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Abstract

We review an extension of the π-calculus with a static type system which supports
high-level specifications of extended patterns of communication, such as client-server
protocols. We then present a subtype relation that allows protocol specifications to
be extended in order to describe richer behaviour; an implemented server can then
be replaced by a refined implementation, without invalidating type-correctness of the
overall system. We show how this subtyping relation can be integrated into the type
system, and use the POP3 protocol as a concrete example of this technique. This report
is a revised and extended version of our paper Types and Subtypes for Client-Server
Interaction, presented at the ESOP’99 conference.
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1 Introduction

The π-calculus [15, 24] has been used as a vehicle for much work on types for concurrent
programming languages [2, 10, 12, 13, 14, 18, 19, 26].

A system of session types for use in concurrent programming languages was first proposed
by Honda et al. [6, 8, 25]. Such a type defines a sequence of message types that can be
exchanged over a session channel. These messages can include both offering and making
choices between certain possibilities and the types therefore have a branching structure.
When implementing a client-server system it is useful to have such a type system as it
enforces some structure on the ordering of messages, rather than just checking the types of
individual messages that are sent on channels.

We have shown [4] how session types can be incorporated into the π-calculus with a
minimum of additional syntax, the majority of the special treatment of session channels
being handled by the typing rules. We have also advocated using a session type as part of the
published specification of a server’s protocol, so that static type-checking can be used to verify
client implementations. Furthermore, we have proposed [3] a notion of subtyping on session
types, which allows a protocol specification to be refined while maintaining compatibility
with earlier users of the protocol. This report is a revised and extended version of our
ESOP’99 paper [3], presenting that work in the same framework as our earlier report [4].

The remainder of this introduction presents an example of the use of session types, and
subtyping on session types, in the π-calculus.

Consider a server for mathematical operations which initially offers the choice between
addition and the sine function. The session type, S, of the server side of the channel is

S = &〈plus : ?[real] . ?[real] . ![real] . end, sin : ?[int] . ![real] . end〉

The &〈. . .〉 constructor specifies that a choice is offered between, in this case, two options,
labelled plus and sin. Each label leads to a type describing the subsequent pattern of com-
munication. Note that the pattern in the two branches are different. ? and ! indicate the
receiving and sending of a name respectively. The . character is the sequencing construc-
tor and end indicates the end of the interaction. Such a server would publish the dual or
complementary type,

S = ⊕〈plus : ![real] . ![real] . ?[real] . end, sin : ![int] . ?[real] . end〉

as part of its specification. The ⊕〈. . .〉 constructor specifies that a choice is made. Again,
each label is followed by a type which describes the subsequent interaction. Note that the
pattern of sending and receiving is the opposite of the pattern which appears in the type of
the server.

We would expect that a server that followed the pattern of communications in S and a
client that followed the pattern of communications in S would interact correctly. Indeed,
the typing rules we have presented [4] will allow the derivation of

x+ : S, x− : S ` server | client

where
server = x+ . {plus :x+ ? [a : real] . x+ ? [b : real] . x+ ! [a + b] . 0,

sin :x+ ? [a : int] . x+ ! [sin(a)] . 0}
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and
client = x− / sin . x− ! [45] . x− ? [a : real] . 0

In server, the offer operation, ., allows a message received on the session port x+ to be any of
the listed alternatives, offering a choice as to how the process continues. The labels and the
pattern of inputs and outputs match those in S. Conversely, in client, the choose operation,
/, selects from the available options. The pattern of inputs and outputs then match those in
S appropriate to the choice made. Note that this client does nothing with the value received
from the server. More realistically, 0 would be replaced by some continuation process which
used the name a.

One problem that occurs in client-server applications is the issue of backward compati-
bility when a server is upgraded. We might, for example, decide to introduce a replacement
maths server with more functionality and which can handle real number input to trigono-
metrical operations. We could define this server as follows.

newserver = x+ . {plus :x+ ? [a : real] . x+ ? [b : real] . x+ ! [a + b] . 0,
minus :x+ ? [a : real] . x+ ? [b : real] . x+ ! [a− b] . 0,
sin :x+ ? [a : real] . x+ ! [sin(a)] . 0},
cos :x+ ? [a : real] . x+ ! [cos(a)] . 0},

This type of the server side of the channel is now

S ′ = &〈plus : ?[real] . ?[real] . ![real] . end, minus : ?[real] . ?[real] . ![real] . end,
sin : ?[real] . ![real] . end, cos : ?[real] . ![real] . end〉

This server would then publish

S ′ = ⊕〈plus : ![real] . ![real] . ?[real] . end, minus : ![real] . ![real] . ?[real] . end,
sin : ![real] . ?[real] . end, cos : ![real] . ?[real] . end〉

as the type of the client side of the channel.
We would like either

x+ : S, x− : S ` newserver | client

or
x+ : S ′, x− : S ′ ` newserver | client

to be correct. That is, we would like our old client to be able to have an interaction with
the new server, whether it is on a channel with the old type, S, or the new type, S ′. It
seems reasonable that the interaction can happen as client uses one of the labels offered by
the server, and the integer sent by the client can be used sensibly where it is expecting a
real number. If we try to use a channel of type S, the client can make the choice as it is one
of the available labels on the channel. The new server cannot offer the choice, however, as
it is offering more labels than the type of the channel specifies, and typechecking therefore
fails. i.e. the typing judgement

x+ : S ` newserver

is incorrect. If we try to use a channel of type S ′, the client can make the choice as, again,
the chosen label is one of those available. This time, the new server can also offer the choice
as the labels it is offering match those in the channel type. When the client tries to send
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the integer 45, however, this does not match the type real specified in the channel type and
again typechecking fails. This time

x− : S ′ ` client

is incorrect, so the interaction is not allowed by our session type system. What is needed is a
structured way to upgrade the functionality of a server, whilst maintaining type correctness
for previous implementations of clients.

We present a type system that allows subtyping on session channels such that, for the
above definitions, S is a subtype of S ′ and S ′ is a subtype of S. We write this

S 6 S ′ and S ′ 6 S

When a process such as client immediately makes a choice, it is safe to use a channel with
a type that contains a superset of the labels that the process is choosing between. In this
situation, we can be sure that the chosen label will be one of the components of the type.
A subtype of a session type that begins with a choice being made will, therefore, contain a
greater number of labels. Conversely, when a process immediately offers a choice, the type
of the channel used must contain a subset of the labels offered by the process. This ensures
that whatever label is received on the channel by the process, it is one of those being offered.
A subtype of a session type that begins with a choice being offered will, therefore, contain
fewer labels. In either case, the type associated with each label in the subtype must be a
subtype of the type associated with the corresponding label in the original type. A channel
that is a subtype of the expected type can always be used in its place. This means that
both of the above typing derivations are then correct: in the first derivation, newserver uses
a channel of type S, which is a subtype of the type S ′ that it is expecting; in the second
client uses a channel of type S ′, which is a subtype of the type S that it is expecting.

As with our type system without subtyping, each communication capability in a session
type must be used exactly once, and to make sure of this we use techniques similar to those
Kobayashi et al. [12, 13] use to enforce linearity [5]. The type system also allows non-session
types to be specified, and there are no restrictions on how many processes may use them.
For example, y : ̂[int] is a channel which can be used freely to send or receive integers. To
allow subtyping on non-session types, we draw on the work of Pierce and Sangiorgi [18, 19].

Returning to our mathematical server, we can now see how the revised version could
work when placed in parallel with a pair of clients, one adhering to the new protocol and
the other still using a channel of type S. As the server is to be used with multiple clients,
we must also make the server multi-threaded. This is done using the standard π-calculus
replication operator, !. This simply replicates a process the necessary number of times to
fulfill any possible communications. Note that the channel trigger, although used to carry
session channels, is not a session channel itself. It can therefore be used by the server and
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both clients.

multithreadedserver = !thread
thread = trigger ? [x+ : S ′] . newserver

newserver = x+ . {plus :x+ ? [a : real] . x+ ? [b : real] . x+ ! [a + b] . 0,
minus :x+ ? [a : real] . x+ ? [b : real] . x+ ! [a− b] . 0,
sin :x+ ? [a : real] . x+ ! [sin(a)] . 0},
cos :x+ ? [a : real] . x+ ! [cos(a)] . 0},

newclient = (νy± : S ′)trigger ! [y+] . newclientbody
newclientbody = y− / sin . y− ! [90.0] . y− ? [a : real] . 0

oldclient = (νz± : S)trigger ! [z+] . oldclientbody
oldclientbody = z− / sin . z− ! [45] . z− ? [b : real] . 0

When the system is executed, newclient uses the ν construct to create a session channel
of type S ′. This has two ports: the server side, y+, with type S ′, and the client side, y−, of
type S ′. It sends the y+ port of the local channel y to one copy of the process thread and
retains the y− port for its own use. The type of y+ is the same as the type which thread
is expecting to receive and the standard π-calculus scope extrusion allows the scope of y+

to expand to include that copy of thread. The processes newclient and newserver, therefore,
both continue by having a private interaction on the channel y. The process oldclient creates
a different session channel, z, of type S. Again this has two ports, and it sends the z+ port
to a separate copy of the process thread and retains the z− port. Although the type of z+,
S, is not that which is expected by thread, it is a subtype of the expected type. It can,
therefore, be used by newserver, and so oldclient and newserver both continue by having a
private interaction on z. So,

trigger : ̂[S] ` newserver | newclient | oldclient

is a valid typing judgement.
The remainder of this paper is organised as follows. Section 2 defines the syntax of

processes, types and environments, and some basic operations on them. The typing and
subtyping rules are presented in Section 3. Section 4 defines the operational semantics of
the language and states the main technical results leading to type soundness. Section 5 uses
our type system to specify a basic version of the POP3 protocol, and shows how subtyping
can be used to add functionality whilst maintaining compatibility with the previous version.
Finally, we discuss related work and outline our future plans in Section 6.
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2 Syntax and Notation

Our language is the same as for our system of session types without subtyping [4] and is
based on a polyadic π-calculus with output prefixing [15]. For simplicity we omit the original
π-calculus choice construct P +Q and the matching construct, which allows channel names to
be tested for equality. However, we have the constructs introduced in Section 1 for choosing
between a collection of labelled processes, as proposed by Honda et al. [6, 8, 25]. The
inclusion of output prefixing is different from many recent presentations of the π-calculus,
but it is essential because our type system must be able to impose an order on separate
outputs on the same channel. Because it has an interesting effect on the typing rules, we
add a conditional process expression, written if b then P else Q, where b is a boolean value.
As is standard, we use the replication operator ! instead of recursive process definitions.

As our language has conditional process expressions, we have a ground type of booleans.
Other ground types such as int and real, as used in the examples in Section 1, could be added
along with appropriate primitive operations. We also include Milner’s standard π-calculus
channel types [15], Pierce and Sangiorgi’s input and output channel types [18, 19] and session
types as proposed by Honda et al. [8, 25]. We include type variables, and allow all types to
be recursive. An environment, which is particular to a process, describes the types of the
names that are free in that process and our typing rules in Section 3 will allow us to derive
processes that use names correctly with respect to their environment.

In general we use lower case letters for channel names, superscript p, q etc. for polarities,
l1, . . . , ln for labels of choices, upper case P , Q, R for processes, upper case S, S1, S2 etc for
session types and upper case T , U etc. for types. We write x̃ for a finite sequence xp

1, . . . , x
q
n

of names, x̃ : T̃ for a finite sequence xp1

1 : T1, . . . , x
pn
n : Tn of typed names and Γ, Γ1, Γ2 etc

for environments.

2.1 Processes

The syntax of processes is defined by the grammar in Figure 1. Note that T , T̃ and S stand
for types, lists of types and session types, which have not yet been defined. p is either + or
− if the associated name is a session port, or is omitted in all other cases. + and − are dual
(or complementary) polarities and we write p to denote the dual of p. Most other syntax
is fairly standard. 0 is the inactive process, | is parallel composition and !P represents a
potentially infinite supply of parallel copies of P . (νx : T )P declares a local channel x of
type T for use in P and (νx± : S)P declares a local session channel with two ports, x+ and
x− of types S and S̄ respectively, again for use in P. xp ? [ỹ : T̃ ] . P receives the names ỹ,
which have types T̃ , on the port xp, and then executes P . xp ! [ỹ] . P outputs the names ỹ
on the port xp and then executes P . There should be no confusion between the use of ! for
output and its use for replication, as the surrounding syntax is quite different in each case.
xp .{l1 :P1, . . . , ln :Pn} offers a choice of subsequent behaviours on the port xp – one of the Pi

can be selected as the continuation process by sending the appropriate label li on the other
port of the channel x, as explained in Section 1. xp / l . P sends the label l on port xp in
order to make a selection from an choice offered in the other port of x, and then executes
P . The conditional expression has already been mentioned.

We define free and bound names as usual: x is bound in (νx : T )P , x+ and x− are bound
in (νx± : S)P , the names in ỹ are bound in xp ? [ỹ : T̃ ] . P , and all other occurrences are
free. We then define α-equivalence as usual, and identify processes which are α-equivalent.
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P ::= 0
| P |Q
| xp ? [ỹ : T̃ ] . P
| xp ! [ỹ] . P
| (νx : T )P
| (νx± : S)P
| xp . {l1 :P1, . . . , ln :Pn}
| xp / l . P
| !P
| if x then P else Q

Figure 1: Syntax of Process

0{ũ/ṽ} = 0

(P |Q){ũ/ṽ} = P{ũ/ṽ} |Q{ũ/ṽ}
(xp ? [ỹ : T̃ ] . P ){ũ/ṽ} = xp{ũ/ṽ} ? [ỹ : T̃ ] . P{ũ/ṽ}

(xp ! [ỹ] . P ){ũ/ṽ} = xp{ũ/ṽ} ! [ỹ]{ũ/ṽ} . P{ũ/ṽ}
((νx : T )P ){ũ/ṽ} = (νx : T )P{ũ/ṽ}

((νx± : S)P ){ũ/ṽ} = (νx± : S)P{ũ/ṽ}
(xp . {l1 :P1, . . . , ln :Pn}){ũ/ṽ} = xp{ũ/ṽ} . {l1 :P1{ũ/ṽ}, . . . , ln :Pn{ũ/ṽ}}

(xp / l . P ){ũ/ṽ} = xp{ũ/ṽ} / l . P{ũ/ṽ}
(!P ){ũ/ṽ} = !P{ũ/ṽ}

( if x then P else Q){ũ/ṽ} = if x{ũ/ṽ} then P{ũ/ṽ} else Q{ũ/ṽ}

Figure 2: Substitution

We include the standard operation of substitution of names for names: P{x̃/ỹ} denotes
P with the names xp1

1 , . . . , xpn
n simultaneously substituted for yq1

1 , . . . , yqn
n , assuming that

bound names are renamed if necessary to avoid capture of substituting names. Substitution
is defined in Figure 2.

Figure 3 defines a standard structural congruence relation, written ≡, which helps to
define the operational semantics. In rule S-Offer, σ is a permutation on {1, . . . , n}.

2.2 Types

The syntax of types is defined by the grammar in Figure 3. Ground types are self-explanatory.
Here we only use bool, but others could easily be added, along with their respective oper-
ations. For channel types, ̂[T1, . . . , Tn] represents a channel that has input and output
capabilities and carries names of the types T1, . . . , Tn. ?[T1, . . . , Tn] and ![T1, . . . , Tn] also
represent channels that carry names of these types, but with only input or output capability
respectively.

For session types, end, represents a port of a session channel that has completed its se-
quence of communications. ?[T1, . . . , Tn].S and ![T1, . . . , Tn].S represent ports that will either
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P | 0 ≡ P S-Unit
P |Q ≡ Q | P S-Comm

P | (Q |R) ≡ (P |Q) |R S-Assoc
(νxp : T )P |Q ≡ (νxp : T )(P |Q) if x is not free in Q S-Extr

(νx : T )0 ≡ 0 if x is not a session channel S-Nil
(νxp : T )(νyq : U)P ≡ (νyq : U)(νxp : T )P S-Switch

!P ≡ P |!P S-Rep
xp . {l1 :P1, . . . , ln :Pn} ≡ xp . {lσ(1) :Pσ(1), . . . , lσ(n) :Pσ(n)} S-Offer

Figure 3: Stuctural Congruence Rules

Types T ::= G
| C
| S
| µX.T (recursive type)
| X(type variable)

Ground types G ::= bool
Channel types C ::= ̂[T1, . . . , Tn]

| ?[T1, . . . , Tn]
| ![T1, . . . , Tn]

Session types S ::= end
| ?[T1, . . . , Tn] . S
| ![T1, . . . , Tn] . S
| &〈l1 :S1, . . . , ln :Sn〉
| ⊕〈l1 :S1, . . . , ln :Sn〉
| µX.S(recursive session type)
| X(type variable)

Figure 4: Syntax of Types
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input or output names of the types T1, . . . , Tn and then have the type S. &〈l1 :S1, . . . , ln :Sn〉
represents a port that will receive one of n labels and then continue with the corresponding
continuation type. ⊕〈l1 :S1, . . . , ln :Sn〉 represents a port that will send one of n labels and
then continue with the corresponding continuation type. Finally, µX.S and X allow the
definition of recursive types and type variables.

If S is a session type then S, the dual (or complementary) type of S, is defined inductively
as follows.

?[T̃ ].S = ![T̃ ].S

![T̃ ].S = ?[T̃ ].S

&〈l1 :S1, . . . , ln :Sn〉 = ⊕〈l1 :S1, . . . , ln :Sn〉
⊕〈l1 :S1, . . . , ln :Sn〉 = &〈l1 :S1, . . . , ln :Sn〉

end = end
µX.T = µX.T

X = X

2.3 Environments

An environment is a set of typed names, written xp1

1 : T1, . . . , x
pn
n : Tn. We use Γ, Γ1, Γ2 etc.

and Γ′, Γ′′ etc. to stand for environments. We assume that all the names in an environment
are distinct. We write xp ∈ Γ to indicate that xp is one of the names appearing in Γ, and
write Γ ` xp : T or Γ(xp) = T to indicate xp has the type T in Γ. When xp 6∈ Γ we write
Γ, xp : T for the environment formed by adding xp : T to the set of typed names in Γ. When
Γ1 and Γ2 have disjoint sets of names, we write Γ1, Γ2 for their union. Implicitly, true : bool
and false : bool appear in every environment.

The partial operation +, combining a typed name with an environment, is defined as
follows:

Γ + xp : T = Γ, xp : T if xp 6∈ Γ
(Γ, x : T ) + x : U = Γ, x : T if x is not a session port and T 6 U
(Γ, x : T ) + x : U = Γ, x : U if x is not a session port and U 6 T

and is undefined in all other cases.
We extend + to a partial operation on environments by defining

Γ + (xp1

1 : T1, . . . , x
pn
n : Tn) = (· · · (Γ + xp1

1 : T1) + · · ·+) + xpn
n : Tn

We say that an environment is completed if any session ports it contains have type end,
and unlimited if it contains no session types at all. An environment, Γ, is balanced with
respect to a channel x if

Γ ` xp : S =⇒ Γ ` xp : S
or

Γ ` x : T where T is not a session type

A process that is typable in the empty environment (i.e. a process with no free variables) is
called a program.

8



3 Type System

The typing rules allow us to derive processes that are correctly typed with respect to their
environment. Derivations start with the nil process, 0, typed in some environment that
is completed and apply the rules to add operations as prefixes, making the appropriate
modifications to the environment. For example, the process oldclient from Section 1 is
typable in the environment x− : S ′.

x− : end, a : real completed
T-Nil

x− : end, a : real ` 0 real 6 real
T-InSeq

x− : ?[real] . end ` x− ? [a : real] . 0 int 6 real
T-OutSeq

x− : S ′
sin, 45 : int ` x− ! [45] . x− ? [a : real] . 0 1 ≤ 3 ≤ 4 S ′

sin 6 S ′
sin

T-Offer
x− : S ′ ` x− / sin . x− ! [45] . x− ? [a : real] . 0

The type S ′
sin is used above to make the typing derivation more compact and represents

![real] . ?[real] . end, the type associated with the label sin in the type S ′. The values in the
inequality 1 ≤ 3 ≤ 4 come simply from enumeration of the labels in S ′.

The typing rules can also be used to typecheck a process in an environment. This is done
by reading the rules upwards instead of down. Depending on the actions that the process
performs, the appropriate typing rules are applied in reverse until the process 0 is reached,
typed in a completed environment. If no such path through the rules exists, the process
does not typecheck in that environment. If we wanted to typecheck the process client in the
environment x− : S ′, for example, the derivation above read backwards shows a valid path
and thus demonstates type correctness.

3.1 Typing Rules

The typing rules are defined in Figure 5. T-Nil types the process 0, provided that there are
no session channels in the environment that have not completed their communication session.
T-Par adds together the environments that type two processes individually to obtain a new
environment to type them in parallel. T-New removes a channel from the environment in
the normal way when it is to be bound by a ν. T-NewSeq does the same for both ports of
a session channel. T-Out deals with output on a non-session channel, making sure that the
channel in the environment has a type that is a subtype of a channel type that has the output
capability for the type being sent. T-In does the same for input on non-session channels,
making sure that the channel in the environment has a type that is a subtype of a channel
type that has the input capability for the type being received. T-OutSeq and T-InSeq are
similar to the output and input rules for non-session channels. The type of the session port
in the environment has an output or input prefix added as appropriate, though, to indicate
the additional capability being used by the port. T-Offer types a process offering a choice
between a number of labels on a session port provided that the type associated with each
label in the environment is a subtype of the type being used in the process by the port. The
number of labels in the type of the port in the environment must also be no more than those
offered in the process. T-Choose types a process that chooses between a number of labels
provided that the type associated with the chosen label in the environment is a subtype of
the type used in the process. This time the number of labels in the type of the port in the
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Γ completed
T-Nil

Γ ` 0

Γ1 ` P Γ2 ` Q
T-Par

Γ1 + Γ2 ` P |Q

Γ, x : T ` P T is not a session
T-New

Γ ` (νx : T )P

Γ, x+ : S, x− : S̄ ` P
T-NewSeq

Γ ` (νx± : S)P

Γ ` P Γ ` x 6 ![T̃ ]
T-Out

Γ + ỹ : T̃ ` x ! [ỹ] . P

Γ, xp : S ` P Ũ 6 T̃
T-OutSeq

(Γ, xp : ![T̃ ] . S) + ỹ : Ũ ` xp ! [ỹ] . P

Γ, ỹ : T̃ ` P Γ ` x 6 ?[T̃ ]
T-In

Γ ` x ? [ỹ : T̃ ] . P

Γ, xp : S, ỹ : Ũ ` P T̃ 6 Ũ
T-InSeq

Γ, xp : ?[T̃ ] . S ` xp ? [ỹ : Ũ ] . P

Γ, xp : S1 ` P1; . . . ; Γ, xp : Sn ` Pn m ≤ n ∀i ∈ {1, . . . ,m}.Ti 6 Si
T-Offer

Γ, xp : &〈l1 :T1, . . . , ln :Tm〉 ` xp . {l1 :P1, . . . , ln :Pn}

Γ, xp : Si ` P 1 ≤ i ≤ n Ti 6 Si
T-Choose

Γ, xp : ⊕〈l1 :T1, . . . , ln :Tn〉 ` xp / li . P

Γ ` x 6 bool Γ ` P Γ ` Q
T-Cond

Γ ` if x then P else Q

Γ ` P Γ unlimited
T-Rep

Γ `!P

Figure 5: Typing Rules

environment must be no less than those the process is choosing between. Finally, T-Cond
types a conditional expression provided that the condition is a subtype of bool and that
the processes representing the two possible outcomes are well typed, and T-Rep types the
replication of a process provided that the process is well typed in an environment containing
no session channels.

Each typing rule is only applicable when any instances of + which it contains are actually
defined. This ensures that the environment correctly records the use being made of session
channels. In rules T-Out and T-OutSeq, for example, the names being output are added
to the environment. This means that if a session port is output, then it cannot be used
again by the remainder of the process. This allows a process to begin a communication on
a session channel, then delegate the rest of the session to another process by sending it the
port that it was using. Of course, the first process must not use the channel again.

3.2 Subtyping

Figure 6 defines the subtype relation by means of a collection of inference rules for judgements
of the form Σ ` T 6 U , where Σ ranges over finite sets of instances of 6. When ∅ ` T 6 U is
derivable we simply write T 6 U . The inference rules can be interpreted as an algorithm for
checking whether T 6 U for given T and U , as follows. Beginning with the goal ∅ ` T 6 U ,
apply the rules upwards to generate subgoals. Pattern matching on the structure of T and

10



T 6 U ∈ Σ
AS-Assump

Σ ` T 6 U

AS-Bool
Σ ` bool 6 bool

AS-End
Σ ` end 6 end

∀i ∈ {1, . . . , n}.Σ ` Ti 6 Ui
AS-In

Σ ` ?[T̃ ] 6 ?[Ũ ] Σ ` ̂[T̃ ] 6 ?[Ũ ]

∀i ∈ {1, . . . , n}.Σ ` Ui 6 Ti
AS-Out

Σ ` ![T̃ ] 6 ![Ũ ] Σ ` ̂[T̃ ] 6 ![Ũ ]

∀i ∈ {1, . . . , n}.(Σ ` Ti 6 Ui and Σ ` Ui 6 Ti)
AS-InOut

Σ ` ̂[T̃ ] 6 ̂[Ũ ]

Σ ` V 6 W ∀i ∈ {1, . . . , n}.Σ ` Ti 6 Ui
AS-InSeq

Σ ` ?[T̃ ] . V 6 ?[Ũ ] . W

Σ ` V 6 W ∀i ∈ {1, . . . , n}.Σ ` Ui 6 Ti
AS-OutSeq

Σ ` ![T̃ ] . V 6 ![Ũ ] . W

m 6 n ∀i ∈ {1, . . . ,m}.Σ ` Si 6 Ti
AS-Branch

Σ ` &〈l1 :S1, . . . , lm :Sm〉 6 &〈l1 :T1, . . . , ln :Tn〉

m 6 n ∀i ∈ {1, . . . ,m}.Σ ` Si 6 Ti
AS-Choice

Σ ` ⊕〈l1 :S1, . . . , ln :Sn〉 6 ⊕〈l1 :T1, . . . , lm :Tm〉

Σ, µX.S 6 T ` unwind(µX.S) 6 T
AS-Rec-L

Σ ` µX.S 6 T

Σ, T 6 µX.S ` T 6 unwind(µX.S)
AS-Rec-R

Σ ` T 6 µX.S

Figure 6: Subtyping Rules
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U determines which rule to use, except that the rule AS-Assump should always be used,
causing the current subgoal to succeed, if it is applicable. If both AS-Rec-L and AS-Rec-R
are applicable then they should be used in either order. If a subgoal is generated which does
not match any of the rules, the algorithm returns false.

The rules AS-Bool and AS-End say that we can always assume that bool is a subtype
of bool and end is a subtype of end.

3.3 Addition on Types and Environments

The + operation has two uses in the typing rules. The first use is seen in rules T-Out and
T-OutSeq, where the names being output are added to the environment. This means that
if a port of a session channel is output, then that port is given away and cannot be used
again by the remainder of the process. It is possible, therefore, to begin an interaction on a
session channel, then safely delegate the rest of the interaction to another process by sending
it the port. If the first process attempted to use the port again, this would be rejected by
the type system.

Delegation arises in recursive processes, where a session channel with a recursive type is
used and the process is replicated. In this situation, a new instance of the recursive process
is invoked to which the session channel must be passed on: the process actually delegates
to a separate copy of itself. Below is a recursive example of an addition server – a cut-down
version of the maths server in Section 1.

recserver = !thread
thread = trigger ? [x+ : µX.?[int] . ?[int] . ![int] . X] . server
server = x+ ? [a : int] . x+ ? [b : int] . x+ ! [a + b] . trigger ! [x+] . 0
client = (νy± : µX.?[int] . ?[int] . ![int] . X)trigger ! [y+] . clientbody

clientbody = y− ! [2] . y− ! [3] . y− ? [a : int] . y− ! [a] . y− ! [4] . y− ? [b : int] . P

The client creates the recursive session channel, y, and passes the y+ port to a copy of thread
on the trigger channel. server then uses it to receive two integers and sends back the result.
At this point, server sends the port on the trigger channel. This is received by a separate
copy of thread, and the new copy can perform the second addition. In this situation, there
is no option to end the recursion. More realistically, the recursion would be embedded in an
offer construct that included some termination option.

The other occurence of the + operation is in the T-Par rule. Here, the operation is used
to prevent multiple processes using a single session port being put in parallel. Two clients
which both interact with a server using the same port should not be allowed, for example,
and indeed,

x+ : S, x− : S ` server | client1 x− : S ` client2
T-Par

(x+ : S, x− : S) + x− : S ` server | client | client

is not a valid application of the rule, as the environment resulting from the addition is not
defined.

12



4 Operational Semantics

The operational semantics is defined by means of a reduction relation, where P
α,l−→ Q means

that the process P reduces to the process Q by executing a single communication step or
evaluating a conditional expression. The reductions are labelled in the following way: If the
channel on which the communication takes place is free in P then α is the name of that
channel. If it is a bound channel, or if the reduction corresponds to the evaluation of a
conditional expression, α = τ . l is the label passed on the channel during the reduction if
the reduction in question is a selection. l = in all other cases.

The reduction relation is the smallest relation closed under the rules in Figure 7. The
rules R-Comm and R-Select introduce communication steps. R-Comm is standard apart
from a pre-condition that the polarities must be opposite if the reduction is on a session
channel. R-Select deals with reductions where one process selects a labelled choice from
a list offered by the other. Note that R-Comm applies to both session and non-session
channels, as there is no indication of the type of x in either process.

R-True and R-False describe the two possible reductions of a conditional expression,
R-Par allows reductions under parallel composition and R-Cong allows any process that
is structurally congruent to a process with a reduction, to reduce to a process structurally
congruent to the process resulting from that reduction. R-New and R-NewSeq describe
reductions under a new binding, where the channel on which the reduction takes place is not
the one being bound. R-NewX and R-NewXSeq again describe reductions under a new
binding, but where the reductions is on the channel being bound. The tail function used in
R-NewXSeq takes a session type and returns a new session type representing the original
after a single reduction step.

As for our system without subtypes, we must prove that a well typed process can never
reduce to a process with communication errors. For that system, we proved two theorems:
A subject reduction theorem, showing that a well typed process always reduces to another
well typed processs, and secondly a run-time safety theorem, showing that a well typed
process has no communication errors. The type system with subtyping is more complicated,
however, as a name can be promoted in a process to a supertype of its actual type in the
environment. The following typing judgement is an example of this.

Γ, x+ : ?[̂[int]] . end, x− : ![̂[int]] . end, z : ̂[int] ` x+ ? [y : ![int]] . y ! [4] . 0 | x− ! [z] .0 | z ! [3] .0

The process is typable – a valid path exists through the typing rules. The capabilities in the
environment, however, are the sum of the three environments that type the three parallel
processes. Because of this, it is not obvious that the output capability for the channel z (used
by the first process after it binds z to y) comes from the environment that types the second
process. It could come only from the environment that types the third process, which clearly
must have output capability on z, with the second process only having input capability. We
would hope that if this were true, the process would not be well typed, but to prove this for
all processes we clearly need to know the capabilities that are available on a channel at the
time they are sent across a parallel composition. Pierce and Sangiorgi [18, 19] use a system
of tagging to keep track of promoted types in their system of input and output types, and
we use a similar approach, tagging every name that exists without a typing constraint.

First we define tagged processes, which are the same as untagged processes, but with a
typing constraint on every occurence of a name. The stuctural congruence rules must also
be modified to include the tags. Next, we define a tagging function from untagged typable
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if x is a session channel then p = q̄
R-Comm

xp ? [ỹ : T̃ ] . P | xq ! [z̃] . Q
x,−→ P{z̃/ỹ} |Q

l ∈ {l1, . . . , ln} p = q̄
R-Select

xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q
x,li−→ Pi |Q

R-True
if true then P else Q

τ,−→ P
R-False

if false then P else Q
τ,−→ Q

P
α,l−→ P ′

R-Par

P |Q α,l−→ P ′ |Q

P ′ ≡ P P
α,l−→ Q Q ≡ Q′

R-Cong

P ′ α,l−→ Q′

P
α,l−→ P ′ α 6= x

R-New

(νx : T )P
α,l−→ (νx : T )P ′

P
α,l−→ P ′ α 6= x

R-NewSeq

(νx± : S)P
α,l−→ (νx± : S)P ′

P
x,l−→ P ′

R-NewX
(νx : T )P

τ,−→ (νx : T )P ′

P
x,l−→ P ′

R-NewXSeq
(νx± : S)P

τ,−→ (νx± : tail(S, l))P ′

Figure 7: The reduction relation

tail(?[T̃ ].S, ) = S

tail(![T̃ ].S, ) = S
tail(&〈l1 :S1, . . . , ln :Sn〉, li) = Si

tail(⊕〈l1 :S1, . . . , ln :Sn〉, li) = Si

tail(µX.S) = tail(S{µX.S/X})

Figure 8: The tail function

processes to tagged processes, and an erase function from tagged to untagged processes.
Finally, the typing rules and reduction rules must also be modified to include the tags. The
tagged typing rules are shown in Figure 14 and the tagged reduction rules which are different
from the untagged ones are shown in Figure 13.

We can prove type soundness for this tagged system in the usual way: we prove a subject
reduction theorem and a run-time safety theorem. Together these imply that a well-typed
process can be executed safely through any sequence of reduction steps. As with our standard
session type system, we are only interested in processes typed in a balanced environment as
these are the only processes that can result from the execution of a program. The following
lemmas are steps towards establishing Theorem 1. Where the + operation is used, we can
assume it is a valid application because all occurences will occur as a result of a substitution
when a communication takes place in a well-typed process. The only invalid use of + is to
add a session port to an environment that already contains it and this cannot happen in a
well typed process as the typing rules remove a session port from the environment whenever
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P ::= 0
| P |Q
| (xp : T ) ? [ỹ : Ũ ] . P

| (xp : T ) ! [ ˜y : Ũ ] . P
| (νx : T )P
| (νx± : S)P
| (xp : S) . {l1 :P1, . . . , ln :Pn}
| (xp : S) / l . P
| !P
| if (x : T ) then P else Q

Figure 9: Syntax of Tagged Processes

P | 0 ≡ P TS-Unit
P |Q ≡ Q | P TS-Comm

P | (Q |R) ≡ (P |Q) |R TS-Assoc
(νxp : T )P |Q ≡ (νxp : T )(P |Q) if x is not free in Q TS-Extr

(νx : T )0 ≡ 0 if x is not a session channel TS-Nil
(νxp : T )(νyq : U)P ≡ (νyq : U)(νxp : T )P TS-Switch

!P ≡ P |!P TS-Rep
(xp : S) . {l1 :P1, . . . , ln :Pn} ≡ (xp : S) . {lσ(1) :Pσ(1), . . . , lσ(n) :Pσ(n)} TS-Offer

Figure 10: Tagged Structural Congruence Rules
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tagΓ(0) = 0
tagΓ(P |Q) = tagΓ1

(P ) | tagΓ2
Q (1)

tagΓ((νx : T )P ) = (νx : T )(tagΓ,x:T (P ))
tagΓ((νx± : S)P ) = (νx : S)(tagΓ,x+:S,x−:S(P ))

tag(Γ,x:C)+y:T (x ! [ỹ] . P ) = (x : C) ! [ỹ : T̃ ] . tagΓ,x:C(P )

tagΓ,x:C(x ? [ỹ : T̃ ] . P ) = (x : C) ? [ỹ : T̃ ] . tag(Γ,x:C)+ỹ:T̃ (P )

tag(Γ,xp:S)+y:T (xp ! [ỹ] . P ) = (xp : S) ! [ỹ : T̃ ] . tagΓ,xp:tail(S)(P )

tagΓ,xp:S(xp ? [ỹ : T̃ ] . P ) = (xp : S) ? [ỹ : T̃ ] . tagΓ,xp:tail(S)+ỹ:T̃ (P )

tagΓ,x:&〈li:Ti〉16i6m
(xp . {li :Pi}16i6n) = (xp : &〈li : Ti〉16i6m) . {li : tagΓ,x:Si

(Pi)}16i6n
(2)

tagΓ,x:⊕〈li:Si〉16i6n
(x / l . P ) = (x : ⊕〈li : Si〉16i6n) / l . tagΓ,x:Si

(P )

tagΓ,x:T ( if x then P else Q) = if x : T then tagΓ,x:T (P ) else tagΓ,x:T (Q)
tagΓ(!P ) = !tagΓ(P )

(1) where the last step of the typing derivation is
Γ1 ` P Γ2 ` Q

T-Par
Γ ` P |Q

(2) where the last step of the typing derivation is
Γ, xp : S1 ` P1; . . . ; Γ, xp : Sn ` Pn m ≤ n ∀i ∈ {1, . . . ,m}.Ti 6 Si

T-Offer
Γ, xp : &〈l1 :T1, . . . , ln :Tm〉 ` xp . {l1 :P1, . . . , ln :Pn}

Figure 11: Tag function

it is occurs in an output message.

Lemma 1 (Non-Session Subtypes) If T is not a session type and U 6 T then U is not
a session type.

Proof Straightforward from the definition of subtyping - no subtyping rule allows a session
type to be a subtype of non-session type.

�

Lemma 2 (Completion) If Γ, xp : T completed and U 6 T then Γ + yq : U completed

Proof This splits into two cases: one where T is a session type and another where it is
not.

case T is a session type
As Γ, xp : T is completed, Γ must be completed and T must be end. From the definition of
subtyping it can be seen that the only subtype of end is end, so U must also be end. From the
definition of +, Γ + yq : end = Γ, yq : end which, as Γ is completed, must itself be completed
also.

case T is not a session type
As Γ, xp : T is completed, Γ must be completed. From Lemma 1, U cannot be a session
type. As Γ is completed and U is not a session type, Γ + yq : U must also be completed.

�
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erase(0) = 0
erase(P |Q) = erase(P ) | erase(Q)

erase((νxp : T )P ) = (νxp : T )(erase(P ))

erase((x : T ) ! [ỹ : Ũ ] . P ) = x ! [ỹ] . erase(P )

erase((x : T ) ? [ỹ : Ũ ] . P ) = x ? [ỹ : Ũ ] . erase(P )
erase((xp : S) . {l1 : (P1), . . . , ln : (Pn)}) = xp . {l1 : (erase(P1)), . . . , ln : erase((Pn))}

erase((xp : S) / l . P ) = xp / l . erase(P )
erase( if x : T then P else Q) = if x then erase(P ) else erase(Q)

erase(!P ) = !erase(P )

Figure 12: Erase Function

if x is a session channel then p = q̄
TR-Comm

(xp : U) ? [ỹ : T̃ ] . P | (xq : V ) ! [z̃ : W̃ ] . Q
x,−→T P{z̃/ỹ} |Q

l ∈ {l1, . . . , ln} p = q̄
TR-Select

(xp : U) . {l1 :P1, . . . , ln :Pn} | (xq : V ) / li . Q
x,li−→T Pi |Q

TR-True
if true : bool then P else Q

τ,−→T P

TR-False
if false : bool then P else Q

τ,−→T Q

Figure 13: The tagged reduction relation

Lemma 3 (Unlimitedness) If Γ, x : T unlimited and U 6 T then Γ + y : U unlimited

Proof If Γ, x : T unlimited, Γ must be unlimited and T cannot be a session type. From
Lemma 1, U cannot be a session type. If Γ is unlimited and U is not a session type, Γ+y : U
is unlimited.

�

Lemma 4 (Type Addition) If y /∈ x̃ then (Γ, x̃ : T̃ ) + y : U = (Γ + y : U), x̃ : T̃

Proof As y /∈ x̃, the addition can only apply to types in Γ and, therefore, (Γ, x̃ : T̃ ) + y :
U = (Γ + y : U), x̃ : T̃ .

�

Lemma 5 (Subtype Transitivity) If W 6 U and U 6 T then W 6 T

This lemma is proved by structural induction on the derivations of W 6 U and U 6 T .
Due to the large number of rules the proof is rather long. Two example cases are given in
Appendix A.

Lemma 6 (Substitution Typing) If Γ, x : T T̀ z 6 V and U 6 T then Γ + y : U T̀

z{y/x} 6 V
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Γ completed
TT-Nil

Γ T̀ 0

Γ1 T̀ P Γ2 T̀ Q
TT-Par

Γ1 + Γ2 T̀ P |Q

Γ, x : T T̀ P T is not a session
TT-New

Γ T̀ (νx : T )P

Γ, x+ : S, x− : S̄ T̀ P
TT-NewSeq

Γ T̀ (νx± : S)P

Γ T̀ P Γ T̀ x 6 V 6 ![Ũ ] T̃ 6 Ũ
TT-Out

Γ + ỹ : T̃ T̀ (x : V ) ! [ỹ : Ũ ] . P

Γ, ỹ : T̃ T̀ P Γ T̀ x 6 V 6 ?[T̃ ]
TT-In

Γ T̀ (x : V ) ? [ỹ : T̃ ] . P

Γ, xp : S T̀ P S 6 B Ũ 6 W̃ 6 Ã 6 T̃
TT-OutSeq

(Γ, xp : ![T̃ ] . S) + ỹ : Ũ T̀ (xp : ![Ã] . B) ! [ỹ : W̃ ] . P

Γ, xp : S, ỹ : Ũ T̀ P S 6 B T̃ 6 Ã 6 Ũ
TT-InSeq

Γ, xp : ?[T̃ ] . S T̀ (xp : ?[Ã] . B) ? [ỹ : Ũ ] . P

Γ, xp : S1 T̀ P1; . . . ; Γ, xp : Sn T̀ Pn m ≤ r ≤ n
∀i ∈ {1, . . . ,m}.Ti 6 Ui ∀i ∈ {1, . . . , r}.Ui 6 Si

TT-Offer
Γ, xp : &〈l1 :T1, . . . , ln :Tm〉 T̀ xp . {l1 :P1, . . . , ln :Pn}

Γ, xp : Si T̀ P Ui 6 Si 1 ≤ i ≤ m ≤ n ∀i ∈ {1, . . . ,m}.Ti 6 Ui
TT-Choose

Γ, xp : ⊕〈l1 :T1, . . . , ln :Tn〉 T̀ (xp : ⊕〈l1 :U1, . . . , lm :Um〉) / li . P

Γ T̀ x 6 bool Γ T̀ P Γ T̀ Q
TT-Cond

Γ T̀ if x : bool then P else Q

Γ T̀ P Γ unlimited
TT-Rep

Γ T̀ !P

Figure 14: Tagged Typing Rules

Proof This splits into two cases: one where z = x and another where z 6= x.

case z = x
As Γ, x : T T̀ x 6 V , T 6 V . From Lemma 5, U 6 V . As U 6 V , Γ + y : U T̀ x{y/x} 6 V .

case z 6= x
As Γ, x : T T̀ z 6 V and z 6= x, Γ T̀ z 6 V . As Γ T̀ z 6 V and z 6= x, Γ+y : U T̀ z{y/x} 6 V .

�

Lemma 7 (No Substitution) If Γ T̀ P and x /∈ Γ then Γ T̀ P{y/x}
Proof As Γ T̀ P and x /∈ Γ, x /∈ fn(P ). As x /∈ fn(P ), P{y/x} = P and, therefore,
Γ T̀ P{y/x}.

�

Lemma 8 (Substitution) If Γ, x : T T̀ P and U 6 T then Γ + y : U T̀ P{y/x}

The proof of this lemma is in Appendix A.
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Lemma 9 (Structural Equivalence) If Γ T̀ P and P ≡ Q then Γ T̀ Q

This lemma is proved by structural induction on the derivation of P ≡ Q. It is essentially
the same as the proof of the structural equivalence lemma for our system without subtyping
[4], but with the additional type annotations introduced by the tag function.

Theorem 1 (Subject Reduction) If Γ T̀ P and P
α,l−→T P ′ where Γ is balanced with re-

spect to α (if α 6= τ), then Γ′
T̀ P ′ where

Γ′ = Γ if α = τ or if α is not a session channel

Γ′ = Γ′′, α+ : tail(S, l), α− : tail(S, l)

where Γ′′, α+ : S, α− : S = Γ if α is a session channel.

This theorem is proved by structural induction on the derivation of P
α,l−→T P ′. It is similar to

the proof of the same theorem for our system without subtyping. The proof of this theorem
is given in Appendix A.

Lemma 10 If Γ ` P is a derivable untagged typing judgement, then Γ T̀ tagΓP is a deriv-
able tagged typing judgement.

Proof A straightforward induction on the derivation of Γ ` P . �

Theorem 2 If Γ ` P is derivable and Γ T̀ E is derivable and P = Erase(E) and P −→∗ Q
then there exists ∆ T̀ F such that E −→∗ F and Q = Erase(F ).

Proof By breaking the sequence of reductions into individual steps, and showing that the
result holds for each step; the latter fact can be proved by induction on the derivation of the
reduction step. �

The Tagged Subject Reduction Theorem, Lemma 10 and Theorem 2 imply that any se-
quence of reductions from a well-typed untagged process can be mirrored by a sequence of
reductions from a well-typed tagged process. The final theorem establishes that well-typed
tagged processes do not contain any immediate possibilities for incorrect communication. It
follows easily from the tagged typing rules; most of the work in proving type soundness is
concentrated into the proof of the Tagged Subject Reduction Theorem. Each case of the
conclusion shows that whenever a tagged process appears to contain a potential reduction,
the preconditions for the relevant tagged reduction rule are satisfied and the reduction can
safely be carried out.

Theorem 3 (Run-Time Safety) If Γ T̀ P , P ≡ (νw̃ : W̃ )(Q | R), Q
α,l−→T Q′ and Γ is

19



balanced with respect to α (if α 6= τ), then

i)If Q ≡ x ? [ỹ : T̃ ] . Q1 | x ! [z] . Q2 where x is not a session channel, then

For all zi ∈ z̃, Γ T̀ zi : Ti or (νzi : Ti) ∈ (νw̃ : W̃ )

and

Γ T̀ x : ̂[T̃ ] or (νx : ̂[T̃ ]) ∈ (νw̃ : W̃ )

ii)If Q ≡ xp ? [ỹ : T̃ ] . Q1 | xq ! [z̃] . Q2 where x is a session channel, then

p = q

and

For all zi ∈ z̃, Γ T̀ zi : Ti or (νzi : Ti) ∈ (νw̃ : W̃ )

and

Γ T̀ xp : ?[T̃ ] . S, xq : ![T̃ ] . S or (νx± : ?[T̃ ] . S) ∈ (νw̃ : W̃ )

or (νx± : ![T̃ ] . S) ∈ (νw̃ : W̃ )

iii)If Q ≡ xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2, then

p = q

and

li ∈ {l1, . . . , ln}
and

Γ T̀ xp : &〈l1 :S1, . . . , ln :Sn〉, xq : ⊕〈l1 :S1, . . . , ln :Sn〉
or (νx± : &〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ )

or (νx± : ⊕〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ )

iv)If Q ≡ if x then Q1 else Q2, then

Γ T̀ x : bool or (νx : bool) ∈ (νw̃ : W̃ )

If we take a well-typed untagged process and convert it into a tagged process, no reduction
sequence can lead to a type error. Because every reduction sequence from a well-typed
untagged process can be matched by a reduction sequence from a well-typed tagged process,
we conclude that no type errors can result from executing a well-typed untagged process.
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5 The POP3 Protocol

As a more substantial example, we will now use our type system to specify the POP3 protocol
[16]. This protocol is typically used by electronic mail software to download new messages
from a remote mailbox, so that they can be read and processed locally; it does not deal
with sending messages or routing messages through a network. A POP3 server requires a
client to authenticate itself by means of the user and pass commands. A client may then
use commands such as stat to obtain the status of the mailbox, retr to retrieve a particular
message, and quit to terminate the session. Some of these commands require additional
information to be sent, for example the number of a message. We have omitted several
POP3 commands from our description, but it is straightforward to fill in the missing ones.

To specify the behaviour of a channel which can be used for a POP3 session, we use the
type definitions in Figure 15: A describes interactions with the authentication state, and T
describes interactions with the transaction state. These definitions are for the server side
of the channel, and we assume that there is a ground type str of strings. These definitions
illustrate the complex structure possible for session types, and show the use of recursive
types to describe repetitive session behaviour. The server both offers and makes choices, in
contrast to the example in Section 1. After receiving a command (a label) from the client,
the server can respond with either ok or error (except for the quit command, which always
succeeds and does not allow an error response). The client implements an interaction of type
A, and therefore must offer a choice between ok and error when waiting for a response to a
command. In the published description of the protocol, ok and error responses are simply
strings prefixed with +OK or -ERR. This does not allow us to replace the corresponding ⊕
by ![str] in the above definitions because the different continuation types after ok and error
are essential for an accurate description of the protocol’s behaviour. We specify a string
message as well, because a POP3 server is allowed to provide extra information such as an
error code.

As in Section 1 we could implement a process POP3body such that x+ : A ` POP3body.
Defining POP3 = port?[x+ : A] .POP3body gives port : ̂[A] ` POP3, which can be published
as the specification of the server and its protocol.

The POP3 protocol permits an alternative authentication scheme, accessed by the apop
command, in which the client sends a mailbox name and an authenticating string simulta-
neously. This option does not have to be provided, but a server which does implement it
requires a channel of type B, where B is obtained from A by adding a third option to the

A = µX.&〈 quit :⊕〈ok : ![str] . end〉,
user : ?[str] .⊕〈 error : ![str] . X,

ok : ![str] . &〈 quit :⊕〈ok : ![str] . end〉,
pass : ?[str] .⊕〈 error : ![str] . X,

ok : ![str] . T 〉〉〉〉
T = µX.&〈 stat :⊕〈ok : ![int, int] . X〉,

retr : ?[int] .⊕〈 ok : ![str] . ![str] . X,
error : ![str] . X〉,

quit :⊕〈ok : ![str] . end〉〉

Figure 15: Types for the POP3 protocol
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first choice:
apop : ?[str, str] .⊕〈error : ![str] . X, ok : ![str] . T 〉

A server which implements the apop command can be typed as follows: port : ̂[B] `
newPOP3. Now suppose that client is a POP3 client which does not know about the apop
command. As before, we have client = (νx± : A)port ! [x+] . clientbody where x− : A `
clientbody. This gives port : ̂[A] ` client. The following derivation shows that client can also
be typed in the environment port : ̂[B], and can therefore be put in parallel with newPOP3.
The key fact is that A 6 B, because the top-level options provided by A are a subset of
those provided by B.

x− : A ` clientbody ̂[B] 6 ![A]
T-Out

port : ̂[B], x+ : A, x− : A ` port ! [x+] . clientbody
T-New

port : ̂[B1] ` (νx± : A)port ! [x+] . clientbody
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6 Conclusions

We have defined a language whose type system incorporates session types, as suggested
by Honda et al. [8, 25], and subtyping, based on Pierce and Sangiorgi’s work [18, 19] and
extended to session types. Session channels must be controlled linearly in order to guarantee
that messages go to the correct destinations, and we have adapted the work of Kobayashi
et al. [12, 13] for this purpose. Our language differs minimally from the π-calculus, the
only additions being primitives for offering and making labelled choices. Unlike Honda et
al. we do not introduce special syntax for establishing and manipulating session channels;
everything is taken care of by the typing rules. We have advocated using a session type as
part of the published specification of a server’s protocol, so that static type-checking can
be used to verify that client implementations behave correctly. Using the POP3 protocol as
an example, we have shown that subtyping increases the utility of this idea: if upgrading a
server causes its protocol to have a session type which is a supertype of its original session
type, then existing client implementations are still type-correct with respect to the new
server.

Session types have some similarities to the types for active objects studied by Nierstrasz
[17] and Puntigam [22, 23]. Both incorporate the idea of a type which specifies a sequence
of interactions. The main difference seems to be that in the case of active objects, types
can specify interdependencies between interactions on different channels. However, the un-
derlying framework (concurrent objects with method invocation, instead of channel-based
communication between processes) is rather different, and we have not yet made a detailed
comparison of the two systems.
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A Subject Reduction Theorem

It is common in the following proofs that it is necessary to deconstruct a process or typing
derivation using a certain set of rules, perform some operation (such as applying the induction
hypothesis), and reconstruct what we need using the same set of rules. As the rules are used
in reverse during the deconstruction stage, we write the rule applications upside down in
order to improve the clarity of the proofs.

A.1 Proof of Lemma 5 [Subtype Transitivity]

If W 6 U and U 6 T then W 6 T

Proof By structural induction on the derivations of W 6 U and U 6 T . Two cases are
given here as an outline of how the proof works.

AS-InOut/AS-Out
The subtypes are: ̂[T̃ ] 6 ̂[Ũ ] and ̂[Ũ ] 6 ![Ṽ ]

We have :
Σ ` ̂[T̃ ] 6 ̂[Ũ ] Σ ` ̂[Ũ ] 6 ![Ṽ ]

We need :
Σ ` ̂[T̃ ] 6 ![Ṽ ]

Σ ` ̂[T̃ ] 6 ̂[Ũ ]
AS-InOut

∀i ∈ {1, . . . , n}.(Σ ` Ti 6 Ui and Σ ` Ui 6 Ti)

Σ ` ̂[Ũ ] 6 ![Ṽ ]
AS-Out

∀i ∈ {1, . . . , n}.Σ ` Vi 6 Ui

By the induction hypothesis, ∀i ∈ {1, . . . , n}.Σ ` Vi 6 Ti

∀i ∈ {1, . . . , n}.Σ ` Vi 6 Ti
AS-Out

Σ ` ̂[T̃ ] 6 ![Ṽ ]

So, we have :
Σ ` ̂[T̃ ] 6 ![Ṽ ]

which is what we need.

AS-Branch
The subtypes are:

&〈l1 :S1, . . . , ll :Sl〉 6 &〈l1 :S1
′, . . . , lm :Sm

′〉
and

&〈l1 :S1
′, . . . , lm :Sm

′〉 6 &〈l1 :S1
′′, . . . , ln :Sn

′′〉
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We have :
Σ ` &〈l1 :S1, . . . , ll :Sl〉 6 &〈l1 :S1

′, . . . , lm :Sm
′〉

Σ ` &〈l1 :S1
′, . . . , lm :Sm

′〉 6 &〈l1 :S1
′′, . . . , ln :Sn

′′〉
We need :

Σ ` &〈l1 :S1, . . . , ll :Sl〉 6 &〈l1 :S1
′′, . . . , ln :Sn

′′〉

Σ ` &〈l1 :S1, . . . , ll :Sl〉 6 &〈l1 :S1
′, . . . , lm :Sm

′〉
AS-Branch

l ≤ m ∀i ∈ {1, . . . , l}.Σ ` Si 6 Si
′

Σ ` &〈l1 :S1
′, . . . , lm :Sm

′〉 6 &〈l1 :S1
′′, . . . , ln :Sn

′′〉
AS-Branch

m ≤ n ∀i ∈ {1, . . . ,m}.Σ ` Si
′ 6 Si

′′

By the induction hypothesis, ∀i ∈ {1, . . . , l}.Σ ` Si 6 Si
′′

l ≤ n ∀i ∈ {1, . . . , l}.Σ ` Si 6 Si
′′

AS-Branch
Σ ` &〈l1 :S1, . . . , ll :Sl〉 6 &〈l1 :S1

′′, . . . , ln :Sn
′′〉

So, we have :
Σ ` &〈l1 :S1, . . . , ll :Sl〉 6 &〈l1 :S1

′′, . . . , ln :Sn
′′〉

which is what we need.
�

A.2 Proof of Lemma 8 [Substitution]

If Γ, x : T ` P and U 6 T then Γ + y : U ` P{y/x}

Proof By structural induction on the derivation of Γ, x : T ` P

TT-Nil
The substitution is :

0{y/x}

We have :
Γ, x : T ` 0 U 6 T

We need :
Γ + y : U ` 0

Γ, x : T ` 0
TT-Nil

Γ, x : T completed

We know (Lemma 2 [Completion]) : Γ + y : U completed

Γ + y : U completed
TT-Nil

Γ + y : U ` 0

So, we have :
Γ + y : U ` 0

which is what we need.
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TT-Par
The substitution is :

(P |Q){y/x}
We have :

Γ, x : T ` P |Q U 6 T

We need :
Γ + y : U ` (P |Q){y/x}

Case 1 : x is free in P, x is not free in Q
Γ, x : T ` P |Q

TT-Par
Γ1, x : T ` P Γ2 ` Q

where Γ1, x : T + Γ2 = Γ, x : T

Γ1, x : T ` P and U 6 T , so, by the induction hypothesis, Γ1 + y : U ` P{y/x}.
1.1 : x /∈ Γ2

Γ1 + y : U ` P{y/x} Γ2 ` Q
TT-Par

Γ1 + y : U + Γ2 ` P{y/x} |Q
As x /∈ Γ2, we know Γ1 + Γ2 = Γ.

x is not free in Q, so P{y/x} |Q ≡ (P |Q){y/x}.
So, we have :

Γ + y : U ` (P |Q){y/x}
which is what we need.

1.2 : x ∈ Γ2

Let Γ2 = Γ3, x : T . We know T is not a session type and that Γ1 + Γ3 = Γ.

As Γ3, x : T ` Q and x is not free in Q, we know Γ3 ` Q.

Γ1 + y : U ` P{y/x} Γ3 ` Q

Γ1 + y : U + Γ3 ` P{y/x} |Q
We know Γ1 + Γ3 = Γ, and x is not free in Q, so P{y/x} |Q ≡ (P |Q){y/x}.

So, we have :
Γ + y : U ` (P |Q){y/x}

which is what we need.

Case 2 : x is not free in P, x is free in Q
This case is the opposite of case one and is proved in the same way. Case 3 : x is free
in P, x is free in Q

Γ, x : T ` P |Q
TT-Par

Γ1, x : T ` P Γ2, x : T ` Q

where Γ1 + Γ2 = Γ and T is not a session type

By the induction hypothesis, Γ1 + y : U ` P{y/x}
By the induction hypothesis, Γ2 + y : U ` Q{y/x}
Γ1 + y : U ` P{y/x} Γ2 + y : U ` Q{y/x}

TT-Par
Γ1 + y : U + Γ2 + y : U ` (P |Q){y/x}

We know (Lemma 1 [Non-Session Subtypes]) : U is not a session type.

From the definition of + :Γ1 + y : U + Γ2 + y : U = Γ + y : U
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So, we have :
Γ + y : U ` (P |Q){y/x}

which is what we need.

TT-New
The substitution is :

((νz : Z)P ){y/x}
We have :

Γ, x : T ` (νz : Z)P U 6 T

We need :
Γ + y : T ` ((νz : Z)P ){y/x}

Γ, x : T ` (νz : Z)P
TT-New

Γ, x : T, z : Z ` P

By the induction hypothesis, (Γ, z : Z) + y : U ` P{y/x}.
We know (Lemma 4 [Type Addition]) : (Γ, z : Z) + y : U = (Γ + y : U), z : Z

(Γ + y : U), z : Z ` P{y/x}
TT-New

Γ + y : U ` (νz : Z)(P{y/x})

So, we have :
Γ + y : U ` ((νz : Z)P ){y/x}

which is what we need.

TT-NewSeq
The substitution is :

((νz± : Z)P ){y/x}
We have :

Γ, x : T ` (νz± : Z)P U 6 T

We need :
Γ + y : U ` ((νz± : Z)P ){y/x}

Γ, x : T ` (νz± : Z)P
TT-NewSeq

Γ, x : T, z+ : Z, z− : Z ` P

By the induction hypothesis, (Γ, z+ : Z, z− : Z) + y : U ` P{y/x}.
We know (Lemma 4 [Type Addition]) :

(Γ, z+ : Z, z− : Z) + y : U = (Γ + y : U), z+ : Z, z− : Z

(Γ + y : U), z+ : Z, z− : Z ` P{y/x}

Γ + y : U ` (νz± : Z)(P{y/x})

So, we have :
Γ + y : U ` ((νz± : Z)P ){y/x}

which is what we need.
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TT-Rep
The substitution is :

!P{y/x}

We have :
Γ, x : T `!P U 6 T

We need :
Γ + y : U `!P{y/x}

Γ, x : T `!P
TT-Rep

Γ, x : T ` P Γ, x : T unlimited

By the induction hypothesis, Γ + y : U ` P{y/x}.
We know (Lemma 3 [Unlimitedness]) : Γ + y : U unlimited

Γ + y : U ` P{y/x} Γ + y : U unlimited
TT-Rep

Γ + y : U `!P{y/x}

So, we have :
Γ + y : U `!P{y/x}

which is what we need.

TT-Cond
The substitution is :

(if z : bool then P else Q){y/x}

We have :
Γ, x : T ` if z : bool then P else Q U 6 T

We need :
Γ + y : U ` if z{y/x} : bool then P{y/x} else Q{y/x}

Γ, x : T ` if z : bool then P else Q
TT-Cond

Γ, x : T ` z 6 bool Γ, x : T ` P Γ, x : T ` Q

By the induction hypothesis, Γ + y : U ` P{y/x} and Γ + y : U ` Q{y/x}.
We know (Lemma 6 [Substitution Typing]) : Γ + y : U ` z{y/x} 6 bool.

Γ + y : U ` z{y/x} : bool Γ + y : U ` P{y/x} Γ + y : U ` Q{y/x}
TT-Cond

Γ + y : U ` if z{y/x} : bool then P{y/x} else Q{y/x}

So, we have :
Γ + y : U ` if z{y/x} then P{y/x} else Q{y/x}

which is what we need.
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TT-Out
The substitution is :

((u : V ) ! [ṽ : W̃ ] . P ){y/x}
Case 1 : x /∈ ṽ, x 6= u
We have :

Γ, x : T ` (u : V ) ! [ṽ : W̃ ] . P U 6 T

We need :
Γ + y : U ` (u : V ) ! [ṽ : W̃ ] . P{y/x}

Let Γ, x : T = (Γ′, x : T ) + ṽ : X̃ where Γ′ + ṽ : X̃ = Γ

(Γ′, x : T ) + ṽ : X̃ ` (u : V ) ! [ṽ : W̃ ] . P
TT-Out

Γ′, x : T ` P Γ′, x : T ` u 6 V 6 ![W̃ ] X̃ 6 W̃

By the induction hypothesis, Γ′ + y : U ` P{y/x}.
We know (Lemma 6 [Substitution Typing]) : Γ′ + y : U ` u 6 V 6 ![W̃ ].

Γ′ + y : U ` P{y/x} Γ′ + y : U ` u 6 V 6 ![W̃ ] X̃ 6 W̃
TT-Out

Γ′ + y : U + ṽ : X̃ ` (u : V ) ! [ṽ : W̃ ] . P{y/x}
But, Γ′ + ṽ : X̃ = Γ.

So, we have :
Γ + y : U ` (u : V ) ! [ṽ : W̃ ] . P{y/x}

which is what we need.
Case 2 : x /∈ ṽ, x = u
We have :

Γ, x : T ` (x : V ) ! [ṽ : W̃ ] . P U 6 T

We need :
Γ + y : U ` (y : V ) ! [ṽ : W̃ ] . P{y/x}

Let Γ, x : T = (Γ′, x : T ) + ṽ : X̃ where Γ′ + ṽ : X̃ = Γ

(Γ′, x : T ) + ṽ : X̃ ` (x : V ) ! [ṽ : W̃ ] . P
TT-Out

Γ′, x : T ` P Γ′, x : T ` x 6 V 6 ![W̃ ] X̃ 6 W̃

By the induction hypothesis, Γ′ + y : U ` P{y/x}.
We know (Lemma 6 [Substitution Typing]) : Γ′ + y : U ` y 6 V 6 ![W̃ ].

Γ′ + y : U ` P{y/x} Γ′ + y : U ` y 6 V 6 ![W̃ ] X̃ 6 W̃
TT-Out

Γ′ + y : U + ṽ : X̃ ` (y : V ) ! [ṽ : W̃ ] . P{y/x}
But, Γ′ + ṽ : X̃ = Γ.

So, we have :
Γ + y : U ` (y : V ) ! [ṽ : W̃ ] . P{y/x}

which is what we need.
Case 3 : x ∈ ṽ, say x = v1, x 6= u
We have :

Γ, x : T ` (u : V ) ! [x : W1, v2 : W2, . . . , vn : Wn] . P U 6 T
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We need :

Γ + y : U ` (u : V ) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

Let Γ, x : T = Γ′ + (x : X1, v2 : X2, . . . , vn : Xn) where T 6 X1.

Case 3.1 : x ∈ Γ′

Let Γ′ = Γ′′, x : T where Γ′′ + (v2 : X2, . . . , vn : Xn) = Γ.

(Γ′′, x : T ) + (x : X1, v2 : X2, . . . , vn : Xn) `
(u : V ) ! [x : W1, v2 : W2, . . . , vn : Wn] . P

TT-Out
Γ′′, x : T ` P Γ′′, x : T ` u 6 V 6 ![W̃ ] X̃ 6 W̃

By the induction hypothesis, Γ′′ + y : U ` P{y/x}.
We know (Lemma 6 [Substitution Typing]) : Γ′′ + y : U ` u 6 V 6 !W̃ .

Γ′′ + y : U ` P{y/x} Γ′′ + y : U ` u 6 V 6 ![W̃ ] X̃ 6 W̃
TT-Out

Γ′′ + y : U + (y : X1, v2 : X2, . . . , vn : Xn) `
(u : V ) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

But, Γ′′ + (v2 : X2, . . . , vn : Xn) = Γ and U 6 X1.

So, we have :

Γ + y : U ` (u : V ) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

which is what we need.

Case 3.2 : x /∈ Γ′

Γ′ + (x : X1, v2 : X2, . . . , vn : Xn) `
(u : V ) ! [x : W1, v2 : W2, . . . , vn : Wn] . P

TT-Out
Γ′ ` P Γ′ ` u 6 V 6 ![W̃ ] X̃ 6 W̃

We know (Lemma 7 [No Substitution]) : Γ′ ` P{y/x}
As x /∈ Γ′, we know Γ′ + (v2 : X2, . . . , vn : Xn) = Γ and T = X1.

We know (Lemma 5 [Subtype Transitivity]) : U,X2, . . . , Xn 6 W̃ .

Γ′ ` P{y/x} Γ′ ` u 6 V 6 ![W̃ ] [U,X2, . . . , Xn] 6 W̃
TT-Out

Γ′ + (y : U, v2 : X2, . . . , vn : Xn) `
(u : V ) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

But, Γ′ + (v2 : X2, . . . , vn : Xn) = Γ.

So, we have :

Γ + y : U ` (u : V ) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

which is what we need.
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Case 4 : x ∈ ṽ, say x = v1, x = u
We have :

Γ, x : T ` (x : V ) ! [x : W1, v2 : W2, . . . , vn : Wn] . P U 6 T

We need :

Γ + y : U ` (y : V ) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

Let Γ, x : T = (Γ′, x : T ) + (x : X1, v2 : X2, . . . , vn : Xn)

where Γ = Γ′ + (v2 : X2, . . . , vn : Xn)

and T 6 X1.

(Γ′, x : T ) + (x : X1, v2 : X2, . . . , vn : Xn) `
(x : V ) ! [x : W1, v2 : W2, . . . , vn : Wn] . P

TT-Out
Γ′, x : T ` P Γ′, x : T ` x 6 V 6 ![W̃ ] X̃ 6 W̃

By the induction hypothesis, Γ′ + y : U ` P{y/x}.
We know (Lemma 6 [Substitution Typing]) : Γ′ + y : U ` y 6 V 6 ![W̃ ]

Γ′ + y : U ` P{y/x} Γ′ + y : U ` y 6 V 6 ![W̃ ] X̃ 6 W̃
TT-Out

(Γ′ + y : U) + (y : X1, v2 : X2, . . . , vn : Xn) `
(y : V ) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

But, Γ = Γ′ + (v2 : X2, . . . , vn : Xn) and U 6 T 6 X1.

So, we have :

Γ + y : U ` (y : V ) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

which is what we need.

TT-In
The substitution is :

((u : V ) ? [ṽ : Ṽ ] . P ){y/x}

Case 1 : x 6= u
We have :

Γ, x : T ` (u : V ) ? [ṽ : W̃ ] . P U 6 T

We need :
Γ + y : U ` (u : V ) ? [ṽ : W̃ ] . P{y/x}

Γ, x : T ` (u : V ) ? [ṽ : W̃ ] . P
TT-In

Γ, x : T, ṽ : W̃ ` P Γ, x : T ` u 6 V 6 ?[W̃ ]

By the induction hypothesis, (Γ, ṽ : W̃ ) + y : U ` P{y/x}.
We know (Lemma 4 [Type Addition]) : (Γ + y : U), ṽ : W̃ ` P{y/x}.
We know (Lemma 6 [Substitution Typing]) : Γ + y : U ` u 6 V 6 ?[W̃ ].

(Γ + y : U), ṽ : W̃ ` P{y/x} Γ + y : U ` u 6 V 6 ?[W̃ ]
TT-In

Γ + y : U ` (u : V ) ? [ṽ : W̃ ] . P{y/x}
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So, we have :
Γ + y : U ` (u : V ) ? [ṽ : W̃ ] . P{y/x}

which is what we need.

Case 2 : x = u
We have :

Γ, x : T ` (x : V ) ? [ṽ : W̃ ] . P U 6 T

We need :
Γ + y : U ` (y : V ) ? [ṽ : W̃ ] . P{y/x}

Γ, x : T ` (x : V ) ? [ṽ : W̃ ] . P
TT-In

Γ, x : T, ṽ : W̃ ` P Γ, x : T ` x 6 V 6 ?[W̃ ]

By the induction hypothesis, (Γ, ṽ : W̃ ) + y : U ` P{y/x}.
We know (Lemma 4 [Type Addition]) : (Γ + y : U), ṽ : W̃ ` P{y/x}.
We know (Lemma 6 [Substitution Typing]) : Γ + y : U ` y 6 V 6 ?[W̃ ].

(Γ + y : U), ṽ : W̃ ` P{y/x} Γ + y : U ` y 6 V 6 ?[W̃ ]
TT-In

Γ + y : U ` (y : V ) ? [ṽ : W̃ ] . P{y/x}

So, we have :
Γ + y : U ` (y : V ) ? [ṽ : W̃ ] . P{y/x}

which is what we need.

TT-OutSeq
The substitution is :

((up : ![Z̃] . S ′) ! [ṽ : W̃ ] . P ){y/x}

Note that for the TT-OutSeq case, u /∈ ṽ. This is because the typing rules do not
allow a session channel to be sent on itself.
Case 1 : x /∈ ṽ, x 6= u
We have :

((Γ, up : ![Ỹ ] . S) + ṽ : X̃), x : T ` (up : ![Z̃] . S ′) ! [ṽ : W̃ ] . P U 6 T

We need :

((Γ, up : ![Ỹ ] . S) + ṽ : X̃) + y : U ` (up : ![Z̃] . S ′) ! [ṽ : W̃ ] . P{y/x}
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We know (Lemma 4 [Type Addition]):

((Γ, up : ![Ỹ ] . S), x : T ) + ṽ : X̃ ` (up : ![Z̃] . S ′) ! [ṽ : W̃ ] . P

((Γ, up : ![Ỹ ] . S), x : T ) + ṽ : X̃ ` (up : ![Z̃] . S ′) ! [ṽ : W̃ ] . P
TT-OutSeq

Γ, up : S, x : T ` P S 6 S ′ X̃ 6 W̃ 6 Z̃ 6 Ỹ

By the induction hypothesis, (Γ, up : S) + y : U ` P{y/x}.
We know (Lemma 4 [Type Addition]) :

(Γ + y : U), up : S ` P{y/x}.
(Γ + y : U), up : S ` P{y/x} S 6 S ′ X̃ 6 W̃ 6 Z̃ 6 Ỹ

TT-OutSeq
((Γ + y : U), up : ![Ỹ ] . S) + ṽ : X̃ ` (up : ![Z̃] . S ′) ! [ṽ : W̃ ] . P{y/x}
We know (Lemma 4 [Type Addition]) :

((Γ + y : U), up : ![Ỹ ] . S) + ṽ : X̃ = ((Γ, up : ![Ỹ ] . S) + ṽ : X̃), y : U.

So, we have :

((Γ, up : ![Ỹ ] . S) + ṽ : X̃) + y : U ` (up : ![Z̃] . S ′) ! [ṽ : W̃ ] . P{y/x}

which is what we need. Case 2 : x /∈ ṽ, xp = u
We have :

(Γ + ṽ : X̃), xp : ![Ỹ ] . S ` (xp : ![Z̃] . S ′) ! [ṽ : W̃ ] . P ![Ũ ] . S ′′ 6 ![Ỹ ] . S

We need :

Γ + ṽ : X̃ + yq : ![Ũ ] . S ′′ ` (yq : ![Z̃] . S ′) ! [ṽ : W̃ ] . P{yq/xp}

We know (Lemma 4 [Type Addition]):

(Γ, xp : ![Ỹ ] . S) + ṽ : X̃ ` (xp : ![Z̃] . S ′) ! [ṽ : W̃ ] . P

(Γ, xp : ![Ỹ ] . S) + ṽ : X̃ ` (xp : ![Z̃] . S ′) ! [ṽ : W̃ ] . P
TT-OutSeq

Γ, xp : S ` P S 6 S ′ X̃ 6 W̃ 6 Z̃ 6 Ỹ

![Ũ ] . S ′′ 6 ![Ỹ ] . S
AS-OutSeq

S ′′ 6 S Ỹ 6 Ũ

By the induction hypothesis, Γ + yq : S ′′ ` P{yq/xp}.
We know from the definition of + :

Γ, yq : S ′′ ` P{yq/xp}.
Γ, yq : S ′′ ` P{yq/xp} S ′′ 6 S ′ X̃ 6 W̃ 6 Z̃ 6 Ũ

TT-OutSeq
(Γ, yq : ![Ũ ] . S ′′) + ṽ : X̃ ` (yq : ![Z̃] . S ′) ! [ṽ : W̃ ] . P{yq/xp}
We know from the definition of + : (Γ, yq : ![Ũ ] . S ′′) + ṽ : X̃ = Γ + ṽ : X̃ + yq : ![Ũ ] . S ′′.

So, we have :

Γ + ṽ : X̃ + yq : ![Ũ ] . S ′′ ` (yq : ![Z̃] . S ′) ! [ṽ : W̃ ] . P{yq/xp}
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which is what we need. Case 3 : x ∈ ṽ (say x = v1), x 6= u
We have :

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)), x : T `
(up : ![Z̃] . S ′) ! [x : W1, v2 : W2, . . . , vn : Wn] . P

and U 6 T .

We need :

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)) + y : U

` (up : ![Z̃] . S ′) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}
Case 3.1 : x /∈ Γ

We know from the definition of + :

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)) + x : T `
(up : ![Z̃] . S ′) ! [x : W1, v2 : W2, . . . , vn : Wn] . P.

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)) + x : T `
(up : ![Z̃] . S ′) ! [x : W1, v2 : W2, . . . , vn : Wn] . P

TT-OutSeq
Γ, up : S ` P S 6 S ′ [T,X1, . . . , Xn] 6 W̃ 6 Z̃ 6 Ỹ

We know (Lemma 7 [No Substitution]) : Γ, up : S ` P{y/x}.
We know (Lemma 5 [Subtype Transitivity]) : [U,X2, . . . , Xn] 6 W̃ 6 Z̃ 6 Ỹ .

Γ, up : S ` P{y/x} S 6 S ′ [U,X2, . . . , Xn] 6 W̃ 6 Z̃ 6 Ỹ
TT-OutSeq

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)) + y : U `
(up : ![Z̃] . S ′) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

So, we have :

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)) + y : U `
(up : ![Z̃] . S ′) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

which is what we need.
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Case 3.2 : x ∈ Γ

Let ((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)), x : T =

(Γ, x : T ′, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn) + x : X1 where T ′ + X1 = T .

Case 3.2.1 : T ′ 6 X1, T = T ′

(Γ, x : T, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn) + x : X1 `
(up : ![Z̃] . S ′) ! [x : W1, v2 : W2, . . . , vn : Wn] . P

TT-OutSeq
Γ, x : T, up : S S 6 S ′ X̃ 6 W̃ 6 Z̃ 6 Ỹ

By the induction hypothesis, (Γ, up : S) + y : U ` P{y/x}.
We know (Lemma 4 [Type Addition]) : (Γ + y : U), up : S ` P{y/x}.
We know (Lemma 5 [Subtype Transitivity]) : [U,X2, . . . , Xn] 6 W̃ 6 Z̃ 6 Ỹ .

(Γ + y : U), up : S ` P{y/x} S 6 S ′ [U,X2, . . . , Xn] 6 W̃ 6 Z̃ 6 Ỹ
TT-OutSeq

((Γ + y : U), up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn) `
(up : ![Z̃] . S ′) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

We know (Lemma 4 [Type Addition])

((Γ + y : U), up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn) =

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)) + y : U.

So, we have :

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)) + y : U `
(up : ![Z̃] . S ′) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

which is what we need.

Case 3.2.2 : X1 6 T ′, T = X1

(Γ, x : T ′, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn) + x : T `
(up : ![Z̃] . S ′) ! [x : W1, v2 : W2, . . . , vn : Wn] . P

TT-OutSeq
Γ, x : T ′, up : S S 6 S ′ [T, X1, . . . , Xn] 6 W̃ 6 Z̃ 6 Ỹ

By the induction hypothesis, (Γ, up : S) + y : U ` P{y/x}.
We know (Lemma 4 [Type Addition]) : (Γ + y : U), up : S ` P{y/x}.
We know (Lemma 5 [Subtype Transitivity]) : [U,X2, . . . , Xn] 6 W̃ 6 Z̃ 6 Ỹ .

(Γ + y : U), up : S ` P{y/x} S 6 S ′ [U,X2, . . . , Xn] 6 W̃ 6 Z̃ 6 Ỹ
TT-OutSeq

((Γ + y : U), up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn) `
(up : ![Z̃] . S ′) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

We know (Lemma 4 [Type Addition]):

((Γ + y : U), up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn) =

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)) + y : U.
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So, we have :

((Γ, up : ![Ỹ ] . S) + (v2 : X2, . . . , vn : Xn)) + y : U `
(up : ![Z̃] . S ′) ! [y : W1, v2 : W2, . . . , vn : Wn] . P{y/x}

which is what we need.

TT-InSeq
The substitution is :

((up : ?[Ṽ ] . S) ? [ṽ : W̃ ] . P ){y/x}

Case 1: x 6= u
We have :

Γ, up : ?[X̃] . S, x : T ` (up : ?[Ṽ ] . S) ? [ṽ : W̃ ] . P U 6 T

We need :

(Γ, up : ?[X̃] . S) + y : U ` (up : ?[Ṽ ] . S) ? [ṽ : W̃ ] . P{y/x}

Γ, up : ?[X̃] . S, x : T ` (up : ?[Ṽ ] . S) ? [ṽ : W̃ ] . P
TT-InSeq

Γ, up : S, ṽ : W̃ , x : T ` P S 6 S ′ X̃ 6 Ṽ 6 W̃

By the induction hypothesis, (Γ, up : S, ṽ : W̃ ) + y : U ` P{y/x}.
We know (Lemma 4 [Type Addition]) : (Γ + y : U), up : S, ṽ : W̃ ` P{y/x}.
(Γ + y : U), up : S, ṽ : W̃ ` P{y/x} S 6 S ′ X̃ 6 Ṽ 6 W̃

TT-InSeq
(Γ + y : U), up : ?[X̃] . S ` (up : ?[Ṽ ] . S) ? [ṽ : W̃ ] . P{y/x}

We know (Lemma 4 [Type Addition]):

(Γ + y : U), up : ?[X̃] . S = (Γ, up : ?[X̃] . S) + y : U.

So, we have :

(Γ, up : ?[X̃] . S) + y : U ` (up : ?[Ṽ ] . S) ? [ṽ : W̃ ] . P{y/x}

which is what we need.
Case 2 : x = u
We have :

Γ, xp : ?[X̃] . S ` (xp : ?[Ṽ ] . S ′) ? [ṽ : W̃ ] . P ?[Ỹ ] . S ′′ 6 ?[X̃] . S

We need :
Γ + yq : ?[Ỹ ] . S ′′ ` (yq : ?[Ṽ ] . S ′) ? [ṽ : W̃ ] . P{yq/xp}
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Γ, xp : ?[X̃] . S ` (xp : ?[Ṽ ] . S ′) ? [ṽ : W̃ ] . P
TT-InSeq

Γ, ṽ : W̃ , xp : S ` P S 6 S ′ X̃ 6 Ṽ 6 W̃

?[Ỹ ] . S ′′ 6 ?[X̃] . S
AS-InSeq

S ′′ 6 S Ỹ 6 X̃

By the induction hypothesis, (Γ, ṽ : W̃ ) + yq : S ′′ ` P{yq/xp}.
We know from the definition of + : Γ, ṽ : W̃ , yq : S ′′ ` P{yq/xp}.
We know (Lemma 5 [Subtype Transitivity]) : Ỹ 6 Ṽ 6 W̃ .

Γ, yq : S ′′, ṽ : W̃ ` P{yq/xp} S ′′ 6 S Ỹ 6 Ṽ 6 W̃
TT-InSeq

Γ, yq : ?[Ỹ ] . S ′′ ` (yq : ?[Ṽ ] . S ′) ? [ṽ : W̃ ] . P{yq/xp}
We know from the definition of + : Γ, yq : ?[Ỹ ] . S ′′ = Γ + yq : ?[Ỹ ] . S ′′.

So, we have :

Γ + yq : ?[Ỹ ] . S ′′ ` (yq : ?[Ṽ ] . S ′) ? [ṽ : W̃ ] . P{yq/xp}

which is what we need.

TT-Offer
The substitution is :

((up : &〈l1 : S1, . . . , ln : Sn〉) . {l1 :P1, . . . , ln :Pm}){y/x}

Case 1 : x 6= u
We have :

Γ, up : &〈l1 :S1, . . . , ll :Sl〉, x : T `
(up : &〈l1 : S ′

1, . . . , ln : S ′
n〉) . {l1 :P1, . . . , ln :Pm}

and U 6 T . We need :

(Γ, up : &〈l1 :S1, . . . , ll :Sl〉) + y : U `
(up : &〈l1 : S ′

1, . . . , ln : S ′
n〉) . {l1 :P1{y/x}, . . . , ln :Pm{y/x}}
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Γ, up : &〈l1 :S1, . . . , ll :Sl〉, x : T `
(up : &〈l1 : S ′

1, . . . , ln : S ′
n〉) . {l1 :P1, . . . , ln :Pm}

TT-Offer
∀i1,...,m(Γ, up : S ′′

i , x : T ` Pi) l ≤ n ≤ m ∀i1,...,lSi 6 S ′
i ∀i1,...,nS

′
i 6 S ′′

i

By the induction hypothesis, ∀i1,...,m(Γ, up : S ′′
i ) + y : U ` Pi{y/x}.

We know (Lemma 4 [Type Addition]) : ∀i1,...,m(Γ + y : U), up : S ′′
i ` Pi{y/x}.

∀i1,...,m((Γ + y : U), up : S ′′
i `

Pi{y/x}) l ≤ n ≤ m ∀i1,...,lSi 6 S ′
i ∀i1,...,nS

′
i 6 S ′′

i

TT-Offer
(Γ + y : U), up : &〈l1 :S1, . . . , ll :Sl〉 `

(up : &〈l1 : S ′
1, . . . , ln : S ′

n〉) . {l1 :P1{y/x}, . . . , ln :Pm{y/x}}
We know (Lemma 4 [Type Addition]):

(Γ + y : U), up : &〈l1 :S1, . . . , ll :Sl〉 = (Γ, up : &〈l1 :S1, . . . , ll :Sl〉) + y : U.

So, we have :

(Γ, up : &〈l1 :S1, . . . , ll :Sl〉) + y : U `
(up : &〈l1 : S ′

1, . . . , ln : S ′
n〉) . {l1 :P1{y/x}, . . . , ln :Pm{y/x}}

which is what we need.

Case 2 : x = u
We have :

Γ, xp : &〈l1 :S1, . . . , ll :Sl〉 ` (xp : &〈l1 : S ′
1, . . . , ln : S ′

n〉) . {l1 :P1, . . . , ln :Pm}
&〈l1 :S ′′′

1 , . . . , lk :S ′′′
k 〉 6 &〈l1 :S1, . . . , ll :Sl〉

We need :

Γ + yq : &〈l1 :S ′′′
1 , . . . , lk :S ′′′

k 〉 `
(yp : &〈l1 : S ′

1, . . . , ln : S ′
n〉) . {l1 :P1{y/x}, . . . , ln :Pm{y/x}}

Γ, xp : &〈l1 :S1, . . . , ll :Sl〉 `
(xp : &〈l1 : S ′

1, . . . , ln : S ′
n〉) . {l1 :P1, . . . , lm :Pm}

TT-Offer
∀i1,...,m(Γ, xp : S ′′

i ` Pi) l ≤ n ≤ m ∀i1,...,lSi 6 S ′
i ∀i1,...,nS

′
i 6 S ′′

i

&〈l1 :S ′′′
1 , . . . , lk :S ′′′

k 〉 6 &〈l1 :S1, . . . , ll :Sl〉
AS-Branch

k ≤ l ∀i ∈ {1, . . . , k}.S ′′′
i 6 Si

By the induction hypothesis, Γ + yq : S ′′′
1 ` P1{yq/xp}, . . . , Γ + yq : S ′′′

m ` Pm{yq/xp}.
We know from the definition of + : Γ, yq : S ′′′

1 ` P1{yq/xp}, . . . , Γ, yq : S ′′′
m ` Pm{yq/xp}.

∀i1,...,m(Γ, yq : S ′′′
i ` Pi) k ≤ n ≤ m ∀i1,...,kS

′′′
i 6 S ′

i ∀i1,...,nS
′
i 6 S ′′

i
TT-Offer

Γ, yq : &〈l1 :S1, . . . , ln :Sn〉 `
yq . {l1 :P1{yq/xp}, . . . , ln :Pn{yq/xp}}

We know from the definition of + :

Γ, yq : &〈l1 :S1, . . . , ln :Sn〉 = Γ + yq : &〈l1 :S1, . . . , ln :Sn〉.
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So, we have :

Γ + yq : &〈l1 :S1, . . . , ln :Sn〉 ` yq . {l1 :P1{yq/xp}, . . . , ln :Pn{yq/xp}}

which is what we need.

TT-Choose
The substitution is :

(up : ⊕〈l1 :S1, . . . , ln :Sn〉) / li . P{y/x}

Case 1 : x 6= u
We have :

Γ, up : ⊕〈l1 :S1, . . . , ll :Sl〉, x : T ` (up : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P U 6 T

We need :

(Γ, up : ⊕〈l1 :S1, . . . , ll :Sl〉) + y : U ` (up : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P{y/x}

Γ, up : ⊕〈l1 :S1, . . . , ll :Sl〉, x : T ` (up : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P
TT-Choose

Γ, up : S ′′, x : T ` P S ′ 6 S ′′
i 1 ≤ i ≤ n ≤ l ∀j1,...,nSj 6 S ′

j

By the induction hypothesis, (Γ, up : S ′′) + y : U ` P{y/x}.
We know (Lemma 4 [Type Addition]): (Γ + y : U), up : S ′′ ` P{y/x}.

(Γ + y : U), up : S ′′ ` P{y/x} S ′ 6 S ′′
i 1 ≤ i ≤ n ≤ l ∀j1,...,nSj 6 S ′

j
TT-Choose

(Γ + y : U), up : ⊕〈l1 :S1, . . . , ll :Sl〉 ` (up : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P{y/x}
We know (Lemma 4 [Type Addition]):

(Γ + y : U), up : ⊕〈l1 :S1, . . . , ll :Sl〉 = (Γ, up : ⊕〈l1 :S1, . . . , ll :Sl〉) + y : U.

So, we have :

(Γ, up : ⊕〈l1 :S1, . . . , ll :Sl〉) + y : U ` (up : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P{y/x}

which is what we need.

Case 2 : x = u
We have :

Γ, xp : ⊕〈l1 :S1, . . . , ll :Sl〉 ` (xp : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P

⊕〈l1 :S ′′′
1 , . . . , lk :S ′′′

k 〉 6 ⊕〈l1 :S1, . . . , ll :Sl〉

We need :

Γ + yq : ⊕〈l1 :S ′′′
1 , . . . , lk :S ′′′

k 〉 ` (yq : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P{yq/xp}
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Γ, xp : ⊕〈l1 :S1, . . . , ll :Sl〉 ` (xp : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P
TT-Choose

Γ, xp : S ′′ ` P S ′
i 6 S ′′ 1 ≤ i ≤ n ≤ l ∀j1,...,nSj 6 S ′

j

⊕〈l1 :S ′′′
1 , . . . , lk :S ′′′

k 〉 6 ⊕〈l1 :S1, . . . , ll :Sl〉
AS-Choice

l ≤ k ∀i1,...,lS
′′′
l 6 Sl

By the induction hypothesis, Γ + yq : S ′′ ` P{yq/xp}.
We know from the definition of + : Γ, yq : S ′′ ` P{yq/xp}.
Γ, yq : S ′′ ` P{yq/xp} S ′

i 6 S ′′ 1 ≤ i ≤ n ≤ k ∀j1,...,nS
′′′
j 6 S ′

j
TT-Choose

Γ, yq : ⊕〈l1 :S ′′′
1 , . . . , lk :S ′′′

k 〉 ` (yq : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P{yq/xp}
We know from the definition of + :

Γ, yq : ⊕〈l1 :S ′′′
1 , . . . , lk :S ′′′

k 〉 = Γ + yq : ⊕〈l1 :S ′′′
1 , . . . , lk :S ′′′

k 〉.

So, we have :

Γ + yq : ⊕〈l1 :S ′′′
1 , . . . , lk :S ′′′

k 〉 ` (yq : ⊕〈l1 :S ′
1, . . . , ln :S ′

n〉) / li . P{yq/xp}

which is what we need.
�

A.3 Proof of Theorem 1 [Subject Reduction Theorem]

If Γ T̀ P and P
α,l−→T P ′ where Γ is balanced with respect to α (if α 6= τ),

then Γ′
T̀ P ′ where

Γ′ = Γ if α = τ or if α is not a session channel

Γ′ = Γ′′, α+ : tail(S, l), α− : tail(S, l)

where Γ′′, α+ : S, α− : S = Γ if α is a session channel.

Proof By structural induction on the derivation of P
α,l−→T P ′
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TR-Comm
The reduction is :

(xp : T ′) ? [ỹ : Ṽ ] . P | (xq : T ′′) ! [z̃ : W̃ ] . Q
x,−→T P{z̃/ỹ} |Q

Case 1 : x is not a session channel
We have :

Γ, x : ̂[T̃ ] + z̃ : Ũ T̀ (x : T ′) ? [ỹ : Ṽ ] . P | (x : T ′′) ! [z̃ : W̃ ] . Q

We need :
Γ, x : ̂[T̃ ] + z̃ : Ũ T̀ P{z̃/ỹ} |Q

Γ, x : ̂[T̃ ] + z̃ : Ũ T̀ (x : T ′) ? [ỹ : Ṽ ] . P | (x : T ′′) ! [z̃ : W̃ ] . Q
TT-Par

Γ1, x : ̂[T̃ ] T̀ (x : T ′) ? [ỹ : Ṽ ] . P Γ2, x : ̂[T̃ ] + z̃ : Ũ T̀ (x : T ′′) ! [z̃ : W̃ ] . Q

where Γ1 + Γ2 = Γ

Γ1, x : ̂[T̃ ] T̀ (x : T ′) ? [ỹ : Ṽ ] . P
TT-In

Γ1, x : ̂[T̃ ], ỹ : Ṽ T̀ P ̂[T ] 6 T ′ 6 ?[V ]

Γ2, x : ̂[T̃ ] + z̃ : Ũ T̀ (x : T ′′) ! [z̃ : W̃ ] . Q
TT-Out

Γ2, x : ̂[T̃ ] T̀ Q ̂[T̃ ] 6 T ′′ 6 ![W̃ ] Ũ 6 W̃̂[T ] 6 ![W ]
AS-Out

W̃ 6 T̃̂[T ] 6 ?[V ]
AS-In

T̃ 6 Ṽ

We know (Lemma 5 [Subtype Transitivity]) : Ũ 6 Ṽ

We know (Lemma 8 [Substitution]) : Γ1, x : ̂[T̃ ] + z̃ : Ũ T̀ P{z̃/ỹ}
Γ1, x : ̂[T̃ ] + z̃ : Ũ T̀ P{z̃/ỹ} Γ2, x : ̂[T̃ ] T̀ Q

TT-Par
(Γ1, x : ̂[T̃ ] + z̃ : Ũ) + (Γ2, x : ̂[T̃ ]) T̀ P{z̃/ỹ} |Q
We know from the definition of + :

(Γ1, x : ̂[T̃ ] + z̃ : Ũ) + (Γ2, x : ̂[T̃ ]) = Γ, x : ̂[T̃ ] + z̃ : Ũ .

So, we have :
Γ, x : ̂[T̃ ] + z̃ : Ũ T̀ P{z̃/ỹ} |Q

which is what we need.
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Case 2 : x is a session channel
We have :

Γ, x+ : ?[T̃ ].S, x− : ![T̃ ].S + z̃ : Ũ T̀ (x+ : ?[T̃ ′] . S ′)?[ỹ : Ṽ ].P | (x− : ![T̃ ′′] . S ′′)![z̃ : W̃ ].Q

We need :
Γ, x+ : S, x− : S + z̃ : Ũ T̀ P{z̃/ỹ} |Q

Γ, x+ : ?[T̃ ].S, x− : ![T̃ ].S + z̃ : Ũ T̀

(x+ : ?[T̃ ′] . S ′)?[ỹ : Ṽ ].P | (x− : ![T̃ ′′] . S ′′)![z̃ : W̃ ].Q
TT-Par

Γ1, x
+ : ?[T̃ ].S T̀ (x+ : ?[T̃ ′] . S ′)?[ỹ : Ṽ ].P

Γ2, x
− : ![T̃ ].S + z̃ : Ũ T̀

(x− : ![T̃ ′′] . S ′′)![z̃ : W̃ ].Q

where Γ1 + Γ2 = Γ

Γ1, x
+ : ?[T̃ ].S T̀ (x+ : ?[T̃ ′] . S ′)?[ỹ : Ṽ ].P

TT-InSeq
Γ1, x

+ : S, ỹ : Ṽ T̀ P S 6 S ′ T̃ 6 T̃ ′ 6 Ṽ

Γ2, x
− : ![T̃ ].S + z̃ : Ũ T̀ (x− : ![T̃ ′′] . S ′′)![z̃ : W̃ ].Q

TT-OutSeq
Γ2, x

− : S T̀ Q S 6 S ′′ Ũ 6 W̃ 6 T̃ ′′ 6 T̃

We know (Lemma 5 [Subtype Transitivity]) : Ũ 6 Ṽ

We know (Lemma 8 [Substitution]) : Γ1, x
+ : S + z̃ : Ũ T̀ P{z̃/ỹ}

Γ1, x
+ : S + z̃ : Ũ T̀ P{z̃/ỹ} Γ2, x

− : S T̀ Q
TT-Par

(Γ1, x
+ : S + z̃ : Ũ) + (Γ2, x

− : S) T̀ P{z̃/ỹ} |Q
We know from the definition of + :

(Γ1, x
+ : S + z̃ : Ũ) + (Γ2, x

− : S) = Γ, x+ : S, x− : S + z̃ : Ũ .

So, we have :
Γ, x+ : S, x− : S + z̃ : Ũ T̀ P{z̃/ỹ} |Q

which is what we need.

TR-Select
The reduction is :

(x+ : &〈l1 :S1
′, . . . , lm :Sm

′〉) . {l1 :P1, . . . , ln :Pn}|
(x− : ⊕〈l1 :S1

′′, . . . , lk :Sk
′′〉) / li . Q

x,li−→T Pi |Q

We have :

Γ, x+ : &〈l1 :S1, . . . , ll :Sl〉, x− : ⊕〈l1 :S1, . . . , ll :Sl〉 T̀

(x+ : &〈l1 :S1
′, . . . , lm :Sm

′〉) . {l1 :P1, . . . , ln :Pn}|
(x− : ⊕〈l1 :S1

′′, . . . , lk :Sk
′′〉) / li . Q

We need :
Γ, x+ : Si, x

− : Si T̀ Pi |Q
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Γ, x+ : &〈l1 :S1, . . . , ll :Sl〉, x− : ⊕〈l1 :S1, . . . , ll :Sl〉 T̀

(x+ : &〈l1 :S1
′, . . . , lm :Sm

′〉) . {l1 :P1, . . . , ln :Pn}|
(x− : ⊕〈l1 :S1

′′, . . . , lk :Sk
′′〉) / li . Q

TT-Par
Γ1, x

+ : &〈l1 :S1, . . . , ll :Sl〉 T̀

(x+ : &〈l1 :S1
′, . . . , lm :Sm

′〉) . {l1 :P1, . . . , ln :Pn}
Γ2, x

− : ⊕〈l1 :S1, . . . , ll :Sl〉 T̀ (x− : ⊕〈l1 :S1
′′, . . . , lk :Sk

′′〉) / li . Q

where Γ1 + Γ2 = Γ

Γ1, x
+ : &〈l1 :S1, . . . , ll :Sl〉 T̀

(x+ : &〈l1 :S1
′, . . . , lm :Sm

′〉) . {l1 :P1, . . . , ln :Pn}
TT-Offer

∀i ∈ {1, . . . , n}.(Γ1, x
+ : S ′′′

i T̀ Pi) l ≤ m ≤ n
∀i ∈ {1, . . . , l}.Si 6 S ′

i

∀i ∈ {1, . . . ,m}.S ′
i 6 S ′′′

i

We know (Lemma 5 [Subtype Transitivity]) : Si 6 S ′′′
i

By the induction hypothesis : Γ1 + x+ : Si T̀ Pi

From the definition of + : Γ1, x
+ : Si T̀ Pi

Γ2, x
− : ⊕〈l1 :S1, . . . , ll :Sl〉 T̀ (x− : ⊕〈l1 :S1

′′, . . . , lk :Sk
′′〉) / li . Q

TT-Choose
Γ2, x

− : S ′′′′
i T̀ Q S ′′

i 6 S ′′′′
i 1 ≤ i ≤ k ≤ l ∀i ∈ {1, . . . , q}.Si 6 S ′′

i

We know (Lemma 5 [Subtype Transitivity]) : Si 6 S ′′′′
i

By the induction hypothesis : Γ2 + x− : Si T̀ Q

From the definition of + : Γ2, x
− : Si T̀ Q

Γ1, x
+ : Si T̀ Pi Γ2, x

− : Si T̀ Q
TT-Par

(Γ1, x
+ : Si) + (Γ2, x

− : Si) T̀ Pi |Q
But, (Γ1, x

+ : Si) + (Γ2, x
− : Si) = Γ, x+ : Si, x

− : Si.

So, we have :
Γ, x+ : Si, x

− : Si T̀ Pi |Q

which is what we need.

TR-True
The reduction is :

if true : bool then P else Q
τ,−→T P

We have :
Γ T̀ if true : bool then P else Q

We need :
Γ T̀ P

Γ T̀ if true : bool then P else Q
TT-Cond

Γ T̀ true 6 bool Γ T̀ P Γ T̀ Q
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So, we have :
Γ T̀ P

which is what we need.

TR-False
The reduction is :

if false : bool then P else Q
τ,−→T Q

We have :
Γ T̀ if false : bool then P else Q

We need :
Γ T̀ Q

Γ T̀ if false : bool then P else Q
TT-Cond

Γ T̀ false 6 bool Γ T̀ P Γ T̀ Q

So, we have :
Γ T̀ Q

which is what we need.

TR-Par
The derivation ends with :

P
α,l−→T P ′

P |Q α,l−→T P ′ |Q′

Case 1 : α = τ
We have :

Γ T̀ P |Q

We need :
Γ T̀ P ′ |Q

Γ T̀ P |Q
TT-Par

Γ1 T̀ P Γ2 T̀ Q

where Γ1 + Γ2 = Γ

Γ1 T̀ P and P
τ,−→T P ′, so, by the induction hypothesis, Γ1 T̀ P ′.

Γ1 T̀ P ′ Γ2 T̀ Q
TT-Par

Γ1 + Γ2 T̀ P ′ |Q
But, Γ1 + Γ2 = Γ.

So, we have :
Γ T̀ P ′ |Q

which is what we need.
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Case 2 : α 6= τ , α is not a session channel
We have :

Γ T̀ P |Q

We need :
Γ T̀ P ′ |Q

Γ T̀ P |Q
TT-Par

Γ1 T̀ P Γ2 T̀ Q

where Γ1 + Γ2 = Γ

Γ1 T̀ P and P
α,l−→T P ′, so, by the induction hypothesis, Γ1 T̀ P ′.

Γ1 T̀ P ′ Γ2 T̀ Q
TT-Par

Γ1 + Γ2 T̀ P ′ |Q
But, Γ1 + Γ2 = Γ.

So, we have :
Γ T̀ P ′ |Q

which is what we need.

Case 3 : α 6= τ , α is a session channel
We have :

Γ, α+ : S, α− : S T̀ P |Q

We need :
Γ, α+ : tail(S, l), α− : tail(S, l) T̀ P ′ |Q

Γ, α+ : S, α− : S T̀ P |Q
TT-Par

Γ1, α
+ : S, α− : S T̀ P Γ2 T̀ Q

where Γ1 + Γ2 = Γ and α /∈ Γ2

Γ1, α
+ : S, α− : S T̀ P and P

α,l−→T P ′, so, by the induction hypothesis, as

α is a session channel, Γ1, α
+ : tail(S, l), α− : tail(S, l) T̀ P ′.

Γ1, α
+ : tail(S, l), α− : tail(S, l) T̀ P ′ Γ2 T̀ Q

TT-Par
(Γ1, α

+ : tail(S, l), α− : tail(S, l)) + Γ2 T̀ P ′ |Q
We know (Lemma 4 [Type Addition]):

(Γ1, α
+ : tail(S, l), α− : tail(S, l)) + Γ2 = (Γ1 + Γ2), α

+ : tail(S, l), α− : tail(S, l)

But, Γ1 + Γ2 = Γ and α /∈ Γ2.

So, we have :
Γ, α+ : tail(S, l), α− : tail(S, l) T̀ P ′ |Q

which is what we need.
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TR-Cong
The derivation ends with :

P ′ ≡ P P
α,l−→T Q Q ≡ Q′

P ′ α,l−→T Q′

Case 1 : α = τ or α is not a session channel
We have :

Γ T̀ P ′

We need :
Γ T̀ Q′

We know (Lemma 9 [Structural Equivalence]) : Γ T̀ P

Γ T̀ P and P
α,l−→T Q, so, by the induction hypothesis, Γ T̀ Q.

We know (Lemma 9 [Structural Equivalence]) : Γ T̀ Q′

So, we have :
Γ T̀ Q′

which is what we need.

Case 2 : α is a session channel
We have :

Γ, α+ : S, α− : S T̀ P ′

We need :
Γ, α+ : tail(S, l), α− : tail(S, l) T̀ Q′

We know (Lemma 9 [Structural Equivalence]) : Γ, α+ : S, α− : S T̀ P

Γ, α+ : S, α− : S T̀ P and P
α,l−→T Q, so, by the induction hypothesis,

Γ, α+ : tail(S, l), α− : tail(S, l) T̀ Q.

We know (Lemma 9 [Structural Equivalence]) :

Γ, α+ : tail(S, l), α− : tail(S, l) T̀ Q′

So, we have :
Γα+ : tail(S, l), α− : tail(S, l) T̀ Q′

which is what we need.

TR-New
The derivation ends with :

P
α,l−→T P ′ α 6= x

(νx : T )P
α,l−→T (νx : T )P ′

Case 1 : α = τ or is not a session channel
We have :

Γ T̀ (νx : T )P
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We need :
Γ T̀ (νx : T )P ′

Γ T̀ (νx : T )P
TT-New

Γ, x : T T̀ P

Γ, x : T T̀ P and P
α,l−→T P ′ where α = τ or is not a session channel, so,

by the induction hypothesis, Γ, x : T T̀ P ′.

Γ, x : T T̀ P ′

TT-New
Γ T̀ (νx : T )P ′

So, we have :
Γ T̀ (νx : T )P ′

which is what we need.
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Case 2 : α is a session channel
We have :

Γ, α+ : S, α− : S T̀ (νx : T )P

We need :
Γ, α+ : tail(S, l), α− : tail(S, l) T̀ (νx : T )P ′

Γ, α+ : S, α− : S T̀ (νx : T )P
TT-New

Γ, α+ : S, α− : S, x : T T̀ P

Γ, α+ : S, α− : S, x : T T̀ P and P
α,l−→T P ′, so, by the induction hypothesis,

Γ, α+ : tail(S, l), α− : tail(S, l), x : T T̀ P ′.

Γ, α+ : tail(S, l), α− : tail(S, l), x : T T̀ P ′

TT-New
Γ, α+ : tail(S, l), α− : tail(S, l) T̀ (νx : T )P ′

So, we have :
Γ, α+ : tail(S, l), α− : tail(S, l) T̀ (νx : T )P ′

which is what we need.

TR-NewSeq
The derivation ends with :

P
α,l−→T P ′ α 6= x

(νx± : S)P
α,l−→T (νx± : S)P ′

Case 1 : α = τ or is not a session channel
We have :

Γ T̀ (νx± : S)P

We need :
Γ T̀ (νx± : S)P ′

Γ T̀ (νx± : S)P
TT-NewSeq

Γ, x+ : S, x− : S T̀ P

Γ, x+ : S, x− : S T̀ P and P
α,l−→T P ′, so, by the induction hypothesis,

Γ, x+ : S, x− : S T̀ P ′.

Γ, x+ : S, x− : S T̀ P ′

TT-NewSeq
Γ, T̀ (νx± : S)P ′

So, we have :
Γ T̀ (νx± : S)P ′

which is what we need.
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Case 2 : α is a session channel
We have :

Γ, α+ : S, α− : S T̀ (νx± : S2)P

We need :
Γ, α+ : tail(S, l), α− : tail(S, l) T̀ (νx± : S2)P

′

Γ, α+ : S, α− : S T̀ (νx± : S)P
TT-NewSeq

Γ, α+ : S, α− : S, x+ : S2, x
− : S2 T̀ P

Γ, α+ : S, α− : S, x+ : S2, x
− : S2 T̀ P and P

α,l−→T P ′, so, by the induction

hypothesis, Γ, α+ : tail(S, l), α− : tail(S, l), x+ : S2, x
− : S2 T̀ P ′.

Γ, α+ : tail(S, l), α− : tail(S, l), x+ : S2, x
− : S2 T̀ P ′

TT-NewSeq
Γ, α+ : tail(S, l), α− : tail(S, l) T̀ (νx± : S)P ′

So, we have :
Γ, α+ : tail(S, l), α− : tail(S, l) T̀ (νx± : S2)P

′

which is what we need.

TR-NewX
The derivation ends with :

P
x,l−→T P ′

(νx : T )P
τ,−→T (νx : T )P ′

We have :
Γ T̀ (νx : T )P

We need :
Γ T̀ (νx : T )P ′

Γ T̀ (νx : T )P
TT-New

Γ, x : T T̀ P

Γ, x : T T̀ P and P
x,l−→T P ′, so, by the induction hypothesis, Γ, x : T T̀ P ′.

Γ, x : T T̀ P ′

TT-New
Γ T̀ (νx : T )P ′

So, we have :
Γ T̀ (νx : T )P ′

which is what we need.

TR-NewXSeq
The derivation ends with :

P
x,l−→T P ′

(νx± : T )P
τ,−→T (νx± : tail(T, l))P ′
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We have :
Γ T̀ (νx± : T )P

We need :
Γ T̀ (νx± : tail(T, l))P ′

Γ T̀ (νx± : T )P
TT-NewSeq

Γ, x+ : T, x− : T T̀ P

Γ, x+ : T, x− : T T̀ P and P
x,l−→T P ′, so, by the induction hypothesis,

Γ, x+ : tail(T, l), x− : tail(T , l) T̀ P ′ .

Γ, x+ : tail(T, l), x− : tail(T , l) T̀ P ′

TT-NewSeq
Γ T̀ (νx± : T )P ′

So, we have :
Γ T̀ (νx± : tail(T, l))P ′

which is what we need.
�
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B Run-Time Safety Theorem

In the following proof, wherever it is necessary to remove multiple new bindings, we write
this as a single application of the T-New rule for simplicity. In fact it could represent
multiple applications of both the T-New and T-NewSeq rules.

B.1 Proof of Theorem 3 [Run-Time Safety]

If Γ T̀ P , P ≡ (νw̃ : W̃ )(Q |R), Q
α,l−→T Q′ and Γ is balanced with respect to α

(if α 6= τ), then

i)If Q ≡ (x : A) ? [ỹ : T̃ ] . Q1 | (x : B) ! [z̃ : Ũ ] . Q2

where x is not a session channel, then

∀i ∈ {1, . . . , n}.Γ T̀ zi : Vi or (νz̃i : Vi) ∈ (νw̃ : W̃ ) where Vi 6 Ti

and

Γ T̀ x : ̂[X̃] or (νx : ̂[X̃]) ∈ (νw̃ : W̃ )

for some X̃ such that ̂[X̃] 6 ?[T̃ ] and ̂[X̃] 6 ![Ũ ]

ii)If Q ≡ (xp : ?[Ã] . S ′) ? [ỹ : T̃ ] . Q1 | (xq : ![B̃] . S ′) ! [z̃ : Ũ ] . Q2

where x is a session channel, then

p = q

and

∀i ∈ {1, . . . , n}.Γ T̀ zi : Vi or (νz̃i : Vi) ∈ (νw̃ : W̃ ) where Vi 6 Ti

and

Γ T̀ xp : ?[X̃] . S, xq : ![X̃] . S or (νx± : ?[X̃] . S) ∈ (νw̃ : W̃ )

or (νx± : ![X̃] . S) ∈ (νw̃ : W̃ ) for some X̃ and S such that

?[X̃] . S 6 ?[T̃ ] . S ′ and ![X̃] . S 6 ![Ũ ] . S ′

iii)If Q ≡ xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2, then

p = q

and

li ∈ {l1, . . . , ln}
and

Γ ` xp : &〈l1 :S1, . . . , ln :Sn〉, xq : ⊕〈l1 :S1, . . . , ln :Sn〉
or (νx± : &〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ )

or (νx± : ⊕〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ )

iv)If Q ≡ if x then Q1 else Q2, then

Γ ` x : bool or (νx : bool) ∈ (νw̃ : W̃ )

Proof There are four cases - one for each type of reduction.

Case 1 : Q ≡ (x : A) ? [ỹ : T̃ ] .Q1 | (x : B) ! [z̃ : Ũ ] .Q2 where x is not a session channel
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We have :

Γ T̀ (νw̃ : W̃ )(((x : A) ? [ỹ : T̃ ] . Q1 | (x : B) ! [z̃ : Ũ ] . Q2) |R)

We need :

∀i ∈ {1, . . . , n}.Γ T̀ zi : Vi or (νz̃i : Vi) ∈ (νw̃ : W̃ ) where Vi 6 Ti

and

Γ T̀ x : ̂[X̃] or (νx : ̂[X̃]) ∈ (νw̃ : W̃ )

for some X̃ such that ̂[X̃] 6 ?[T̃ ] and ̂[X̃] 6 ![Ũ ]

Γ T̀ (νw̃ : W̃ )(((x : A) ? [ỹ : T̃ ] . Q1 | (x : B) ! [z̃ : Ũ ] . Q2) |R)
TT-New

Γ, w̃ : W̃ T̀ ((x : A) ? [ỹ : T̃ ] . Q1 | (x : B) ! [z̃ : Ũ ] . Q2) |R
Γ, w̃ : W̃ T̀ ((x : A) ? [ỹ : T̃ ] . Q1 | (x : B) ! [z̃ : Ũ ] . Q2) |R

TT-Par
Γ1 T̀ (x : A) ? [ỹ : T̃ ] . Q1 | (x : B) ! [z̃ : Ũ ] . Q2 Γ2 T̀ R

where Γ1 + Γ2 = Γ, w̃ : W̃

Γ1 T̀ (x : A) ? [ỹ : T̃ ] . Q1 | (x : B) ! [z̃ : Ũ ] . Q2 Γ2 T̀ R
TT-Par

Γ3 T̀ (x : A) ? [ỹ : T̃ ] . Q1 Γ4 T̀ (x : B) ! [z̃ : Ũ ] . Q2

where Γ3 + Γ4 = Γ1

Γ3 T̀ (x : A) ? [ỹ : T̃ ] . Q1
TT-In

Γ3, ỹ : T̃ T̀ Q1 Γ3 T̀ x 6 A 6 ?[T̃ ]

We know (Lemma 5 [Subtype Transitivity]) : Γ3 T̀ x 6 ?[T̃ ]

Let Γ4 = Γ5 + z : Ṽ where Γ, w̃ : W̃ T̀ z̃ : Ṽ

Γ5 + z : Ṽ T̀ (x : B) ! [z̃ : Ũ ] . Q2
TT-Out

Γ5 T̀ Q2 Γ5 T̀ x 6 B 6 ![Ũ ] Ṽ 6 Ũ

We know (Lemma 5 [Subtype Transitivity]) : Γ5 T̀ x 6 ![Ũ ]

Γ2 + Γ3 + Γ5 + z̃ : Ṽ = Γ, w̃ : W̃

From the definition of + : Γ, w̃ : W̃ T̀ x : ̂[X̃] for some X̃

such that ̂[X̃] 6 ?[T̃ ] and ̂[X̃] 6 ![Ũ ]

So, Γ T̀ x : ̂[X̃] or (νx : ̂[X̃]) ∈ (νw̃ : W̃ ) for some X̃ such that ̂[X̃] 6 ?[T̃ ]

and ̂[X̃] 6 ![Ũ ]̂[X̃] 6 ?[T̃ ]
AS-In

∀i ∈ {1, . . . , n}.Xi 6 Tî[X̃] 6 ![Ũ ]
AS-Out

∀i ∈ {1, . . . , n}.Ui 6 Xi

We know (Lemma 5 [Subtype Transitivity]) : ∀i ∈ {1, . . . , n}.Vi 6 Ti

From the definition of + : Γ, w̃ : W̃ T̀ z̃ : Ṽ

So, ∀i ∈ {1, . . . , n}.Γ T̀ zi : Vi or (νz̃i : Vi) ∈ (νw̃ : W̃ )
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So, we have :

∀i ∈ {1, . . . , n}.Γ T̀ zi : Vi or (νz̃i : Vi) ∈ (νw̃ : W̃ ) where Vi 6 Ti

and

(Γ T̀ x : ̂[X̃] or (νx : ̂[X̃]) ∈ (νw̃ : W̃ )

for some X̃ such that ̂[X̃] 6 ?[T̃ ] and ̂[X̃] 6 ![Ũ ]

which is what we need.

Case 2 : Q ≡ (xp : ?[Ã] . S ′) ? [ỹ : T̃ ] .Q1 | (xq : ![B̃] . S ′) ! [z̃ : Ũ ] .Q2 where x is a session
channel
We have :

Γ ` (νw̃ : W̃ )(((xp : ?[Ã] . S ′) ? [ỹ : T̃ ] . Q1 | (xq : ![B̃] . S ′) ! [z̃ : Ũ ] . Q2) |R)

We need :

p = q

and

∀i ∈ {1, . . . , n}.Γ T̀ zi : Vi or (νz̃i : Vi) ∈ (νw̃ : W̃ ) where Vi 6 Ti

and

Γ T̀ xp : ?[X̃] . S, xq : ![X̃] . S or (νx± : ?[X̃] . S) ∈ (νw̃ : W̃ )

or (νx± : ![X̃] . S) ∈ (νw̃ : W̃ ) for some X̃ and S such that

?[X̃] . S 6 ?[T̃ ] . S ′ and ![X̃] . S 6 ![Ũ ] . S ′
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Γ T̀ (νw̃ : W̃ )(((xp : ?[Ã] . S ′) ? [ỹ : T̃ ] . Q1 | (xq : ![B̃] . S ′) ! [z̃ : Ũ ] . Q2) |R)
TT-New

Γ, w̃ : W̃ T̀ ((xp : ?[Ã] . S ′) ? [ỹ : T̃ ] . Q1 | (xq : ![B̃] . S ′) ! [z̃ : Ũ ] . Q2) |R
Γ, w̃ : W̃ T̀ ((xp : ?[Ã] . S ′) ? [ỹ : T̃ ] . Q1 | (xq : ![B̃] . S ′) ! [z̃ : Ũ ] . Q2) |R

TT-Par
Γ1 T̀ (xp : ?[Ã] . S ′) ? [ỹ : T̃ ] . Q1 | (xq : ![B̃] . S ′) ! [z̃ : Ũ ] . Q2 Γ2 T̀ R

where Γ1 + Γ2 = Γ, w̃ : W̃

Γ1 T̀ (xp : ?[Ã] . S ′) ? [ỹ : T̃ ] . Q1 | (xq : ![B̃] . S ′) ! [z̃ : Ũ ] . Q2
TT-Par

Γ3 T̀ (xp : ?[Ã] . S ′) ? [ỹ : T̃ ] . Q1 Γ4 T̀ (xq : ![B̃] . S ′) ! [z̃ : Ũ ] . Q2

where Γ3 + Γ4 = Γ1

As the above addition is defined, p 6= q

Let Γ3 = Γ5, x
p : ?[X̃] . S for some X̃ and S

Γ5, x
p : ?[X̃] . S T̀ (xp : ?[Ã] . S ′) ? [ỹ : T̃ ] . Q1

TT-InSeq
Γ5, x

p : S, y : T T̀ Q1 S 6 S ′ X̃ 6 Ã 6 T̃

We know (Lemma 5 [Subtype Transitivity]) : X̃ 6 T̃

S 6 S ′ ∀i ∈ {1, . . . , n}.Xi 6 Ti
AS-InSeq

?[X̃] . S 6 ?[T̃ ] . S ′

Let Γ4 = (Γ6, x
q : ![X̃] . S) + z̃ : Ṽ where Γ, w̃ : W̃ T̀ z̃ : Ṽ

(Γ6, x
q : ![X̃] . S) + z̃ : Ṽ T̀ (xq : ![B̃] . S ′) ! [z̃ : Ũ ] . Q2

TT-OutSeq
Γ6, xq : S ` Q2 S 6 S ′ Ṽ 6 Ũ 6 Ã 6 X̃

We know (Lemma 5 [Subtype Transitivity]) : Ũ 6 X̃

S 6 S ′ ∀i ∈ {1, . . . , n}.Ui 6 Xi
AS-OutSeq

![X̃] . S 6 ![Ũ ] . S ′

Γ2 + (Γ5, x
p : ?[X̃] . S) + ((Γ6, x

q : ![X̃] . S) + z̃ : Ṽ ) = Γ, w̃ : W̃

From the definition of + : Γ, w̃ : W̃ T̀ xp : ?[X̃] . S, xq : ![X̃] . S

So, Γ ` xp : ?[X̃] . S, xq : ![X̃] . S or (νx± : ?[X̃] . S) ∈ (νw̃ : W̃ )

or (νx± : ![X̃] . S) ∈ (νw̃ : W̃ ) for some X̃ and S such that

?[X̃] . S 6 ?[T̃ ] . S ′ and ![X̃] . S 6 ![Ũ ] . S ′

We know (Lemma 5 [Subtype Transitivity]) : Ṽ 6 T̃

From the definition of + : Γ, w̃ : W̃ T̀ z̃ : Ṽ

So, ∀i ∈ {1, . . . , n}.Γ T̀ zi : Vi or (νz̃i : Vi) ∈ (νw̃ : W̃ ) where Vi 6 Ti
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So, we have :

p = q

and

∀i ∈ {1, . . . , n}.Γ T̀ zi : Vi or (νz̃i : Vi) ∈ (νw̃ : W̃ ) where Vi 6 Ti

and

Γ ` xp : ?[X̃] . S, xq : ![X̃] . S or (νx± : ?[X̃] . S) ∈ (νw̃ : W̃ )

or (νx± : ![X̃] . S) ∈ (νw̃ : W̃ ) for some X̃ and S such that

?[X̃] . S 6 ?[T̃ ] . S ′ and ![X̃] . S 6 ![Ũ ] . S ′

which is what we need.

Case 3 : Q ≡ xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2

We have :
Γ ` (νw̃ : W̃ )((xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2) |R)

We need :

p = q

and

li ∈ {l1, . . . , ln}
and

Γ ` xp : &〈l1 :S1, . . . , ln :Sn〉, xq : ⊕〈l1 :S1, . . . , ln :Sn〉
or (νx± : &〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ )

or (νx± : ⊕〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ )
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Γ ` (νw̃ : W̃ )((xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2) |R)
T-New

Γ, w̃ : W̃ ` (xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2) |R
Γ, w̃ : W̃ ` (xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2) |R

T-Par
Γ1 ` xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2 Γ2 ` R

where Γ1 + Γ2 = Γ, w̃ : W̃

Γ1 ` xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2
T-Par

Γ3 ` xp . {l1 :P1, . . . , ln :Pn} Γ4 ` xq / li . Q2

As the above addition is defined, we know p = q.

If Γ3 ` xp . {l1 :P1, . . . , ln :Pn} then Γ3 ` xp : &〈l1 :S1, . . . , ln :Sn〉.
If Γ4 ` xq / li . Q2 then Γ4 ` xq : ⊕〈l′1 :S ′

1, . . . , l
′
m :S ′

m〉 where li ∈ {l′1, . . . , l′m}.
We know Γ3 + Γ4 + Γ2 = Γ, w̃ : W̃ .

So, Γ, w̃ : W̃ ` xp : &〈l1 :S1, . . . , ln :Sn〉 and Γ, w̃ : W̃ ` xq : ⊕〈l′1 :S ′
1, . . . , l

′
m :S ′

m〉.
Γ, w̃ : W̃ ` (xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2) |R

T-New
Γ ` (νw̃ : W̃ )((xp . {l1 :P1, . . . , ln :Pn} | xq / li . Q2) |R)

We know x+ and x− are either in Γ or are bound in (νw̃ : W̃ ).

If x+ and x− are in Γ, then x = α and Γ is balanced with respect to x.

So, m = n and for all j ∈ {1, . . . , n} S ′
j = Sj and l′j = lj, and therefore

li ∈ {l1, . . . , ln}, Γ ` xp : &〈l1 :S1, . . . , ln :Sn〉 and Γ ` xq : ⊕〈l1 :S1, . . . , ln :Sm〉.

If x+ and x− are bound in (νw̃ : W̃ ) then Γ, w̃ : W̃ (x+) = Γ, w̃ : W̃ (x−).

So, m = n and for all j ∈ {1, . . . , n} S ′
j = Sj and l′j = lj, and therefore

li ∈ {l1, . . . , ln} and, (νx± : &〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ ) or

(νx± : ⊕〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ ).

So, we have :

p = q

and

li ∈ {l1, . . . , ln}
and

Γ ` xp : &〈l1 :S1, . . . , ln :Sn〉, xq : ⊕〈l1 :S1, . . . , ln :Sn〉
or (νx± : &〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ )

or (νx± : ⊕〈l1 :S1, . . . , ln :Sn〉) ∈ (νw̃ : W̃ )

which is what we need.

Case 4 : Q ≡ if x then Q1 else Q2

We have :
Γ ` (νw̃ : W̃ )(( if x then Q1 else Q2) |R)

We need :
Γ ` x : bool or (νx : bool) ∈ (νw̃ : W̃ )

58



Γ ` (νw̃ : W̃ )(( if x then Q1 else Q2) |R)
T-New

Γ, w̃ : W̃ ` ( if x then Q1 else Q2) |R
Γ, w̃ : W̃ ` ( if x then Q1 else Q2) |R

T-Par
Γ1 ` if x then Q1 else Q2 Γ2 ` R

where Γ1 + Γ2 = Γ, w̃ : W̃

Γ1 ` if x then Q1 else Q2
T-Cond

Γ1 ` x : bool Γ1 ` Q1 Γ1 ` Q2

We know Γ1 ` x : bool and Γ1 + Γ2 = Γ, w̃ : W̃ .

So, Γ, w̃ : W̃ ` x : bool.

Γ, w̃ : W̃ ` ( if x then Q1 else Q2) |R
T-New

Γ ` (νw̃ : W̃ )(( if x then Q1 else Q2) |R)

We know x is either in Γ or is bound in (νw̃ : W̃ ).

So, we have :
Γ ` x : bool or (νx : bool) ∈ (νw̃ : W̃ )

which is what we need.
�
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