mechanism

Plan of the Talk

� Conclusion

Web Service Choreography
Description Language

�Describe the interaction among the
combined services from a top abstract
view

Choreography
(e.g. WS-CDL)
Top abstract view
of whole system:
each action is a
communication
involving two of
its participants

Orchestration
(e.g. WS-BPEL)
One Party detailed
view of the system
that orchestrates a
part of it by sending
(to other parties) &
receiving messages

Similar to UML Sequence
Diagrams

WS-CDL

�Global view of service interactions

Seller

Buyer

Bank

WS-CDL

�Global view of service interactions

Seller
Request

Buyer

Request

Bank

WS-CDL

�Global view of service interactions

Seller
Request

Buyer PayDescr

Request
Offer

Bank

WS-CDL

�Global view of service interactions

Seller
Request

Buyer PayDescr

Request
Offer

Bank

Payment

WS-CDL

�Global view of service interactions

Seller
Request

Buyer PayDescr

Request
Offer

Bank

Payment
Confirm

Receipt

WS-CDL

RequestBuyer�Seller ;

(OfferSeller�Buyer |

PayDescrSeller�Bank) ;PayDescrSeller�Bank) ;

PaymentBuyer�Bank ;

(ConfirmBank�Seller |

ReceiptBank�Buyer)

Projection of the Choreography
on the Single Participants

Buyer: Invoke(Request)@Seller;Receive(Offer);
Invoke(Payment)@Bank;Receive(Receipt)

Seller: Receive(Request);
(Invoke(Offer)@Buyer |(Invoke(Offer)@Buyer |
Invoke(PayDescr)@Bank);

Receive(Confirm)

Bank: Receive(PayDescr);Receive(Payment);
(Invoke(Receipt)@Buyer |
Invoke(Confirm)@Seller)

Well Formed WS-CDL
specifications

�Can we always project a WS-CDL
specification in an equivalent one?

�Which kind of equivalences are �Which kind of equivalences are
preserved?

A Formal Model for WS-CDL

�A global choreography language:

H ::= ar����s | 1 | 0 |

H;H | H+H | H|H | H*H;H | H+H | H|H | H*

A Formal Model for WS-CDL

�A global choreography language:

H ::= ar����s | 1 | 0 |

H;H | H+H | H|H | H*H;H | H+H | H|H | H*

r invokes the
operation a of s

Successful
termination

Unsuccessful
termination

A Formal Model for WS-CDL

�A global choreography language:

H ::= ar����s | 1 | 0 |

H;H | H+H | H|H | H*H;H | H+H | H|H | H*

Choice

Sequence

Parallel Repetition

A Formal Model for orchestrations

�A language for orchestrations:

P ::= a | ar | 1 | 0 |

P;P | P+P | P|P | P*P;P | P+P | P|P | P*

S ::= [P]r | S|S

A Formal Model for orchestrations

�A language for orchestrations:

P ::= a | ar | 1 | 0 |

P;P | P+P | P|P | P*P;P | P+P | P|P | P*

S ::= [P]r | S|S

receive on a

Successful
termination

Unsuccessful
termination

invoke a at r

A Formal Model for orchestrations

�A language for orchestrations:

P ::= a | ar | 1 | 0 |

P;P | P+P | P|P | P*

Choice

Sequence

Parallel Repetition

P;P | P+P | P|P | P*

S ::= [P]r | S|S

A Formal Model for orchestrations

�A language for orchestrations:

P ::= a | ar | 1 | 0 |

P;P | P+P | P|P | P*P;P | P+P | P|P | P*

S ::= [P]r | S|S

Behaviour of
participant r

Parallel composition
of participants

The “canonical” projection

� Projection [[H]]t of choreography H to
participant t

as if t=r

[[a]] = a if t=s[[ar����s]]t = a if t=s

1 otherwise

[[H;H’]]t=[[H]]t ; [[H’]]t [[H|H’]]t=[[H]]t | [[H’]]t

[[H+H’]]t=[[H]]t + [[H’]]t [[H*]]t=[[H]]t*

Example

�Consider the global choreography:
ar����s ; bt����u

�Projection: �Projection:

[as ;1]r | [a;1]s | [1;bu]t | [1;b]u

�Are the two choreographies equivalent?

� NO

� But, if r=t…. YES

[as; bu]r | [a;1]s | [1;b]u

Asynchronous communication

�Reconsider the example assuming
asynchronous communication

[as; bu]r | [a]s | [b]u[as; bu]r | [a]s | [b]u

�Communication on a starts before
communication on b but could finish
after

�What we should observe?

� Send, Receive, both, …?

A lattice of possible
observation criteria

Sender Receiver

Synchronous

Sender Receiver

Sender-receiver

A lattice of possible
observation criteria

Sender Receiver

Synchronous

Assuming synchronous
communication:
observe either send or
receive

Sender Receiver

Sender-receiver

A lattice of possible
observation criteria

Sender Receiver

Synchronous

Sender Receiver

Sender-receiver
Assuming asynchronous

communication:
observe send

A lattice of possible
observation criteria

Sender Receiver

Synchronous

Sender Receiver

Sender-receiver
Assuming asynchronous

communication:
observe receive

A lattice of possible
observation criteria

Sender Receiver

Synchronous

Sender Receiver

Sender-receiver
Assuming asynchronous

communication:
observe send and
observe receive

What about the previous example?

�Reconsider the example

ar����s ; br����u

[as; bu]r | [a]s | [b]u[as; bu]r | [a]s | [b]u

�OK: for synchronous and sender

�NO: for receiver, sender-receiver

Main results

�For each observation criterion:

� Sufficient conditions (connectedness,
unique point of choice, and causality safe)
that guarantee that a global choreography that guarantee that a global choreography
is equivalent to the projected one

Unique point of choice

� In a choice H+H’
� The sender of the initial transitions in H and

in H’ is always the same

� The roles in H and in H’ are the same

�Example: if we drop the second
condition

(ar����s + br����t); c s����t

[(as+bt);1]r | [(a+1);ct]s | [(1+b);c]t

Which equivalence between global
and local choreographies?

� Synchronous equivalence: global transitions are
matched by synchronous local transitions

� Sender equivalence: global transitions are matched
by local sends, local receives are abstracted away by local sends, local receives are abstracted away
� weak w.r.t. local receive transitions

� Receiver equivalence: global transitions are matched
by local receives, global sends are abstracted away
� weak w.r.t. local send transitions

� Sender-Receiver equivalence: both conditions above

Example: Receiver
equivalence

�Global choreography:
ar����s ; bt����s

� Local choreography:� Local choreography:

[as]r | [a;b]s | [bs]t

�The two systems are receiver
equivalent

Plan of the

� Global and Local Choreography

� Contract-based service discovery

� A dynamic update mechanism

Plan of the Talk

� Conclusion

Contracts

�Contract: service “behavioural interface”

� correct sequences
of invoke and receive

Contract:

public registry

� as in an orchestration
(role of a coreography)

� just finite-state labeled
transition systems with
successful termination

Contract:
abstract service

description

Service

Contract Compliance
� Verification of correctness of service composition

based on their contracts: successful interaction
i.e. no deadlock / termination reached

public registry public registry

Contract:
abstract service

description

Service

…
Contract:

abstract service
description

Service…
Reciprocal invocations

Service Compliance: Formally

�Services are compliant if the following
holds for their composition P:

P --->* P’
τ

P --->* P’
implies that there exist P’’ and P’’’ s.t.

P’ --->* P’’ ---> P’’’

� i.e. every computation can be extended to
reach successful completion of all services

� termination under fairness assumption

τ

√τ

Example: compliant services

�The following pairs of services are
compliant:

� C1 = a+b+c C2 = a + b C1 = a+b+c C2 = a + b

� C1 = a;b C2 = a | b

� C1 = (a; b)* C2 = a;(b;a)*;b

Choreography

Compliance-Preserving Contract
Refinement !

Contract Part. 1 Contract Part. n…

compliant by
construction

projection projection

…Contract

public registry

Contract

public registry

Service Service…
Reciprocal invocations

refines refines
compliance
preserved by
refinement

Choreography

Contract Refinement Relation

Contract Part. 1 Contract Part. n…

compliant by
construction

…Contract

public registry

Contract

public registry

Service Service…
Reciprocal invocations

refines refines
compliance
preserved by
refinement

Formally: Subcontract Preorder

C

�Preorder ≤ between contracts C:

� C’ ≤ C means C’ is a subcontract of C

C

sub-contracts

of C

subcontract
preorder

Definition of Preorder Induced from
Independent Refinement

C1 C2 Cn

Given a set of compliant contracts

subcontract
preorder

…

is a set of compliant contracts

preorder

sub-contracts

of C2 …

sub-contracts

of C1

sub-contracts

of Cn

C’1 C’2 C’n
…

No maximal subcontract preorder
… in general

� Consider the system:

[a] | [a]

we could have one preorder ≤1 for which1

a + c.0 ≤1 a a + c.0 ≤1 a

and one preorder ≤2 for which

a + c.0 ≤2 a a + c.0 ≤2 a

but no subcontract preorder could have

a + c.0 ≤ a a + c.0 ≤ a

� Consequence: no independent refinement!

Maximal pre-order

� It exists changing some assumptions:

� Limiting the considered services
(output persistence)

� Strengthening the notion of compliance
(strong compliance)

� Moving to asynchronous communication
(e.g. via message queues)

Output persistence

�Output persistence means that given a
process state P:

� If P has an output action on a and
αααα

If P has an output action on a and
P-->P’ with αααα different from output on a,
then also P’ has an output on a

�This holds, for instance, in WS-BPEL

� Outputs cannot resolve the pick operator
for external choices (the decision to
execute outputs is taken internally)

αααα

Example

�Given the choreography:
RequestAlice����Bob; (AcceptBob����Alice + RejectBob����Alice)

The following services can be retrieved:

[τ;Request ;(Accept+Reject)] | [τ;RequestBob;(Accept+Reject)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

Example

�Given the choreography:
RequestAlice����Bob; (AcceptBob����Alice + RejectBob����Alice)

The following services can be retrieved:

[τ;Request ;(Accept+Reject)] | [τ;RequestBob;(Accept+Reject)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

[τ;RequestBob;(Accept+Reject+Retry)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

Example

�Given the choreography:
RequestAlice����Bob; (AcceptBob����Alice + RejectBob����Alice)

The following services can be retrieved:

[τ;Request ;(Accept+Reject)] | [τ;RequestBob;(Accept+Reject)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

[τ;RequestBob;(Accept+Reject+Retry)]Alice |
[Request;(τ;AcceptAlice+τ;RejectAlice)]Bob

[τ;RequestBob;(Accept+Reject+Retry)]Alice |
[Request;τ;AcceptAlice]Bob

“Standard” Contract Compliance

�Example:
� S1: invoke(a);invoke(b)

� S2: receive(a);invoke(c)S2: receive(a);invoke(c)

� S3: receive(c);receive(b)

S1

S2

S3

“Standard” Contract Compliance

�Example:
� S1: invoke(a);invoke(b)

� S2: receive(a);invoke(c)S2: receive(a);invoke(c)

� S3: receive(c);receive(b)

S1

S2

S3

“Standard” Contract Compliance

�Example:
� S1: invoke(a);invoke(b)

� S2: receive(a);invoke(c)S2: receive(a);invoke(c)

� S3: receive(c);receive(b)

S1

S2

S3

“Standard” Contract Compliance

�Example:
� S1: invoke(a);invoke(b)

� S2: receive(a);invoke(c)S2: receive(a);invoke(c)

� S3: receive(c);receive(b)

S1

S2

S3

� Let us give a more careful look:
� S1: invoke(a);invoke(b)

� S2: receive(a);invoke(c)

Alternatives to Standard
Compliance: Strong Compliance

S2: receive(a);invoke(c)

� S3: receive(c);receive(b)

S1

S2

S3

Alternatives to Standard
Compliance: Strong Compliance

� Let us give a more careful look:
� S1: invoke(a);invoke(b)

� S2: receive(a);invoke(c)S2: receive(a);invoke(c)

� S3: receive(c);receive(b)

S1

S2

S3

� Let us give a more careful look:
� S1: invoke(a);invoke(b)

� S2: receive(a);invoke(c)
� Strong

Alternatives to Standard
Compliance: Strong Compliance

S2: receive(a);invoke(c)

� S3: receive(c);receive(b)

S1

S2

S3

� Strong
compliance
requires that
the receptors
should be
always ready

� These services
are not
strongly
compliant !!

Example: strong compliant
services

�The following pairs of services are
strong compliant:

� C1 = a+b+c C2 = a + b C1 = a+b+c C2 = a + b

� C1 = a;b C2 = a | b

� C1 = (a; b)* C2 = a;(b;a)*;b

Example: strong compliant
services

�The following pairs of services are
strong compliant:

� C1 = a+b+c C2 = a + b C1 = a+b+c C2 = a + b

� C1 = a;b C2 = a | b

� C1 = (a; b)* C2 = a;(b;a)*;b

“Strong” refinement

� It allows also refinement on names
already in the interface:

Receive(a);(Receive(b)+Receive(a))Receive(a);(Receive(b)+Receive(a))

≤

Receive(a);Receive(b)

Summary of Results

� Refinement with knowledge about other initial
contracts limited to I/O actions
(enough to guarantee that refinements that extend the interface are included)

� “normal” compliance:
� Uncostrained contracts: maximal relation does not exist

� Contracts where outputs are internally chosen (output persistence):� Contracts where outputs are internally chosen (output persistence):
maximal relation exists and “I” knowledge is irrelevant

� Output persistent contracts where outputs are directed to a location:
maximal relation exists and “I/O” knowledge is irrelevant

� strong compliance:
� Uncostrained contracts (where output are directed to a location):

maximal relation exists and “I/O” knowledge is irrelevant

� queue-based compliance:
� Uncostrained contracts (where output are directed to a location):

maximal relation exists and “I/O” knowledge is irrelevant

Summary of Results

� Direct conformance w.r.t. the whole choreography:
maximal relation does not exist (all kinds of compl.)

� Sound characterizations of the relations obtained
(apart from the queue based) by resorting to an
encoding into (a fair version of) must testing [RV05]encoding into (a fair version of) must testing [RV05]
� With respect to testing: both system and test must succeed

� Much coarser: all non-controllable systems are equivalent

� As a consequence:
� Algorithm that guarantees compliance

� Classification of the relations w.r.t. existing pre-orders:
coarser than (fair) must testing (e.g., they allow external
non-determinism on inputs to be added in refinements)

Plan of the

� Global and Local Choreography

� Contract-based service discovery

� A dynamic update mechanism

Plan of the Talk

� Conclusion

Updatable processes/contracts

�How to model updatable processes? Eg.

� services which receive workflow from the
environment in order to interact with it

internal “adaptable/mutable” subparts of � internal “adaptable/mutable” subparts of
cloud behaviour

�By extending a process calculus with

� updatable parts a[P] and

� update actions/primitives a{U}, where U is

Example

�Consider the running system:

if the following update is performed:if the following update is performed:

the system becomes:

Compliance analysis

�Compliance contract analysis can be used:

� to detect if several systems correctly interact
by composing their behavioural contracts

� to assess a behavioural contract is internally
correct (for complex systems, e.g., cloud)

�Decidability separation results depending
on fragments of the language (update
power/dynamic topology) [forte-fmoods 2011]

Plan of the

� Global and Local Choreography

� Contract-based service discovery

� A dynamic update mechanism

Plan of the Talk

� Conclusion

Future work

�Contracts with operators for process
interruption and compensation

� The contract language becomes partially The contract language becomes partially
undecidable

Related work

�Carbone, Honda, Yoshida

� Global and End-point calculus similar to our
WS-CDL and BPEL4Chor

� Only some of our observation criteria are
considered

� Stronger conditions for projection

Related work

�Fu, Bultan, Su

� Service systems with message queues
similar to ours

� Observe the send event as in our sender
observation criterion

� No refinement

Related work

�Padovani et al.

� Contracts described with an ad-hoc
transition system (reminiscent of
acceptance tree)acceptance tree)

� The absence of maximal subcontract
relation solved either with explicit
interfaces of filters (cut the additional
actions of the refinements)

Related work

� van der Aalst et al.

� Contracts described with open workflow
nets (similar to petri nets)

� Same notion of compliance

� Same definition of subcontract as maximal
refinement that preserves compliance

� Characterization of the refinement for
processes without “loops” (make the
system infinite due to message queues)

References
� M. Bravetti and G. Zavattaro. Contract based Multi-party Service Composition. In

FSEN’07. (full version in Fundamenta Informaticae)
� M. Bravetti and G. Zavattaro. Towards a Unifying Theory for Choreography

Conformance and Contract Compliance. In SC’07.
� M. Bravetti and G. Zavattaro. A Theory for Strong Service Compliance. In

Coordination’07. (full version in MSCS)
� M. Bravetti and G. Zavattaro. Contract Compliance and Choreography Conformance

in the presence of Message Queues.In WS-FM’08
� M. Bravetti and G. Zavattaro. On the Expressive Power of Process Interruption and � M. Bravetti and G. Zavattaro. On the Expressive Power of Process Interruption and

Compensation. In WS-FM’08
� I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the Gap Between

Interaction- and Process-oriented Choreographies. In SEFM’08.

� M. Bravetti, I. Lanese, G. Zavattaro. Contract-Driven Implementation of
Choreographies.In TGC'08

� M. Bravetti, G. Zavattaro. Contract-Based Discovery and Composition of Web
Services. In Formal Methods for Web Services, Advanced Lectures, LNCS 5569

� M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. A Calculus for Component
Evolvability (Extended Abstract). In FACS’10

� M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. Adaptable Processes
(Extended Abstract). In FORTE/FMOODS’11

� M. Boreale, M. Bravetti. Advanced Mechanisms for Service Composition, Query and
Discovery in Rigorous Software Eng. for Service-Oriented Systems, LNCS, to appear

