
Information flow safety
in multiparty sessions

Sara Capecchi, Ilaria Castellani and Mariangiola
Dezani-Ciancaglini

(TORINO University and INRIA Sophia Antipolis Méditerranée)

Behavioural Types Workshop Lisbon, 19-21 April 2011

General goal

Information flow control in multiparty sessions
where data may have different security levels.

A finite lattice of security levels :

T

⊥

l l’
...

...

Secure information flow: the send or receive of a value

can only depend on a receive or test of a value with l ≤ l

lv

0 vl0
0

levels assigned to
variables and values

General goal

Information flow control in multiparty sessions,
to preserve confidentiality of participant data.

‣ Security (detection): behavioural property based on

‣ Typing (prevention): session type system with security

How to prevent / detect information leaks ?

 observational equivalence / bisimulation

Goal (past)

Information flow control in multiparty sessions,
to preserve confidentiality of participant data.

‣ Security (detection): behavioural property based on

‣ Typing (prevention): session type system with security

How to prevent / detect information leaks ?

 observational equivalence / bisimulation

⇓ done in previous work [CCD & Rezk, CONCUR’10]

Goal (present)

Information flow control in multiparty sessions,
to preserve confidentiality of participant data.

‣ Security (detection): behavioural property based on

‣ Typing (prevention): session type system with security

How to prevent / detect information leaks ?

 observational equivalence / bisimulation

‣ Safety (detection): induced by a monitored semantics

Tracking information leaks

3 ways to prevent / detect information leaks:

s[1]?(2, x!).s[1]!〈2, true⊥〉

‣ Safety (local detection): any “semantic leak” is bad

‣ Security (global detection): any “global semantic leak”,

‣ Typability (prevention): any “syntactic leak” is bad

detectable by observing the overall process, is bad

typical leak:

Tracking information leaks

3 ways to prevent / detect information leaks:

s[1]?(2, x!).s[1]!〈2, true⊥〉

‣ Safety (local detection): any “semantic leak” is bad

‣ Security (global detection): any “global semantic leak”,

‣ Typability (prevention): any “syntactic leak” is bad

detectable by observing the overall process, is bad

ν(a)(a[1](α).)

Tracking information leaks

Another typical information leak:

‣ Safety (local detection): any “semantic leak” is bad

‣ Security (global detection): any “global semantic leak”,

‣ Typability (prevention): any “syntactic leak” is bad

detectable by observing the overall process, is bad

if x! then s[1]!〈2, true⊥〉 else s[1]!〈2, false⊥〉s[1]?(2, x!).

Tracking information leaks

Another typical information leak:

‣ Safety (local detection): any “semantic leak” is bad

‣ Security (global detection): any “global semantic leak”,

‣ Typability (prevention): any “syntactic leak” is bad

detectable by observing the overall process, is bad

if x! then s[1]!〈2, true⊥〉 else s[1]!〈2, true⊥〉s[1]?(2, x!).

Relating the three properties

Relationship between the three properties ?

detectable by observing the overall process, is bad

‣ Safety (local detection): any “semantic leak” is bad

‣ Security (global detection): any “global semantic leak”,

‣ Typability (prevention): any “syntactic leak” is bad

⇓

⇓ ?

?

Relating the three properties

Relationship between the three properties ?

detectable by observing the overall process, is bad

‣ Safety (local detection): any “semantic leak” is bad

‣ Security (global detection): any “global semantic leak”,

‣ Typability (prevention): any “syntactic leak” is bad

⇓

Multiparty sessions

a

initiator : starts a new session on service
 when there are n suitable participants

ā[n]

Multiparty session: activation of an n-ary service

arity roles

| a[1](α1).P1 | · · · | a[n](αn).Pn

ā[n]

 [Honda, Yoshida, Carbone POPL’08]

a

Security session calculus

Syntax: processes

Runtime syntax: queues

Text

Semantics: configurations

Semantics: computational rules

Semantics: choice

Online medical service

Online medical service (ctd)

Monitored semantics

Monitored semantics rules

Monitored semantics rules (ctd)

Safety: 1st attempt

Safety: definition

Security

Security (ctd)

Main results

Main results (ctd)

Conclusion and future work

‣ Complete the picture by showing typability => safety

[Submitted, full version soon on our web pages]

‣ Attach reputation and trust to participants, and

‣ Explore monitored semantics with labelled transitions,

possibly use them to refine delegation.

 to return informative error messages to the programmer.

