Information flow safety
in multiparty sessions

Sara Capecchi, Ilaria Castellani and Mariangiola

Dezani-Ciancaglini

(TORINO University and INRIA Sophia Antipolis Méditerraneée)

Behavioural Types Workshop Lisbon, 19-21 April 2011

General goal

Information flow confrol in multiparty sessions
where data may have different security levels.

A finite lattice of security levels :

levels assigned to

variables and values

Secure information flow: the send or receive of a value aé

can only depend on a receive or test of a value 000 with ¢ < ¢

General goal

-

Information flow control in multiparty sessions,
to preserve confidentiality of participant dafta.

_

How to prevent / detect information leaks ?
> Typing (prevention): session type system with security

> Security (detection): behavioural property based on

observational equivalence / bisimulation

Goal (past)

_

Information flow control in multiparty sessions,
to preserve confidentiality of participant dafta.

How to prevent / detect information leaks ?

> Typing (prevention): session type system with security

U, done in previous work [CCD & Rezk, CONCUR'10]

> Security (detection): behavioural property based on

observational equivalence / bisimulation

Goal (present)

Information flow control in multiparty sessions,
to preserve confidentiality of participant dafta.

_

How to prevent / detect information leaks ?

> Typing (prevention): session type system with security

[> Safety (detection): induced by a monitored semantics]

> Security (detection): behavioural property based on
observational equivalence / bisimulation

Tracking information leaks

3 ways to prevent / detect information leaks:

typical leak: s[1]7(2,2").s[1]1(2, true™)

> Typability (prevention): any “syntactic leak” is bad

> Safety (local detection): any “semantic leak” is bad

> Security (global detection): any "global semantic leak”,
detectable by observing the overall process, is bad

Tracking information leaks

3 ways to prevent / detect information leaks:

via)(all](a). s[1]2(2,2").s[1]1(2, true™))

> Typability (prevention): any “syntactic leak” is bad

> Safety (local detection): any “semantic leak” is bad

> Security (global detection): any "global semantic leak”,
detectable by observing the overall process, is bad

Tracking information leaks

Another typical information leak:

s[1]2(2,2 7). if ' then s[1]1(2, true™) else s[1]!(2, false™")

> Typability (prevention): any “syntactic leak” is bad

> Safety (local detection): any “semantic leak” is bad

> Security (global detection): any "global semantic leak”,
detectable by observing the overall process, is bad

Tracking information leaks

Another typical information leak:

s[1]7(2,2 7). if ' then s[1]1(2, true™) else s[1]!(2, true™)

> Typability (prevention): any “syntactic leak” is bad

> Safety (local detection): any “semantic leak” is bad

> Security (global detection): any "global semantic leak”,
detectable by observing the overall process, is bad

Relating the three properties

Relationship between the three properties ?

(prevention): any “syntactic leak” is bad

(local detection): any “semantic leak” is bad

(global detection): any “global semantic leak”,

detectable by observing the overall process, is bad

Relating the three properties

Relationship between the three properties ?

> Typability (prevention): any “syntactic leak” is bad

> (local detection): any “semantic leak” is bad

J

> (global detection): any “global semantic leak”,

detectable by observing the overall process, is bad

Multiparty sessions
[Honda, Yoshida, Carbone POPL08]

Multiparty session: activation of an n-ary service G

initiator @|n|: starts a new session on service @
when there are n suitable participants

Security session calculus

e Security levels £, /', forming a finite lattice (., <).
e Services a, b, with an arity n.

e Sessions s,s (activations of services). At n-ary session initiation,
creation of private name s and channels with role s[p|, p € {1,...,n}.

value = true | false | ...
expression = x| v |note|eande | ...
identifier = (|a

channel = o | s|p

Syntax: processes

n-ary session initiator

p-th session participant

value send

value recv

channel send

channel recv

selection

c& (p,{Ai : B}, branching
if e then P else O conditional
0| P|Q | (vaP | ... m-calculus ops

Runtime syntax: queues

Asynchronous communication: messages transiting in queues

HU{s:h} |0 Q-set
m-h | € queue
(p,I1,9) message in transit

v | s[p]® | AY |a® message content

Independent message commutation:
(pana 19) ' (p,an,s 19',) h = (p,>H,7 19',) | (P,H, 19) +h

if p#p’ or IINIT' =0

Semantics: configurations

In the semantics, Q-sets will be the observable part of process behaviour

= need to be separated from the rest of the process.

Configurations C :=<P,H> | (Vf)<P,H> | C||C

Reduction semantics:

transitions of the form < P, H > — (Vi) <P, H >

Semantics: computational rules

Session 1nitiation:

<alon|(Py). | ... | aon](Fn). [a[n] , 0> —

(vs) < Pi{s[1|/ai} | ... | B {s|n]/on}, s:€>

Value exchange:

<s[p]!{(Il,e).P,s:h>—<P,s:h-(p,JIV) > (elV’) [Send]

< s[q]?2(p,x").P, s: (p,q,V") -h > —< PV /x'}, s:h > [Rec]

Semantics: choice

Selection / branching:
<s[p|o*ILA)P,s:h>—<P,s:h-(p,JL,A%) > [Label]

<s[q& (p,{Ai: P}y, s: (p,qyAf) -h>—<P,s:h> (k€l) [Branch]

Online medical service

if simple-info™

then oy @+ (2,sv1).a;!(2,que~).0?(1,ans).0

else o ®+ (2,sv2).01'(2,pwd ').01?(2,form").
if gooduse(form')
then o !(2,que ').c;?2(2,ans ").0
else a;!(2,que~).ay?(2,ans—).0

oy & (1,{svl: 0?(1,que~).0!{1,ans>).0,
sv2: 0 ?(1,pwd ").op!(1,form ").0p?(1,que ").0!(1,ans ").0}

Online medical service (ctd)

User may accidentally leak data (sending in clear a secret question):

if gooduse (form')
then ...

else o1 1(2,que™).012(2,ans).0

Safety = early detection: monitored execution blocks before the leak.

Security = late detection: bisimulation game fails after the leak.

Monitored semantics

Monitored processes (where i € .¥):

M:=P* | M|M| (vi)M | def Din M

Monitored transitions Error predicate

<M,H>—o—(vV§)<M ,H > <M, ,H>t

New structural rules:

(P | B)I* = P* | P

Monitored semantics rules

Conditional:

if e then P el
if e then P el

Value input:

fu<? t

se QI —o—s pILLE if e | truef

se QIH —o— QIHLE if e | false®

en < s[q)2(p,x!)- P14, 53 (p,q, %) -h >—o—s< P{v/x}¢ | s h>

e

5€ <S[q]7(p,xe)P]# y 8. (paqavé)h > 7

Monitored semantics rules (ctd)

Session 1nitiation:
al1](en).P™ | ... | a[n)(ct,).PI*" | aln]IH1 —os
(vs) < Pi{s[l]/aa}* | ... | P{s[n] /ot }'* , s: € >
where [= [lic1. nq1y Mi

Need for the join:

s[2]2(1,x").if x" then b[2] else 0

| B[1](B1)-Br1(2,true=).0 | b[2](B2).B27(1,y).0

Safety: 1st attempt

Let [M| be the process obtained by erasing all monitoring levels in M.

Monitored process safety:

M is safe if for any monotone H such that < |M|, H > is saturated:

If<|M|,H>— (VF)<P,H >

then <M, H >—— (VF) <M’ , H >, where |[M'| = P and M’ is safe.

Process safety: A process P is safe if P+ is safe.

Safety: definition

Let [M| be the process obtained by erasing all monitoring levels in M.
Testers

Monitored process safety: M 1s safe if for any tester 7" and monotone H
such that < |M|, H > is saturated:

If<|M||T,H>— (VF)<P,H >

then <M | T, H>—— (VF) <M’ , H' >, where |M’| = P and M’ is safe.

Process safety: A process P is safe if P+ is safe.

Security

Observation defined as usual wrt a downward-closed set of levels .Z.

What is .#-observable in (v7) < P, H >? Messages of level / € £ in H.

—> session queues play the role of memories in imperative languages

Z-projection of Q-sets

(011 8) | & (p,II, %) iflev(¥) e ¥

£ otherwise

extended pointwise to named queues and Q-sets (NB: s : € not observed)

Z-equality of Q-sets: H=¢K if H| =K | .Z

Security (ctd)

£ -bisimulation on processes: symmetric relation & such that P, Z P
implies, for any tester 7" and for any pair of monotone Hy,H, such that
Hi=«H> and each < P;, H; > 1s saturated:

If<P |T,H >— (Vi) < P{, H| >, then there exist P,, H; such that

<P |T,Hy>—"=(vF) <P, , Hy >, where Hl =« H, and P Z P,

Z-equivalence: P, ~ ¢ P, if Pi % P, for some .#-bisimulation #

Z-security: Pis £ -secureif P~ 4 P

Main results

Safety implies absence of run-time errors

If P is safe, then every monitored computation:

<PH,0>=<My, Hy>—o— - —o— (Vir) < My, Hy >

1s such that - < M , H, > 7.

Safety implies security

If P is safe, then P is .¥’-secure for any down-closed set of levels .Z.

Main results (ctd)

Absence of run-time errors does not imply safety

Not safe
al2| | a[l](on).Py | a[2](0n).P
o (2, true). o 2(2,x").0

0?(1,z").if 2 then ap!(1,false ').0 else ap!(1, true").0

Security does not imply safety

Not safe

s[1]2(2,x").if x" then s[1]1(2, true™).0 else s[1]!(2, true™).0

Conclusion and future work

> Complete the picture by showing typability => safety

> Explore monitored semantics with labelled transitions,

to return informative error messages to the programmer.

> Attach repufation and frust to participants, and
possibly use them to refine delegation.

[Submitted, full version soon on our web pages]

