Tracking Heaps that Hop with Heap-Hop

Jules Villard™® Etienne Lozes®® Cristiano Calcagno*?®

'Queen Mary, University of London
2RWTH Aachen, Germany
3LSV, ENS Cachan, CNRS

“Monoidics, Inc.

5Imperial College, London

Message Passing in Multicore Systems

e Hard to write sequential programs that are both correct
and efficient

Introduction e Concurrency 1/26

Message Passing in Multicore Systems

e Hard to write sequential programs that are both correct
and efficient

e Hard to write concurrent programs that are both/either
correct and/or efficient

Introduction e Concurrency 1/26

Message Passing in Multicore Systems

e Hard to write sequential programs that are both correct
and efficient

e Hard to write concurrent programs that are both/either
correct and/or efficient

e Paradigm: message passing over a shared memory
e Leads to efficient, copyless message passing

e May be more error-prone (than message passing with
copies)

Introduction e Concurrency 1/26

To Copy or not to Copy?

Copyful

|send(struct,e,data);

|d = receive(struct,f);

e (e,f): channel
e data points to a big struct
e struct: type of message

Introduction e Concurrency

2/26

To Copy or not to Copy?

Copyful

|send(struct e,data);

= receive(struct,f);

e (e,f): channel
e data points to a big struct
e struct: type of message

Introduction e Concurrency

2/26

To Copy or not to Copy?

Copyful

‘send(struct e,data);

= receive(struct,f);

Copyless
data d
send (pointer,e,data) ; d = receive(pointer,f);

Introduction e Concurrency 2/26

To Copy or not to Copy?

Copyful

‘send(struct e,data);

= receive(struct,f);

Copyless
data —d
send (pointer,e,data) ; d = receive(pointer,f);

Introduction e Concurrency 2/26

To Copy or not to Copy?

Copyful

‘send(struct e,data);

= receive(struct,f);

Copyless Race!

data —d
send(pointer,e,data) ; d = receive(pointer,f);
dispose(data) ; dispose(d);

Introduction e Concurrency 2/26

To Copy or not to Copy?

Copyful

‘send(struct e,data);

= receive(struct,f);

Copyless Race!

data d—
send(pointer,e,data) ; d = receive(pointer,f);
dispose(data) ; dispose(d);

Introduction e Concurrency

2/26

To Copy or not to Copy?

Copyful

‘send(struct e,data);

= receive(struct,f);

Copyless No race
data d—
e |
send(pointer,e,data) ; d = receive(pointer,f);

dispose(d);

Introduction e Concurrency

2/26

Singularity OS

Singularity: a research project and an operating system.

No hardware memory protection
Singj language P
Isolation is verified at compile time

Invariant: each memory cell is owned

P2 P3
by at most one thread
e No shared resources
e Copyless message passing memory

Introduction e Concurrency 3/26

Singularity OS

Singularity: a research project and an operating system.

No hardware memory protection
Singj language P
Isolation is verified at compile time

Invariant: each memory cell is owned

P2 P3
by at most one thread
e No shared resources I
e Copyless message passing memory

Introduction e Concurrency 3/26

Singularity Channels [Fihndrich et al. ’06]

Channels are bidirectional and asynchronous
channel = pair of FIFO queues

Channels are made of two endpoints
similar to the socket model

Endpoints can be allocated, disposed of, and
communicated through channels

similar to the w-calculus

Communications are ruled by user-defined contracts
similar to session types

© No formalisation
How to ensure the absence of bugs?

Introduction e Concurrency 4/26

Analysis [V, Lozes & Calcagno APLAS’09,V. PhD’11]

Model Prove Specify

Program Prop. :

Introduction e Formal Verification 5/26

Program

A «F

Message Passing Primitives

(e,f) = open() Creates a bidirectional channel between
endpoints e and £

close(e,f) Closes the channel (e, f)

send(a,e,x) Sends message starting with value x on
endpoint e. The message has type/tag a

x = receive(a,e) Receives message of type a on
endpoint e and stores its value in x

1] set_to_ten(x) {

2 local e,f;

3 (e, f) = open();

4 send (integer ,e,10);

5 x = receive(integer ,f);
6 close(e,f);

7

Copyless Message Passing ¢ Language Model

6/26

Switch Receive

e switch receive selects a receive branch depending on
availability of messages

if(x) { switch receive {

send(cell,e,x); y = receive(cell,f): {dispose(y);}
} else { z = receive(integer ,f): {}

send (integer ,e,0); }
}

Copyless Message Passing e Language Model 7/26

—————Proof J——t—
+

<:/Co ntracts Prop. ;>7

Program Prop.

e Race freedom

e Reception fault freedom

e Leak freedom

Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

e Programs access
only what they own

e Prevents races

e Linear usage of
channels

memory

Copyless Message Passing e Properties of Interest 8/26

Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

e Programs access
only what they own my ms
e Prevents races
e Linear usage of mo
channels
P P2
memory

Copyless Message Passing e Properties of Interest 8/26

Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

e Programs access
only what they own my ms
e Prevents races
e Linear usage of mo
channels
P P2
cell
memory

Copyless Message Passing e Properties of Interest 8/26

Separation property

Safety Properties

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

e Programs access
only what they own

e Prevents races

e Linear usage of
channels

mjy ms

mo

P P2

memory

Copyless Message Passing e Properties of Interest

8/26

Safety Properties

switch receive {

y = receive(a,f):
z =

receive(b,f):
}

{
{

send (c,e,x);

Copyless Message Passing e Properties of Interest

DAQ «F» «

8/26

Safety Properties

main () {
local x,e,f;

1

2

3

4 x = new();

5 (e,f) = open();
6 send (cell,e,x);
7 close(e,f);

8

DA «Fr «E>»

Copyless Message Passing e Properties of Interest 8/26

1
1
1
1
1
+ 1
1
1
1
1

¢ Communicating automata

Program Prop. :

' Contracts Prop.

Heap-Hop

A «F

A Dialogue System

7a b
(@ fa7 fa
la b

la Ib 24 2
—{ao)—Aa)—Ae)——{a}—a

Sending transitions: 'a

Receiving transitions: 7a

Two buffers: one in each direction
Configuration: (q,q’, w, w')

Channel Contracts ¢ Communicating Automata 9/26

A Dialogue System

’a b
@ fa Ta
la @ 1p
[
<q7 q07575>

Channel Contracts ¢ Communicating Automata 9/26

A Dialogue System

’a b
@ fa Ta
la ® 1p
[
<q’ a1, a75>

Channel Contracts ¢ Communicating Automata 9/26

A Dialogue System

’a b
@ fa Ta
la ® 1p
[
(qa Gz, abv 5)

Channel Contracts ¢ Communicating Automata 9/26

A Dialogue System

’a b
[
@ {a Ta
la b
[
<qaa Q, ba 5)

Channel Contracts ¢ Communicating Automata 9/26

A Dialogue System

’a b
@ fa Ta
la ® 1p
[
<q7 a2, bv a>

Channel Contracts ¢ Communicating Automata 9/26

A Dialogue System

’a b
@ fa Ta
la @ 1p
[
<qv s, b,&‘)

Channel Contracts ¢ Communicating Automata 9/26

A Dialogue System

’a b
(]
@ o Ta
la b
[
<qba 3¢, 8)

Channel Contracts ¢ Communicating Automata 9/26

A Dialogue System

’a b
@ fa Ta
la @ 1p
[
<qv ¢, b)

Channel Contracts ¢ Communicating Automata 9/26

A Dialogue System

7a ?b
(9] () T
la ® 1p

@ la @ o) @ 7a @ b @
[

<q7 CI475,5>

Channel Contracts ¢ Communicating Automata 9/26

Contracts

Describe dual communicating finite state machines

¢ m Ipointer .

Channel Contracts ¢ Communicating Automata 10/26

Contracts

Describe dual communicating finite state machines

¢ Ipointer

Channel Contracts ¢ Communicating Automata 10/26

Contracts

Describe dual communicating finite state machines

YA)
¢ m Ipointer . 3 @ 7pointer .end i -
Jv- T]
e Y)
| i
lcell ?ack i ?cell lack i
o Ifin (end] ?in — e
S0 O 2|0 o G

Channel Contracts ¢ Communicating Automata 10/26

Contracts as Protocol Specifications

(e,f) = open(€): initialise endpoints in the initial state of
the contract

send(a,e,x): becomes a !a transition
e y = receive(a,f): becomes a 7a transition

close(e,f) only when both endpoints are in the same
final state.

Channel Contracts ¢ Communicating Automata 11/26

e Reception faults

e Leaks

DA™ «F

Reception Errors

Definition Reception fault
(q1,Q2,a- wy, ws) is a reception fault if
e Qi A q for some b and g and

e Vb, q.q = g implies b+ a

4
|
|
|
|
|
|
|
|
|
|
|
|
|
\

(9.9,¢,¢)

Channel Contracts e Contract Verification 12/26

Reception Errors

Definition Reception fault
(q1,Q2,a- wy, ws) is a reception fault if
e Qi A q for some b and g and

e Vb, q.q = g implies b+ a

4
|
|
|
|
|
|
|
|
|
|
|
|
|
\

(g1,9,a,¢)

Channel Contracts e Contract Verification 12/26

Reception Errors

Definition Reception fault
(q1,Q2,a- wy, ws) is a reception fault if
e Qi A q for some b and g and

e Vb, q.q = g implies b+ a

4
|
|
|
|
|
|
|
|
|
|
|
|
|
\

(91,95, a,b)

Channel Contracts e Contract Verification 12/26

Reception Errors

Definition Reception fault
(q1,Q2,a- wy, ws) is a reception fault if
e Qi A q for some b and g and

e Vb, q.q = g implies b+ a

4
|
|
|
|
|
|
|
|
|
|
|
|
|
\

, b
(91,494, a,b) —2 error

Channel Contracts e Contract Verification 12/26

Reception Errors

Definition Reception fault
(q1,Q2,a- wy, ws) is a reception fault if
e Qi A q for some b and g and

e Vb, q.q = g implies b+ a

e A contract is reception fault-free if it cannot reach a
reception fault.

Channel Contracts e Contract Verification 12/26

Undelivered Messages

Definition Leak
(qr, gr, wy, we) is a leak if wy - wn + € and g is final.

la l ° 7a 3
af el Ae)| —Ad5Aa)5Ae):
| |

Channel Contracts e Contract Verification 13/26

Undelivered Messages

Definition Leak
(qr, gr, wy, we) is a leak if wy - wn + € and g is final.

Channel Contracts e Contract Verification 13/26

Undelivered Messages

Definition Leak
(qr, gr, wy, we) is a leak if wy - wn + € and g is final.

la P 7a 3
el HdTaigiel
(q2,9, aa, e)

Channel Contracts e Contract Verification 13/26

Undelivered Messages

Definition Leak
(qr, gr, wy, we) is a leak if wy - wn + € and g is final.

la l 7a P

l) l

a5 AaAe) i a5 Aa)5Ae):
| |

(G2, q2,a,¢)

Channel Contracts e Contract Verification 13/26

Undelivered Messages

Definition Leak
(qr, gr, wy, we) is a leak if wy - wn + € and g is final.

la l 7a P

l) l

a5 AaAe) i a5 Aa)5Ae):
| |

(G2, q2,a,¢)

Channel Contracts e Contract Verification 13/26

Undelivered Messages

Definition Leak
(qr, gr, wy, we) is a leak if wy - wn + € and g is final.

e A contract is leak free if it cannot reach a leak.
e A contract is safe if it is reception fault free and leak free.

Channel Contracts e Contract Verification 13/26

Contract Verification

o Safety of communicating systems is undecidable in general
Channel’s buffer ~ Turing machine’s tape

Channel Contracts e Contract Verification 14/26

Contract Verification

o Safety of communicating systems is undecidable in general
Channel’s buffer ~ Turing machine’s tape
@ Contracts are restricted (dual systems)

Channel Contracts e Contract Verification 14/26

Contract Verification

o Safety of communicating systems is undecidable in general
Channel’s buffer ~ Turing machine’s tape

e Contracts are restricted (dual systems)

© Contracts can encode Turing machines as well

Theorem
Safety is undecidable for contracts.

Channel Contracts e Contract Verification 14/26

Contract Verification

o Safety of communicating systems is undecidable in general
Channel’s buffer ~ Turing machine’s tape

e Contracts are restricted (dual systems)

© Contracts can encode Turing machines as well

Theorem
Safety is undecidable for contracts.

o We give sufficient conditions for safety.

Channel Contracts e Contract Verification 14/26

Sufficient Conditions for Reception Safety

Definition Deterministic contract

Two distinct edges in a contract must be labelled by different
messages.

Channel Contracts e Singularity Contracts 15/26

Sufficient Conditions for Reception Safety

Definition Deterministic contract

Definition Positional contracts

All outgoing edges from a same state in a contract must be
either all sends or all receives.

Channel Contracts e Singularity Contracts 15/26

Sufficient Conditions for Reception Safety

Deterministic positional contracts are reception fault free.

DA «F

Channel Contracts e Singularity Contracts 15/26

Another Source of Leaks

Channel Contracts e Singularity Contracts 16/26

Another Source of Leaks

Channel Contracts e Singularity Contracts 16/26

Another Source of Leaks

Channel Contracts e Singularity Contracts 16/26

Another Source of Leaks

Channel Contracts e Singularity Contracts 16/26

Another Source of Leaks

(9,9,aaa,c)

Channel Contracts e Singularity Contracts 16/26

Synchronising Contracts

Definition Synchronising state

A state s is synchronising if every cycle that goes through it
contains at least one send and one receive.

la X la
@ @ @& @
b b

Channel Contracts e Singularity Contracts 17/26

Synchronising Contracts

Definition Synchronising state
A state s is synchronising if every cycle that goes through it
contains at least one send and one receive.

Definition Synchronising contract

A contract is synchronising if all its final states are.

Channel Contracts e Singularity Contracts 17/26

Synchronising Contracts

Definition Synchronising state
A state s is synchronising if every cycle that goes through it
contains at least one send and one receive.

Definition Synchronising contract

A contract is synchronising if all its final states are.

Theorem [V., Lozes & Calcagno "09]

Deterministic, positional and synchronising contracts are safe
(fault and leak free).

Channel Contracts e Singularity Contracts 17/26

Singularity Contracts

Definition Singularity contract

Singularity contracts are deterministic and all their states are
synchronising.

e This is missing the positional condition!
¢ Does not guarantee reception fault freedom

¢ In fact, we proved that safety is still undecidable for
deterministic or positional contracts.

e Positional Singularity contracts are safe and bounded.

Channel Contracts e Singularity Contracts 18/26

e Extension to
message passing

1
1
1
1
1
+ 1
1
1
1
1
1

Contracts Prop.

Heap-Hop

A «F

Separation Logic [Reynolds 02, O'Hearn 01, ...]

e Local reasoning for heap-manipulating programs
o Naturally describes ownership transfers
e Numerous extensions, e.g. storable locks [Gotsman et al. 07]

Proving Copyless Message Passing e Assertions 19/26

Separation Logic [Reynolds 02, O'Hearn 01, ...]

e Local reasoning for heap-manipulating programs

o Naturally describes ownership transfers

e Numerous extensions, e.g. storable locks [Gotsman et al. 07]
New Now with message passing! [APLAS09]

Proving Copyless Message Passing e Assertions 19/26

Assertions

DA «Fr «E >

Proving Copyless Message Passing e Assertions 20/26

Assertions (extension)

Syntax (continued)

¢ = ...
| E~ (¢{q},E") endpoint predicate

Intuitively E — (€{q}, E’) means:
e E is an allocated endpoint
e itis ruled by contract ¢
e it is currently in the control state g of
e its peeris E’

Proving Copyless Message Passing e Assertions 21/26

-

Heap-Hop

o Extends Smallfoot
with message
passing

e Written in OCaml

e Open source
¥/\

[V., Lozes & Calcagno TACAS’10]

Proving Copyless Message Passing ¢ Demo 22/26

e soundness

Program Prop.

+
Contracts Prop. :

Validity and Leak Freedom

Definition Program validity

{6} p{¢} isvalid if, for all o = ¢
¢ p has no race or memory fault starting from o
¢ p has no reception faults starting from o
o if p,oc »* o' theno' E

Definition Leak free programs

pis leak free if for all o

p,o —* o' implies that the heap and buffers of ¢’ are empty

Proving Copyless Message Passing ¢ Soundness 23/26

Properties of Proved Programs

Theorem Soundness

If{¢} p {v} is provable with reception fault free contracts
then {¢} p {v} is valid.

Theorem Leak freedom
If{¢} p {emp} is provable with leak free contracts then p is
leak free.

Proving Copyless Message Passing ¢ Soundness 24/26

Conclusion

Contributions

Contracts

e Formalisation of contracts
o Automatic verification of contract properties

Program analysis

o Verification of heap-manipulating, message passing
programs with contracts

e Contracts and proofs collaborate to prove freedom from
reception errors and leaks

e Tool that integrates this analysis: Heap-Hop

Conclusion 25/26

Perspectives

Contracts

e Prove progress for programs
e Extend to the multiparty case
e Enrich contracts (counters, non positional, .. .)

Today@5:15 More general property of contracts for decidability:
half-duplex

Automatic program verification

e Discover specs and message footprints
e Discover contracts
e Fully automated tool

Conclusion 26/26

Tracking Heaps that Hop with Heap-Hop

Jules Villard™® Etienne Lozes®® Cristiano Calcagno*?®

'Queen Mary, University of London
2RWTH Aachen, Germany
3LSV, ENS Cachan, CNRS

“Monoidics, Inc.

5Imperial College, London

	Copyless Message Passing
	Language Model
	Properties of Interest

	Channel Contracts
	Communicating Automata
	Contract Verification
	Singularity Contracts

	Proving Copyless Message Passing
	Assertions
	Demo
	Soundness

