
Inference of progress properties
for (multi party) sessions

Mario Coppo (Universita’ di Torino)

joint work with
Mariangiola Dezani, Nobuko Yoshida

Lisbon, April 19, 2011

Aim of the talk

In a previous paper on multiparty session types
[1] Bettini, Coppo, M, D'Antoni, Dezani-Ciancaglini, Yoshida,
Global progress in dynamically interleaved multiparty sessions.
(CONCUR 2008)

We introduced a type system to assure global progress for interleaved
multiparty sessions.

The “interaction” type system of [1] has a non deterministic rules (i.e.
multiple choices for the same linguistic construct) and so type inference
is not easy (unless to resort to backtracking)

In this talk we will discuss some principles for the design of a
deterministic syntax directed inference procedure for checking typability
in the interaction type system.

The inference procedure can also be considered as a stand-alone
analysis tool.

Our starting point

To focus on the relevant ideas in this talk we will do some
simplifying assumptions:

• we will consider only binary session (generalization to multiparty
session is rather easy)

• we will consider a simplified language, including only session
opening and communications (no branches and conditional, no
recursion, no delegation).

A basic assumption: we consider only terms typable in the
standard communication type system.

(note that typability in the communication type system
guarantees progress of each single session in insulation).

Progress property

Let P be a closed process (typable in the communication
type system). Then P has the progress property if P →* P’
implies that

• either P’ = 0

•or P’ | Q → R for some Q such that P | Q is well typed in the
communication type system, Q → and R has in its turn the
progress property

(Roughly speaking: P has the progress property if it cannot
reduce to a process hopelessly blocked in a deadlock.)

A “minimal” session language

Language (basic)

P := 0 null

c(x).P session request

c(x).P session accept

s!<e>.P data output

s?<x>.P data input

(ν

a). P shared channel hiding

(ν

s). P live channel hiding

P | Q parallel composition

Session opening rule:

a(x).P | a(y).Q → (ν

s). P[s/x] | Q[s/y]

Communication is asyncronous.

P : b(y). a(x). y?(w). x!<2>. y!<5>. x?(t) .0 b < a

b < aQ1 : b(y). a(x). x!<4>. y!<true>. y?(t). x?(w). 0

a < b

No loop, no deadlock

b < a

b < a, a < b

Loop, and deadlockQ2 : b(y). a(x). x?(w). x!<2>. y?(t). y!<true>

Main idea: keep a relation R on channels (and service) names with the following
meaning:

- x < y an input action on channel x precedes an in-out action on y

- a < y an input action of service a precedes an in-out action on channel y

- similarly y < a , a < b

y?(w). x!<2>. y!<5>. x?(t) 0

Building the R relation

x

y

means >

Then y < x

The order relation between cannels and sessions is built by analyzing the
process structural way.

R:

b[y]. a[x]. y?(w). x!<2>. y!<5>. x?(t) 0

Building the R relation

means >

a

b

Then b < a

The order relation between cannels and sessions is built by analyzing the
process structural way.

R:

P: a(x). x?(t). b(y). y!<2>. y?(u). x?(w). 0 a < b < a

Q : a(x). x!<3>. b(y). y?(u). y!<4>. x!<5>. 0 b < a
a < b < a

There is a loop but no deadlock

Nested sessions never deadlock

Sessions are
nested in both
processes

Note: when both participants have a nested structure deadlock is not
possible:

the deadlock freedom of nested session is a particular case of a more
general principle: if, when closing a session, its name is minimal in
the R relation, it can be safely eliminated from the order.

Warning (see later): provided that this is done in both participants!

Using this principle no loop could be detected in nested sessions:

c[z]. z?(u). a[x]. b[y]. y!<2>. y?(u). x?(w). 0

b

x

But b is minimal, so we can erase it from R

A general principle

R:

the deadlock freedom of nested session is a particular case of a more
general principle: if, when closing a session, its name is minimal in
the R relation, it can be safely eliminated from the order.

Warning (see later): provided that this is done in both participants!

Using this principle no loop could be detected in nested sessions:

c[z]. z?(u). a[x]. b[y]. x?(t). y!<2>. y?(u). x?(w). 0a[x].

Also a would be minimal, so in the end the relation R results
empty

A general principle

R:

We want so to consider these basic principles

- loop freedom guarantees progress

- service names can be removed (with restrictions…) when “minimal”
in the order

The analysis is performed in a structural way (like usual type checking)
so the inference rules follows the process formation bottom-up. The
basic strategy is the following:

-Take trace of the precedence relation as the analysis go on and until no
loop is detected;

- As soon as a loop is detected see if there is (minimal subset) of
sessions that are indeed nested and see if removing them we can get
free of the loop.

After analyzing: b[y].x?(v). y?(w). z!<1>. y!<2>. x!<3>. 0

A too simple strategy ….

x z

b

means >

We are getting in a loop……..but we can refine our strategy

c[z]. a[x]. b[y].x?(v). y?(w). z!<1>. y!<2>. x!<3>. 0

Assume we are analyzing the process:

R:we get:

x?(v). y?(w). z!<1>. y!<2>. x!<3>. 0

At the moment of processing b[y] we see that b would be minimal in the
order, so we could remove it from the order. But this will commit us to
handle in the same way also the service b.

x z

b[y]. y?(w). z!<1>. y!<2>. x!<3>. 0

z C : {(b, {}),}

N = { b }

In order to remember that b has
been erased from R we put b in set
N (the “nesting” set) . We remove
also b from C

We use a dependency relation C to remember that b was minimal at the
moment of its introduction.

Loop! R:

c[z]. a[x]. x?(v). y?(w). z!<1>. y!<2>. x!<3>. 0

c

b[y]. y?(w). z!<1>. y!<2>. x!<3>. 0

N = { b } a

C = { (a, { }), (c, {a})}}

Again a is now minimal. So we remember this in C

Going on …

R:

Now closing c we observe that:

- we have no loops and

- c could be minimal if a where handled with the minimality rule

We register this using the relation C.

In the and R, C, N are the result of the analysis of this process

P1 : a[x]. x!<3> b[y]. y?(t). y!<2>. x?(v). 0 RP1 :
b

a C1 = { (b, {}), (a, {b}) }

N1 = {}

P2 : a[x]. x?(u). b[y]. y!<2>. y?(u). x!<1>. 0 RP2 :
C2 = { }

N2 = {a, b}

Parallel composition I

For the parallel composition P1 | P2 we must impose that to a and b is
applied the minimality principles moving them to N

RP1|P2 :
C1 = { }

N1 = {a, b}

Note: this will be particularly important in the case of multiparty sessions

P1 : a[x]. x?(t). b[y]. x!<1>. y?(t). 0 RP1 :
a

b C1 = { (b, { }), (a, { }) }

N1 = { }

Parallel composition II

P2 : a[x]. x!<2>. b[y]. x?(u). y!<2>. 0 RP2 :
a

b C2 = { (a, { }) }

N2 = { }

For the parallel composition P1 | P2 we must exclude the possibility of
applying the minimality principles moving b to N

P1 | P2 RP1|P2 :
a

b C = { (a, { }) }

N = { }

Going on in the analysys we will have the possibility of moving in N only a.

On the need of C and N

P1 : a[x]. b[y]. y?(t). y!<2>. x!<3> x?(v). 0

Remark: it is crucial that we keep the sets C, N in order to
control the way in which minimal names are eliminated from
R. In the following processes P1, P2 we use the minimality
condition independently in P1 but not in P2. .

P2 : a[x]. b[y]. x?(v). x!<3>. y!<2>. y?(t). 0

RP1 :

RP1 : b

both b and a are minimal
when closed

Putting P1 and P2 in parallel we have no loop but P1 | P2
get stuck.

b and a are not nested
and we cannot eliminate
b from R

Using C and N we get the inconsistency

P1 : a[x]. b[y]. y?(t). y!<2>. x!<3> x?(v). 0 RP1 :

CP1:{((b, { }), (a, {b}) }

NP1 = { }

P2 : a[x]. b[y]. x?(v). x!<3>. y!<2>. y?(t). 0 RP2 : a < b

b < a

CP2:{(a, { }) }

NP2 = { }

To eliminate the inconsistency we should close a and
b in both processes with the minimal rule, but we
cannot do that for b in P2. So we get b < a < b

In the full system

The inference procedure there are more aspects and
language extensions that are considered in the paper.
The most important are:

• delegation (some restrictions are needed for
delegated sessions)

• possibility of having communication and restrictions of
service names (a new set B will be added for this).

• internal and external choices and if-then-else.

• multiparty sessions are considered and not binary
ones (not really different ideas but generalizations of
the considered strategy).

• recursion

Some inference rule

Judgment:

where = (R; C; N; B) and

The overall proof strategy

We have first designed a (non deterministic)
interaction type with judgments:

proving that a process has the progress property iff it
is typable in the interaction type system.

Then we have proved that the deterministic inference
procedure outlined in these slides is sound and
complete for the interaction type system: i.e. a
process is typable by the inference rules iff it has the
progress property.

Further steps

• Integrate progress type system with the
communication type system.

• Adapt the inference procedure to recent extensions
of session types (dynamic multirole [Danielou,
Yoshida] , ….)

• Simplify the inference procedure……?

	Inference of progress properties for (multi party) sessions
	Diapositiva numero 2
	Diapositiva numero 3
	Diapositiva numero 4
	Diapositiva numero 5
	Diapositiva numero 6
	Diapositiva numero 7
	Diapositiva numero 8
	Diapositiva numero 9
	Diapositiva numero 10
	Diapositiva numero 11
	Diapositiva numero 12
	Diapositiva numero 13
	Diapositiva numero 14
	Diapositiva numero 15
	Diapositiva numero 16
	Diapositiva numero 17
	Diapositiva numero 18
	Diapositiva numero 19
	Diapositiva numero 20
	Diapositiva numero 21
	Diapositiva numero 22
	Diapositiva numero 23

