N
N

Choreography Projection and
Contract Refinement

Mario Bravetti Department of Computer Science

http://cs.unibo.it/~bravetti University of Bologna

INRIA research team FOCUS

Joint work with:
Ivan Lanese, Gianluigi Zavattaro

(1,
N

N

Plan of the Talk

¢ Global and Local Choreography
+ Contract-based service discovery
¢ A dynamic update mechanism

¢ Conclusion

Web Service Choreography
Description Language

N

¢ Describe the interaction among the
combined services from a top abstract
view

Choreography Orchestration
(e.g. WS-CDL) (e.g. WS-BPEL)

Top abstract view One Party detailed
of whole system: view of the system

each action is a that orchestrates a
communication part of it by sending
involving two of (to other parties) &
its participants receiving messages

Similar to UML Sequence

N

Diagrams

Buyer

QuoteResponse

QuoteAcceptance

~ QrderConfiirmation

DeliveryDetails

RequestForQuote -

Seller Shipper
]

-

__ReguestDelDetails -

- DeliveryDetails

WS-CDL

¢ Global view of service interactions

s

Buyer

b

WS-CDL

¢ Global view of service interactions

M{ Seller }
Bwver
bk

WS-CDL

¢ Global view of service interactions

[Seller }
Request
Offer

[Buye r} PayDescr

A 4

b

N

WS-CDL

¢ Global view of service interactions

[Seller }
Request
Offer

{Buye r} PayDescr

Payment

A 4

ponc

WS-CDL

¢ Global view of service interactions

s

Request Y

N

{Buyer} PayDescr| |Confirm

A 4

Receipt
Bank }

WS-CDL

N

RequeStBuyerQSeller '

(Oﬂ:erSeIIereBuyer ‘
I:)ay[)esc:rSellereBank) '

IDaymentBuyereBank '

(COnﬁrmBank%SeIler |

Recei ptBank% Buyer)

Projection of the Choreography
on the Single Participants

N

Buyer: Invoke(Request)@Seller;Receive(Offer);
Invoke(Payment) @Bank;Receive(Receipt)

Seller: Receive(Request);

(Invoke(Offer)@Buyer |
Invoke(PayDescr)@Bank);
Receive(Confirm)

Bank: Receive(PayDescr);Receive(Payment);
(Invoke(Receipt)@Buyer |
Invoke(Confirm)@Seller)

Well Formed WS-CDL
specifications

+ Can we always project a WS-CDL
specification in an equivalent one?

¢ Which kind of equivalences are
preserved?

A Formal Model for WS-CDL

¢ A global choreography language:
H = a5, [110
HH | H+tH | HIH | H*

A Formal Model for WS-CDL

N

¢ A global choreography language:
H = a5, [110
ALH ([H+aY | HIH | B

r invokes the
operation a of s

Unsuccessful

|
SUCCG_SSfL_II termination
termination

A Formal Model for WS-CDL

¢ A global choreography language:
H = a5, [110
HH | H+tH | HIH | H*

Sequence / / /
Choice

Parallel Repetition

N

A Formal Model for orchestrations

¢ A language for orchestrations:
P = al@Qal 110

P;P | P+P | PIP | P*
S «== [P]l. | SIS

A Formal Model for orchestrations

N

¢ A language for orchestrations:

P = al@a |l 110
P-P[| P+P\ | PN\ | P*
S = [P1]1 SIS
receive on a Unsuccesstul
termination

_ |
invoke a at r Successful
termination

A Formal Model for orchestrations

N

¢ A language for orchestrations:
P = al@Qal 110
PP | P+P | PIP | P*

S7fP]r | /SI|S T

Sequence
Choice

|
Parallel Repetition

A Formal Model for orchestrations

N

¢ A language for orchestrations:

P = al@Qal 110
P;P | P+P | PIP | P*
S «= [P]l. | SIS

Behaviour of Parallel composition
participant r of participants

N

The “canonical” projection

¢ Projection [[H]], of choreography H to
participant t

a, ift=r
[[a, 5.], = Ja if t=s
1 otherwise

[[H;H']l=[1Hl]; i[H’]]t [[HIH' 1] =[[H]]; | [[H"]],
[[H+H']l=[[HI], + [[H']l, [[H*]l=[[H]]*

Example

Consider the global choreography:

dr>g7 bt%u
+ Projection:

[a;1] | [a;1 1 I [Lb 1 I [Lb],
+ Are the two choreographies equivalent?

= NO

« But, if r=t.... YES
[2;5, 1 [[a1] [[1b],

N

Asynchronous communication

Reconsider the example assuming
asynchronous communication

[a; b, 1. 1[al. I[b],
¢ Communication on a starts before
communication on b but could finish
after

¢ What we should observe?
= Send, Receive, both, ...?

A lattice of possible

observation criteria

Synchronous

PN EmRRSS

Sender Receiver

\/

Sender-receiver

A lattice of possible
observation criteria

N

Assuming synchronous
Synchronous «—_ communication:

/\ observe either send or
receive

Sender Receiver

\/

Sender-receiver

A lattice of possible
observation criteria

M
Sender Receiver
M Assuming asynchronous
Sender-receiver communication:

observe send

A lattice of possible
observation criteria

)}nd‘]%
Sender Receiver
\/ \Assuming asynchronous
Sender-receiver communication:

observe receive

A lattice of possible
observation criteria

N

Synchronous

PN EmRRSS

Sender Receiver

\/ Assuming asynchronous

observe send and
observe receive

What about the previous example?

N

+ Reconsider the example

a,5¢; brsy

[a; b, 1. I [al,I[bl],
¢ OK: for synchronous and sender
¢ NO: for receiver, sender-receiver

N

Main results

¢ For each observation criterion:

= Sufficient conditions (connectedness,
unique point of choice, and causality safe)

that guarantee that a global choreography
IS equivalent to the projected one

N

Unique point of choice

¢ In a choice H+H’

= The sender of the initial transitions in H and
in H’ is always the same

= Theroles in H and in H' are the same

¢ Example: if we drop the second
condition

(arés + br%t); C s>t

[(& +b,);1], | [(a+D)E 1, | [(1+b);c

Which equivalence between global
and local choreographies?

N

¢ Synchronous equivalence: global transitions are
matched by synchronous local transitions

¢ Sender equivalence: global transitions are matched
by local sends, local receives are abstracted away
= weak w.r.t. local receive transitions

+ Receiver equivalence: global transitions are matched
by local receives, global sends are abstracted away
= weak w.r.t. local send transitions

¢ Sender-Receiver equivalence: both conditions above

Example: Receiver
equivalence

¢ Global choreography:
a,35; D
¢ Local choreography:
[a,1 1 Lab 11 [b,
¢ The two systems are receiver
equivalent

N

Plan of the Talk

Global and Local Choreography
& Contract-based service discovery
¢ A dynamic update mechanism

¢ Conclusion

Contracts

N

¢ Contract: service “"behavioural interface”

= Correct sequences

of invoke and receive | public regis"{
= as in an orchestration Contract:
(role of a coreography) abstracfc SEIVICE
= just finite-state labeled | _ description /
transition systems with 1

successful termination _
Service

Contract Compliance

¢ Verification of correctness of service composition
based on their contracts: successful interaction
i.e. no deadlock / termination reached

N

public registry public registry
e B e
Contract: Contract:
abstract service abstract service
9 description y % description)

: :

Reciprocal invocations
{ Service T es T Service

Service Compliance: Formally

N

Services are compliant if the following
holds for their composition P:

P -Z->* P’
implies that there exist P’ and P””’ s.t.

PI _FE_>>E PII _Y_> PIII

= i.e. every computation can be extended to
reach successful completion of all services

= termination under fairness assumption

N
Y

Example: compliant services

¢ The following pairs of services are
compliant:

= C, =a+b+c C,=a+Db
= C;=ab C,=al b
=(a; b)* C,=a(b;a)%b

Compliance-Preserving Contract
Refinement !
L Choreography }

projection P
’ compliant by ’

construction

[Contract Part. 1 } <—>[Contract Part. n J

‘ 'refines ' refines
compliance

rojection

public registry | preserved by public registry

[Contract J M’ [Contract }

¥ ¥

Reciprocal invocations
L Service J(XL)[Service

|

Contract Refinement Relation

compliant by
construction

[Contract Part. 1 } <—>[Contract Part. n J

‘ 'refines 'refines
compliance

public registry | preserved by public registry
refinement
[Contract J — [Contract }

N

Formally: Subcontract Preorder

U

¢ Preorder < between contracts C:
s C' < Cmeans C'is a subcontract of C

C

subcontract
preorder

sub-contracts
of C

Definition of Preorder Induced from
Independent Refinement

N

Given a set of compliant contracts

n

subcontract
preorder

sub-contracts
of C_

sub-contracts
of C,

sub-contracts
of C,

C,l C,Z A C’

n

Is a set of compliant contracts

No maximal subcontract preorder
... In general

N

U

¢ Consider the system:
[a] | [@]
we could have one preorder <, for which
atcl<;a at+cl<;a
and one preorder <, for which
a+cls,a at+cl0s,a
but no subcontract preorder could have
a+clO0<a a+cl0<a
¢ Consequence: no independent refinement!

N

Maximal pre-order

¢ It exists changing some assumptions:

= Limiting the considered services
(output persistence)

= Strengthening the notion of compliance
(strong compliance)

= Moving to asynchronous communication
(e.g. via message queues)

N

Output persistence

+ Output persistence means that given a
process state P:

= If P has an output action on a and

P->P’ with a different from output on a,
then also P’ has an output on a

¢ This holds, for instance, in WS-BPEL

= Outputs cannot resolve the pick operator
for external choices (the decision to
execute outputs is taken internally)

N

Example

Given the choreography:

Requestyjicespobs (AccePtpy,atice + R€jeCtpop atice)
The following services can be retrieved:

[T;Requesty,,;,; (Accept+Reject)] 5j;c. |
[Request;(t;Accept ;.. +T;Reject oy Igop

N

Example

Given the choreography:

Requestyjicespobs (AccePtpy,atice + R€jeCtpop atice)
The following services can be retrieved:

[T;Requestg,,, (Accept+Reject+Retry)] ;. |
[Request;(t;Accept,y; . tT;Reject ypi.0) Ipob

N

Example

Given the choreography:

Requestyjicespobs (AccePtpy,atice + R€jeCtpop atice)
The following services can be retrieved:

[T;Request;,,;(Accept+Reject+Retry)] ;. |
[Request;t;Accept piicelsob

“Standard” Contract Compliance

¢ Example:
N Slt
N SZZ
N 532

S
s
S

N

“Standard” Contract Compliance

U

¢ Example:
= S;: invoke(a);
= S,: receive(a);

« S @\
S

S5

N

“Standard” Contract Compliance

U

¢ Example:
= S;: invoke(a);
= S,: receive(a);invoke(c)

= S;: receive(c);
@
s
S

N

“Standard” Contract Compliance

U

¢ Example:
= S;: invoke(a);invoke(b)
= S,: receive(a);invoke(c)

= S;: receive(c);receive(b)

Alternatives to Standard

‘Compliance: Strong Compliance

¢ Let us give a more careful look:
[Slt
] SZZ
[532

S
s
S

Alternatives to Standard

‘Compliance: Strong Compliance

¢ Let us give a more careful look:
= S;: invoke(a);
= S,: receive(a);

= S;
s

s
S

Alternatives to Standard
Compliance: Strong Compliance

N

¢ Let us give a more careful look:
= S;: invoke(a);invoke(b)

= S,: receive(a); ¢ Strong

= Sj: compliance
requires that

These services @\ @ the receptors

are not should be

strongly @ always ready
compliant !

Example: strong compliant
services

N
Y

¢ The following pairs of services are
strong compliant:

= C, =a+b+c C,=a+Db
= C;=ab C,=al b
=(a; b)* C,=a(b;a)%b

Example: strong compliant
services

N

¢ The following pairs of services are
strong compliant:

= C, = at+b+c C,=a+b
s Cr=ash. C==D
« C,=(3;b)* C;=aTtbh;a)%h

“Strong” refinement

¢ It allows also refinement on names
already in the interface:
Receive(a);(Receive(b)+Receive(a))
<

Receive(a);Receive(b)

Summary of Results

N

U

¢ Refinement with knowledge about other initial

contracts limited to I/O actions
(enough to guarantee that refinements that extend the interface are included)

= ‘normal” compliance:
+ Uncostrained contracts: maximal relation does not exist

+ Contracts where outputs are internally chosen (output persistence):
maximal relation exists and “"I"” knowledge is irrelevant

+ QOutput persistent contracts where outputs are directed to a location:
maximal relation exists and “I/O"” knowledge is irrelevant
= strong compliance:
+ Uncostrained contracts (where output are directed to a location):
maximal relation exists and “I/O"” knowledge is irrelevant
= queue-based compliance:

+ Uncostrained contracts (where output are directed to a location):
maximal relation exists and “I/O” knowledge is irrelevant

III

N

Summary of Results

L

Direct conformance w.r.t. the whole choreography:
maximal relation does not exist (all kinds of compl.)

¢ Sound characterizations of the relations obtained
(apart from the queue based) by resorting to an
encoding into (a fair version of) must testing [RV05]
= With respect to testing: both system and test must succeed
= Much coarser: all non-controllable systems are equivalent

¢ As a conseqguence:
= Algorithm that guarantees compliance

= Classification of the relations w.r.t. existing pre-orders:
coarser than (fair) must testing (e.q., they allow external
non-determinism on inputs to be added in refinements)

N

Plan of the Talk

Global and Local Choreography
+ Contract-based service discovery
¢ A dynamic update mechanism

¢ Conclusion

N

Updatable processes/contracts

¢ How to model updatable processes? Eg.

= services which receive workflow from the
environment in order to interact with it

= internal '

cloud be
¢ By extenc

‘adaptable/mutable” subparts of

naviour
ing a process calculus with

= updatab

e parts a[P] and

= Update actions/primitives a{U}, where U is

Ui P

aU] | UJU | o

N

t
C'lient

Example

¢ Consider the running system:

Client[C] || EShop|S] || Bank|[Visal

if the following update is performed:

Bank{NewBank|e || MasterCard|}

ne system

C'| || EShop

DEecomes.

S| || NewBank|Visa || MasterCard|

N

Compliance analysis

+ Compliance contract analysis can be used:

= to detect if several systems correctly interact
by composing their behavioural contracts

= to assess a behavioural contract is internally
correct (for complex systems, e.g., cloud)

+ Decidability separation results depending
on fragments of the language (update
power/dynamic topology) [forte-fmoods 2011]

N

Plan of the Talk

Global and Local Choreography
+ Contract-based service discovery
¢ A dynamic update mechanism

¢ Conclusion

Future work

N

Contracts with operators for process
interruption and compensation

= The contract language becomes partially
undecidable

Related work

N

¢ Carbone, Honda, Yoshida

= Global and End-point calculus similar to our
WS-CDL and BPEL4Chor

= Only some of our observation criteria are
considered

= Stronger conditions for projection

Related work

N

¢ Fu, Bultan, Su

= Service systems with message queues
similar to ours

= Observe the send event as in our sender
observation criterion

= No refinement

Related work

N

¢ Padovani et al.

= Contracts described with an ad-hoc
transition system (reminiscent of
acceptance tree)

= The absence of maximal subcontract
relation solved either with explicit
interfaces of filters (cut the additional
actions of the refinements)

Related work

N

¢ van der Aalst et al.

= Contracts described with open workflow
nets (similar to petri nets)

= Same notion of compliance

= Same definition of subcontract as maximal
refinement that preserves compliance

= Characterization of the refinement for
processes without “loops” (make the
system infinite due to message queues)

References

N

*

¢

*

M. Bravetti and G. Zavattaro. Contract based Multi-party Service Composition. In
FSEN'07. (full version in Fundamenta Informaticae)

M. Bravetti and G. Zavattaro. Towards a Unifying Theory for Choreography
Conformance and Contract Compliance. In SC'07.

M. Bravetti and G. Zavattaro. A Theory for Strong Service Compliance. In
Coordination’07. (full version in MSCS)

M. Bravetti and G. Zavattaro. Contract Compliance and Choreography Conformance
in the presence of Message Queues.In WS-FM'08

M. Bravetti and G. Zavattaro. On the Expressive Power of Process Interruption and
Compensation. In WS-FM'08

I. Lanese, C. Guidi, F. Montesi, and G. Zavattaro. Bridging the Gap Between
Interaction- and Process-oriented Choreographies. In SEFM'08.

M. Bravetti, I. Lanese, G. Zavattaro. Contract-Driven Implementation of
Choreographies.In TGC'08

M. Bravetti, G. Zavattaro. Contract-Based Discovery and Composition of Web
Services. In Formal Methods for Web Services, Advanced Lectures, LNCS 5569

M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. A Calculus for Component

Evolvability (Extended Abstract). In FACS'10

M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. Adaptable Processes
(Extended Abstract). In FORTE/FMOODS'11

M. Boreale, M. Bravetti. Advanced Mechanisms for Service Composition, Query and
Discovery in Rigorous Software Eng. for Service-Oriented Systems, LNCS, to appear

