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Message Passing in Multicore Systems

e Hard to write sequential programs that are both correct
and efficient
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Message Passing in Multicore Systems

e Hard to write sequential programs that are both correct
and efficient

e Hard to write concurrent programs that are both/either
correct and/or efficient

e Paradigm: message passing over a shared memory
e Leads to efficient, copyless message passing

e May be more error-prone (than message passing with
copies)
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To Copy or not to Copy?

Copyful

|send(struct,e,data);

|d = receive(struct,f);

e (e,f): channel
e data points to a big struct
e struct: type of message
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To Copy or not to Copy?
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= receive(struct,f);
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To Copy or not to Copy?

Copyful

‘send(struct e,data);

= receive(struct,f);

Copyless Race!

data —d
send(pointer,e,data) ; d = receive(pointer,f);
dispose(data) ; dispose(d);
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To Copy or not to Copy?

Copyful

‘send(struct e,data);

= receive(struct,f);

Copyless No race
data d—
e |
send(pointer,e,data) ; d = receive(pointer,f);

dispose(d);

Introduction e Concurrency

2/26



Singularity OS

Singularity: a research project and an operating system.

No hardware memory protection
Singj language P
Isolation is verified at compile time

Invariant: each memory cell is owned

P2 P3
by at most one thread
e No shared resources
e Copyless message passing memory
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Singularity Channels [Fihndrich et al. ’06]

Channels are bidirectional and asynchronous
channel = pair of FIFO queues

Channels are made of two endpoints
similar to the socket model

Endpoints can be allocated, disposed of, and
communicated through channels

similar to the w-calculus

Communications are ruled by user-defined contracts
similar to session types

© No formalisation
How to ensure the absence of bugs?
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Analysis [V, Lozes & Calcagno APLAS’09,V. PhD’11]

Model Prove Specify

Program Prop. :

_____________________
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Program

_____________________

_____________________
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Message Passing Primitives

(e,f) = open() Creates a bidirectional channel between
endpoints e and £

close(e,f) Closes the channel (e, f)

send(a,e,x) Sends message starting with value x on
endpoint e. The message has type/tag a

x = receive(a,e) Receives message of type a on
endpoint e and stores its value in x

1] set_to_ten(x) {

2 local e,f;

3 (e, f) = open();

4 send (integer ,e,10);

5 x = receive(integer ,f);
6 close(e,f);

7

Copyless Message Passing ¢ Language Model
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Switch Receive

e switch receive selects a receive branch depending on
availability of messages

if( x ) { switch receive {

send(cell,e,x); y = receive(cell,f): {dispose(y);}
} else { z = receive(integer ,f): {}

send (integer ,e,0); }
}
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—————Proof J——t—
+

<:/Co ntracts Prop. ;>7

Program Prop.

e Race freedom

e Reception fault freedom

e Leak freedom




Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

e Programs access
only what they own

e Prevents races

e Linear usage of
channels

memory

Copyless Message Passing e Properties of Interest 8/26



Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

e Programs access
only what they own my ms
e Prevents races
e Linear usage of mo
channels
P P2
memory

Copyless Message Passing e Properties of Interest 8/26



Safety Properties

Separation property

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

e Programs access
only what they own my ms
e Prevents races
e Linear usage of mo
channels
P P2
cell
memory

Copyless Message Passing e Properties of Interest 8/26



Separation property

Safety Properties

At each point in the execution, the state can be partitioned into
what is owned by each program and each message in transit.

e Programs access
only what they own

e Prevents races

e Linear usage of
channels

mjy ms

mo

P P2

memory

Copyless Message Passing e Properties of Interest

8/26



Safety Properties

switch receive {

y = receive(a,f):
z =

receive(b,f):
}

{
{

send (c,e,x);

Copyless Message Passing e Properties of Interest
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Safety Properties

main () {
local x,e,f;

1

2

3

4 x = new();

5 (e,f) = open();
6 send (cell,e,x);
7 close(e,f);

8

DA «Fr «E>»
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_____________________

1
1
1
1
1
+ 1
1
1
1
1

¢ Communicating automata

Program Prop. :

_____________________

' Contracts Prop.

Heap-Hop
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A Dialogue System

7a b
(@ fa7 fa
la b

la Ib 24 2
—{ao)—Aa)—Ae)——{a}—a

Sending transitions: 'a

Receiving transitions: 7a

Two buffers: one in each direction
Configuration: (q,q’, w, w')
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A Dialogue System

’a b
@ fa Ta
la @ 1p
[
<q7 q07575>
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A Dialogue System
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A Dialogue System
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A Dialogue System
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A Dialogue System

7a ?b
(9] () T
la ® 1p

@ la @ o) @ 7a @ b @
[

<q7 CI475,5>
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Contracts

Describe dual communicating finite state machines

¢ m Ipointer .
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Contracts

Describe dual communicating finite state machines

YA )
¢ m Ipointer . 3 @ 7pointer .end i -
Jv- T ]
e Y )
| i
lcell ?ack i ?cell lack i
o Ifin (end] ?in — e
S0 O 2|0 o G
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Contracts as Protocol Specifications

(e,f) = open(€): initialise endpoints in the initial state of
the contract

send(a,e,x): becomes a !a transition
e y = receive(a,f): becomes a 7a transition

close(e,f) only when both endpoints are in the same
final state.

Channel Contracts ¢ Communicating Automata 11/26



_____________________

_____________________

e Reception faults

e Leaks
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Reception Errors

Definition Reception fault
(q1,Q2,a- wy, ws) is a reception fault if
e Qi A q for some b and g and

e Vb, q.q = g implies b+ a

4
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\

(9.9,¢,¢)
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Reception Errors

Definition Reception fault
(q1,Q2,a- wy, ws) is a reception fault if
e Qi A q for some b and g and

e Vb, q.q = g implies b+ a
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Reception Errors

Definition Reception fault
(q1,Q2,a- wy, ws) is a reception fault if
e Qi A q for some b and g and

e Vb, q.q = g implies b+ a

e A contract is reception fault-free if it cannot reach a
reception fault.
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Undelivered Messages

Definition Leak
(qr, gr, wy, we) is a leak if wy - wn + € and g is final.

la l ° 7a 3
af el Ae)| —Ad5Aa)5Ae):
| |
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Undelivered Messages

Definition Leak
(qr, gr, wy, we) is a leak if wy - wn + € and g is final.

e A contract is leak free if it cannot reach a leak.
e A contract is safe if it is reception fault free and leak free.
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Contract Verification

o Safety of communicating systems is undecidable in general
Channel’s buffer ~ Turing machine’s tape
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Contract Verification

o Safety of communicating systems is undecidable in general
Channel’s buffer ~ Turing machine’s tape

e Contracts are restricted (dual systems)

© Contracts can encode Turing machines as well

Theorem
Safety is undecidable for contracts.
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Contract Verification

o Safety of communicating systems is undecidable in general
Channel’s buffer ~ Turing machine’s tape

e Contracts are restricted (dual systems)

© Contracts can encode Turing machines as well

Theorem
Safety is undecidable for contracts.

o We give sufficient conditions for safety.
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Sufficient Conditions for Reception Safety

Definition Deterministic contract

Two distinct edges in a contract must be labelled by different
messages.
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Sufficient Conditions for Reception Safety

Definition Deterministic contract

Definition Positional contracts

All outgoing edges from a same state in a contract must be
either all sends or all receives.
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Sufficient Conditions for Reception Safety

Deterministic positional contracts are reception fault free.

DA «F
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Another Source of Leaks
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Another Source of Leaks

(9,9,aaa,c)
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Synchronising Contracts

Definition Synchronising state

A state s is synchronising if every cycle that goes through it
contains at least one send and one receive.

la X la
@ @ @& @
b b
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Synchronising Contracts

Definition Synchronising state
A state s is synchronising if every cycle that goes through it
contains at least one send and one receive.

Definition Synchronising contract

A contract is synchronising if all its final states are.
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Synchronising Contracts

Definition Synchronising state
A state s is synchronising if every cycle that goes through it
contains at least one send and one receive.

Definition Synchronising contract

A contract is synchronising if all its final states are.

Theorem [V., Lozes & Calcagno "09]

Deterministic, positional and synchronising contracts are safe
(fault and leak free).
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Singularity Contracts

Definition Singularity contract

Singularity contracts are deterministic and all their states are
synchronising.

e This is missing the positional condition!
¢ Does not guarantee reception fault freedom

¢ In fact, we proved that safety is still undecidable for
deterministic or positional contracts.

e Positional Singularity contracts are safe and bounded.
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e Extension to
message passing

1
1
1
1
1
+ 1
1
1
1
1
1

Contracts Prop.

_____________________

Heap-Hop
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Separation Logic [Reynolds 02, O'Hearn 01, ... ]

e Local reasoning for heap-manipulating programs
o Naturally describes ownership transfers
e Numerous extensions, e.g. storable locks [Gotsman et al. 07]
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Separation Logic [Reynolds 02, O'Hearn 01, ... ]

e Local reasoning for heap-manipulating programs

o Naturally describes ownership transfers

e Numerous extensions, e.g. storable locks [Gotsman et al. 07]
New Now with message passing! [APLAS09]
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Assertions

DA «Fr «E >
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Assertions (extension)

Syntax (continued)

¢ = ...
| E~ (¢{q},E") endpoint predicate

Intuitively E — (€{q}, E’) means:
e E is an allocated endpoint
e itis ruled by contract ¢
e it is currently in the control state g of
e its peeris E’
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-

Heap-Hop

o Extends Smallfoot
with message
passing

e Written in OCaml

e Open source
¥/\




[V., Lozes & Calcagno TACAS’10]
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e soundness

Program Prop.

+
Contracts Prop. :



Validity and Leak Freedom

Definition Program validity

{6} p{¢} isvalid if, for all o = ¢
¢ p has no race or memory fault starting from o
¢ p has no reception faults starting from o
o if p,oc »* o' theno' E

Definition Leak free programs

pis leak free if for all o

p,o —* o' implies that the heap and buffers of ¢’ are empty
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Properties of Proved Programs

Theorem Soundness

If{¢} p {v} is provable with reception fault free contracts
then {¢} p {v} is valid.

Theorem Leak freedom
If{¢} p {emp} is provable with leak free contracts then p is
leak free.

Proving Copyless Message Passing ¢ Soundness 24/26



Conclusion



Contributions

Contracts

e Formalisation of contracts
o Automatic verification of contract properties

Program analysis

o Verification of heap-manipulating, message passing
programs with contracts

e Contracts and proofs collaborate to prove freedom from
reception errors and leaks

e Tool that integrates this analysis: Heap-Hop
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Perspectives

Contracts

e Prove progress for programs
e Extend to the multiparty case
e Enrich contracts (counters, non positional, .. .)

Today@5:15 More general property of contracts for decidability:
half-duplex

Automatic program verification

e Discover specs and message footprints
e Discover contracts
e Fully automated tool

Conclusion 26/26
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